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Abstract

Murine hepatitis virus strain 3 (MHV-3) produces a strain-dependent pattern of disease, with A/J and BALB/c mice being considered models of
resistance and susceptibility, respectively. A role for nitric oxide in controlling infection remains debatable; thus, we monitored nitric oxide levels
in blood and liver of immunized and nonimmunized spf mice during infection by electron paramagnetic resonance. In parallel, liver histology,
virus titers, and plasma alanine aminotransferase (ALT) activity were monitored. Nitric oxide synthesis was barely detectable in BALB/c mice,
which showed a progressive increase in virus titers and ALT activity. These animals died with a shorter survival time than A/J mice. The latter
displayed a less severe infection and presented detectable levels of nitric oxide as nitrosyl complexes in blood and liver at 72 hpi. Immunized mice
from both strains became resistant to MHV-3 and showed comparable levels of nitrosyl complexes in blood and liver at an early time (24 hpi).
Thereafter, nitric oxide levels decreased but remained detectable in blood up to 96 hpi. Immunized mice were capable of clearing the virus and
clearance was inhibited by administration of a nitric oxide synthase inhibitor. Overall, the results support a role for nitric oxide in controlling
MHV-3 infection.
© 2006 Elsevier Inc. All rights reserved.
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Murine hepatitis virus strain 3 (MHV-3) is a single-stranded,
positive-sense RNA virus belonging to the Coronaviridae
family, which produces a strain-dependent pattern of disease in
inbred laboratory mice, depending on the virus strain, infection
route, age, genetic background, and immune status of the host
[1,2]. MHV-3 was isolated in 1956 [3] and has been used as a
model for the study of host resistance/susceptibility to human
hepatitis virus. Indeed, several studies using inbred lines of mice
have reported that A/J mice show an innate resistance and
BALB/c mice an innate susceptibility to experimental MHV-3
infection [4–6]. Even though the resistance of A/J mice to
MHV-3 has been considered innate, there are data suggesting
that this resistance is also dependent on the antibodies naturally
Abbreviations: MHV-3, murine hepatitis virus strain 3; iNOS, inducible
nitric oxide synthase; PFU, plaque-forming units; spf, specific-pathogen-free;
ALT, alanine aminotransferase; IFN-γ, interferon-γ.
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acquired or induced by immunization [7,8]. Also, it has been
shown that in coronavirus-free colonies, A/J mice can rapidly
acquire resistance through natural or experimental infection
with other MHV strains, whereas BALB/c mice cannot [1].

Several mechanisms have been proposed to explain
susceptibility/resistance to MHV-3 [4,9–15], including those
that emphasize oxidative macrophage mechanisms and nitric
oxide synthesis. The conclusions about the role of nitric oxide in
MHV-3 infection, however, have been contradictory. For
instance, it has been demonstrated that peritoneal macrophages
isolated from resistant A/J mice produced a fivefold-higher
level of nitric oxide and higher levels of mRNA transcripts of
inducible nitric oxide synthase (iNOS) in response to IFN-γ
than macrophages isolated from susceptible BALB/c mice [16].
In contrast, it has been proposed that IFN-γ acts as an antiviral
effector [1,10,17] by a mechanism that is independent of nitric
oxide [18] but dependent on down-regulation of the main virus
receptor Bgp1a [19].
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Nitric oxide is a radical with several physiological and
pathophysiological roles [20], which has been proposed to act
as a nonspecific antiviral effector [16,21–29]. However, the
role that nitric oxide plays in many diseases, including those
of viral origin, remains controversial [16,21,26,30–32]. De-
pending on the experimental model and conditions, opposing
effects are often attributed to nitric oxide, creating much
confusion in the literature [33]. A possible explanation for the
many discrepancies is the extensive use of nonspecific NOS
inhibitors [32] as well as the intrinsic difficulties in detecting
nitric oxide, a short-lived free radical, under physiological
conditions.

Studies of the role of nitric oxide in MHV-3 infection have
been performed mostly in vitro or with inbred mice [16,18].
Because the conclusions have been controversial, further
studies are warranted. Here, we monitored nitric oxide forma-
tion in vivo by examining the blood and liver of immunized
and nonimmunized spf mice during MHV-3 infection by direct
electron paramagnetic resonance (EPR) spectroscopy. In
parallel, we monitored several infection parameters and
administered a relatively selective iNOS inhibitor, 1400 W.
Our results indicate that an early and sustained synthesis of
nitric oxide is important for virus and disease control.

Materials and methods

Mice, virus, and infection

MHV-3 and MHV-A59 viruses (kindly provided by Dr. J.P.
Martin, Laboratoire de Virologie, Strasbourg, France) were
propagated and plaque assayed on L929 cells cultured in
modified Eagle's medium (MEM) containing 10% fetal bovine
serum at 37°C, as previously described [10]. Aliquots
containing 4×105 PFU ml−1 were stored at −80°C and used
in all experiments. Spf-grade female A/J and BALB/c mice (6
to 8 weeks of age) were purchased from the Instituto de
Ciências Biomédicas, Universidade de São Paulo, and
maintained in a laminar-flow rack in microisolator cages.
Mice were infected ip with 0.2 ml of phosphate-buffered
saline (PBS) containing 103 PFU of MHV-3; control animals
were injected with 0.2 ml of sterile PBS alone. Mice were
immunized ip with 103 PFU of MHV-A59 [34] in a volume of
0.2 ml and challenged with 103 PFU of MHV-3, 2 weeks later.
The determination of serum antibodies to MHV-3 was
performed by serially diluting mice sera with 2 vol of MEM
containing 10% fetal bovine serum. A 0.2-ml sample of each
dilution was mixed with the same volume of 200 PFU of
MHV-3 in MEM containing 10% fetal bovine serum and
incubated at 37°C for 45 min. Then, neutralizing antibodies
were determined and expressed as the reciprocal of the highest
serum dilution producing 100% inhibition of the cytopathic
effect induced by MHV-3 on L929 cells [35].

Tissue collection and EPR measurements

At designated periods, anesthetized mice were bled from
the orbital plexus into heparinized tubes. The plasma was
separated by centrifugation; red blood cells were drawn into a
plastic syringe and immediately frozen in liquid nitrogen. The
liver was perfused with 10 ml cold phosphate-buffered saline,
extruded into a plastic syringe, and immediately frozen in
liquid nitrogen. EPR spectra were obtained with a Bruker ER
200-SRC spectrometer using a fingertip liquid nitrogen dewar
(77 K). Spectrometer conditions are specified in the figure
legends. The data were fed into an IBM/AT computer with
which baseline subtraction and double integration were
performed as previously described [36,37]. The concentration
of nitrosyl complexes in blood was estimated by double
integration of the EPR spectra and comparison with those of
standards containing known concentrations of hemoglobin–
nitrosyl complexes [36].

Viral titration

Animals were periodically sacrificed, and the liver tissue
samples were ground and resuspended in MEM containing 10%
fetal bovine serum plus gentamicin (50 μg ml−1). Liver tissue
(1 mg ml−1) was serially diluted and plaque assayed on L929
cells as described previously [10]. Virus titers were expressed as
PFU mg−1 liver.

Histopathology

Liver samples were fixed in a solution containing 60%
methanol, 30% chloroform, and 10% glacial acetic acid.
Samples were embedded in paraffin, cut, stained with
hematoxylin and eosin, and observed under a light microscope.

Plasma alanine aminotransferase (ALT) activity

Plasma ALT activity was spectrophotometrically determined
by a standard enzymatic method using a commercial kit from
LabTest Diagnóstica (Minas Gerais, Brazil).

Treatment of animals with the selective iNOS
inhibitor 1400 W

Female immunized mice (A/Ji, n=8, and BALB/ci, n=6)
6–8 weeks of age, approximately 20 g, were experimentally
infected with 103 PFU of MHV-3 15 days after immuni-
zation and then treated with 1400 W (N-(3-(aminomethyl)
benzyl) acetamidine dihydrochloride; Cayman Chemical
Co.). A stock solution was made by dissolving 1400 W in
ethanol and stored at −20°C. The stock solution was diluted
into sterilized PBS (pH 7.2) and mice were administered
15 mg 1400 W kg−1 ip [38] 1 h before the injection of
MHV-3 and then daily, for 5 days. Control animals (6 A/Ji
and 13 BALB/ci) received an ip injection of the vehicle.
Nitric oxide production in blood from treated and un-
treated animals was assayed at 24 hours postinfection (hpi)
by EPR as described above. Viral titers from liver tissue
samples from both groups were monitored at 96 hpi. The
animals were observed for 30 days and the mortality was
recorded.



Fig. 2. Representative low-temperature EPR spectra obtained from blood of
nonimmunized mice (A/J and BALB/c) after various times of infection with 103

PFU of MHV-3. The marked hyperfine splitting constant value of 17 G
characterizes the hemoglobin–nitrosyl pentacoordinated complex [40]. Spectro-
meter conditions: microwave power, 20 mW; modulation amplitude, 5 G; time
constant, 163 ms; scan rate, 3.58 G/s.
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Results

Infection course and nitric oxide synthesis

Resistance to MHV-3 has been associated with mouse
genetic factors and immune status [1,4–8] and therefore we
monitored several infection parameters in immunized and
nonimmunized spf mice (Figs. 1–7).

BALB/c and A/J mice were immunized with MHV-A59,
an attenuated strain of MHV [34]. The titers of neutralizing
antibodies against MHV-3 in the sera of the animals were
determined as previously described [35], and no neutralizing
activity was detected in the sera of nonimmunized mice. In
contrast, sera from immunized mice of both strains (BALB/ci
and A/Ji) were found to contain neutralizing antibodies at a
titer of 1/512 2 weeks postvaccination (MHV-A59 inocula-
tion). This titer of neutralizing antibodies was enough to
inhibit virus multiplication in the liver of immunized mice of
both strains (Fig. 4) that became fully resistant to the
infection and displayed no mortality up to 30 days after (Fig.
1A). These animals were also resistant to a second challenge
with 103 PFU of MHV-3 10 days after the first experimental
infection. In this case, the survival rate was 100 and 90% for
A/Ji (n=10) and BALB/ci (n=10), respectively. The animals
were monitored for 35 days after the second challenge and
showed no clinical sign of disease up to 7–10 days after the
second challenge (Fig. 1B). In contrast, the survival time of
nonimmunized mice (BALB/c and A/J) varied with strain,
i.e., 100% of BALB/c mice died at 72 to 96 hpi (mean
survival time: 84 hpi), whereas A/J mice died between 96
and 144 hpi (mean survival time: 120 hpi) (Fig. 1A). The
different survival rates of the strains of nonimmunized mice
and the resistance developed after immunization by both
mouse strains confirmed that genetic and immune factors
play a role in the development of resistance against MHV-3
infection.

To examine the potential role of nitric oxide in MHV-3
infection, its synthesis was monitored by low-temperature
EPR of blood and liver samples of infected mice during the
course of the disease. In nonimmunized mice, production of
nitric oxide was detectable by the characteristic EPR spectra
Fig. 1. Mortality of immunized (BALB/ci (▵) and A/Ji (□)) and nonimmunized (
(103 PFU). (A) Mice were immunized with a single dose of 103 PFU of MHV-A
Immunized mice were reinfected 10 days after the first infection and monitored fo
were challenged with 103 PFU of MHV-3 ip and treated 1 h before the infection an
13 BALB/ci (⋄)) were injected with vehicle. Mice were monitored for 30 days.
of heme–nitrosyl complexes in blood (Fig. 2) and liver
(Fig. 3) of A/J mice at 72 hpi [36,37,39,40]. The EPR signal
detected in blood is due to hemoglobin–nitrosyl complexes
(at around 10±2 μM levels), whereas that in liver is
probably due to cytochrome P450–nitrosyl complexes [40]
because the organ was extensively perfused to minimize
blood contamination. At other infection times or in samples
from BALB/c mice, heme–nitrosyl complexes were barely
detectable (Figs. 2 and 3).

Nitric oxide synthesis, virus titers, liver damage, and death

Relationships between nitric oxide synthesis, virus titers,
liver damage, and animal death were established. Thus, in the
case of BALB/c mice, virus titers in the liver increased
gradually to a peak of 3.2×103 PFU ml−1 at 72 hpi (Fig. 4),
when most mice died of acute hepatitis (Fig. 1A). In the case of
A/J mice, virus titers were lower, a maximum of 1.1×103 PFU
ml−1 at 72 hpi. Thereafter, virus titers decreased substantially
BALB/c (▴) and A/J (▪)) mice (10 of each strain) after ip MHV-3 infection
59, then infected (ip) with 103 PFU MHV-3, and monitored for 30 days. (B)
r 35 days. (C) Resistance-immunized mice (6 BALB/ci (▵) and 8 A/Ji (□))
d daily with 1400 W (15 mg kg-1 ip) for 5 days. Control mice (6 A/Ji (○) and



Fig. 3. Representative low-temperature EPR spectra obtained from livers of
nonimmunized mice (A/J and BALB/c) 72 h post-infection with 103 PFU of
MHV-3. The last spectrum (top to bottom) is the computer subtraction of the
second (infected mice) from the first spectrum (control). Spectrometer
conditions: microwave power, 20 mW; modulation amplitude, 5 G; time
constant, 163 ms; scan rate, 3.58 G/s.

Fig. 4. Viral growth in the liver of nonimmunized (A/J (▪) and BALB/c (▴))
and immunized (A/Ji (□) and BALB/ci (▵)) mice after ip infection with 103

PFU of MHV-3. Samples were collected at the times indicated and the values are
the means±SD of three different determinations.
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(88 PFU ml−1 at 96 hpi) (Fig. 4) but, even so, the animals
started dying (Fig. 1A). Virus titer variation during the course of
the disease paralleled liver damage as assessed by histology
(Fig. 5) and by measurements of plasma ALT activity (Fig. 6).
No abnormalities were found in livers from uninfected A/J (Fig.
5A) and BALB/c mice (Fig. 5B) but the two strains developed a
different pattern of lesions when infected. At 24 hpi, A/J mouse
livers appeared unaltered (Fig. 5D), whereas BALB/c livers
presented a discrete degeneration of hepatocyte cytoplasm (Fig.
5C). At 48 hpi, discrete cytoplasm degeneration occurred in A/J
mice but numerous foci of inflammatory cells and necrotic
lesions were evident in the liver of BALB/c mice (Fig. 5F). At
72 hpi, cytoplasm degeneration was observed for both strains
(Figs. 5G and 5H) but it was strikingly more intense in the liver
of BALB/c animals, which showed extensive necrosis and high
amounts of polymorphonuclear cell infiltrates (Fig. 5H). These
observations were consistent with those reported by other
investigators for inbred laboratory mice [41,42].

Progression of liver damage was also consistent with
biochemical findings, showing a time- and strain-dependent
increase in plasma ALT activity (Fig. 6). Thus, BALB/c mice
did not synthesize nitric oxide upon MHV-3 infection and fast
succumbed to hepatitis. A/J mice presented a milder evolution
of the disease and were able to synthesize nitric oxide and to
decrease virus titers but also died, although with an average
longer survival time.

Vaccination leads to nitric oxide synthesis

In contrast to nonimmunized mice, the immunized A/Ji and
BALB/ci mice became resistant to the disease (Fig. 1) and
synthesized comparable levels of nitric oxide early in the
infection (24 hpi) as attested by EPR analysis of blood (Fig. 7)
and liver samples (data not shown). Nitric oxide levels in blood
remained considerably high up to 96 hpi (Fig. 7B). In parallel, a
complete virus clearance was observed for both mouse strains
(Fig. 4). As could be anticipated, liver damage was also
controlled in these animals because plasma ALT levels showed
a small increase up to 48 hpi but decreased to control levels at
72 hpi and thereafter (Fig. 6). The control of the disease by the
immunized mice (A/Ji and BALB/ci) was also attested by liver
histology that showed marginal abnormalities except for some
localized foci of inflammatory cell infiltrates that decreased
with time (data not shown).

Most relevant, treatment of resistant immunized mice with
the selective iNOS inhibitor 1400 W significantly increased
mortality after MHV-3 infection (Fig. 1C). Indeed, adminis-
tration of 1400 W to immunized A/Ji and BALB/ci mice
returned mortality 4 to 6 days after infection to levels similar
to those of nonimmunized mice (Fig. 1A), that is, 63 and
67% for A/Ji (n=8) and BALB/ci (n=6), respectively (Fig.
1C). That 1400 W treatment inhibited early nitric oxide
synthesis was confirmed by EPR analysis of blood. Treatment
with 1400 W decreased hemoglobin–nitrosyl complex levels
at 24 hpi by 40–50% in both A/Ji and BALB/ci mouse strains
(Fig. 7). Moreover, 1400 W treatment permitted viral
replication in both animals. Indeed, the viral titers found in
the livers of treated A/Ji and BALB/ci mice at 96 hpi were 30
and 145 PFU mg−1 of liver, respectively, values that are
similar to those detected at 24 hpi in the nonimmunized mice
(Fig. 4).

Discussion

Our results demonstrate that nitric oxide synthesis occurs in
vivo during fulminant murine hepatitis virus infection (Figs. 2,
3, and 7) and that an early nitric oxide production plays a role
in protecting the immunized–challenged mice against the virus
(Figs. 1 and 4). Partial inhibition (40–50%) of the early nitric
oxide synthesis by a specific iNOS inhibitor was shown to
increase virus replication (30 and 145 PFU mg−1 of liver in A/
Ji and BALB/ci mice, respectively) and animal mortality (Fig.



Fig. 5. Histopathological changes in the livers of nonimmunized mice after ip infection with 103 PFU of MHV-3. A/J mice: (A) uninfected, (C) 24 hpi, (E) 48 hpi, and
(G) 72 h. BALB/c mice: (B) uninfected, (D) 24 hpi, (F) 48 hpi, and (H) 72 hpi. Note the areas of hepatic necrosis (arrows). Bars, 100 μm. Samples were stained with
hematoxylin and eosin.
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Fig. 6. Plasma ALTactivity in nonimmunized (A/J and BALB/c) and immunized
(A/Ji and BALB/ci) mice after ip infection with 103 PFU of MHV-3. Samples
were collected at the times indicated. Data are expressed as the means±SD of
three different experiments. Levels of plasma ALT activity in uninfected mice
were <60 U ml−1.

Fig. 7. (A) Representative low-temperature EPR spectra at 24 hpi and (B)
hemoglobin–nitrosyl complex levels obtained from blood of immunized mice
(A/Ji and BALB/ci) after infection with 103 PFU of MHV-3. In (B), the
hemoglobin–nitrosyl complex levels at various infection times for A/Ji and
BALB/ci mice are shown by open and filled bars, respectively; the hemoglobin–
nitrosyl complex levels 24 hpi in animals treated with 1400 W are also shown.
Spectrometer conditions: microwave power, 20 mW; modulation amplitude,
5 G; time constant, 163 ms; scan rate, 3.58 G/s.

1539M.H. Tsuhako et al. / Free Radical Biology & Medicine 41 (2006) 1534–1541
1C). Taken together, these results indicate a casual relationship
between nitric oxide synthesis and control of MHV-3
infection.

The results obtained with spf nonimmunized mice were
less clear because even the mouse strain that synthesized
nitric oxide, A/J (Figs. 2 and 3), succumbed to the disease
(Figs. 1 and 4). However, nitric oxide synthesis occurred at
a late time and although not sufficient to fully protect the
host, it decreased viral load (Figs. 2–4) and extended liver
integrity (Figs. 5 and 6) and survival (Fig. 1) of the A/J
strain. These results suggest that, to be efficient, nitric oxide
synthesis should occur before viral load becomes too high.
In agreement, it was previously reported that an early nitric
oxide synthesis is required for the control of murine
infection by the protozoon Leishmania amazonensis
[36,37]. Also, previous studies have associated an early
and strong iNOS expression with genetic and acquired
resistance after vaccination against Marek disease herpesvirus
in chicken [28]. Moreover, our results confirm previous
suggestions that a specific humoral immune response, albeit
important, is not enough to neutralize virus infections [43–
45]. Because it has been shown that development of
resistance to MHV-3 infection in mice is not exclusively
dependent on antibodies or T cells [9], our results suggest
that nitric oxide may be the additional protective factor
against MHV-3 infection. In agreement, treatment of the
resistance-immunized mice with a specific iNOS inhibitor
resulted in loss of the resistance of immunized–challenged
mice (Fig. 1C). Thus, an early and sustained nitric oxide
synthesis resulting from immunization and infection is
essential for the vaccination-acquired resistance to murine
hepatitis virus by spf mice.

Although our studies confirm and extend previous sugges-
tions about the roles of nitric oxide in protecting against virus
infections [16,21–29], they do not address the mechanisms by
which nitric oxide levels affect MHV-3 load and disease
development (Figs. 1–7). Nitric oxide can function as an anti-
or proapoptotic signal, depending on the biological milieu
[46–48]. Therefore, one possibility to consider is that
extended nitric oxide synthesis triggers apoptosis, limiting
virus replication and liver injury. In agreement, previous
studies have demonstrated that induction of apoptosis in
resistant mouse macrophages limited virus replication and
hepatic injury during MHV-3 infection [13]. These authors
suggested that programmed cell death may represent a
mechanism for eliminating cells expressing a host gene that
is potentially harmful to host survival, such as the fgl2
prothrombinase gene, which is responsible for fibrin deposi-
tion and hepatic necrosis [14]. Alternatively, nitric oxide may
be acting through an antiapoptotic mechanism by preserving
hepatocytes [49] while affecting virus replication through the
inhibition of enzymes essential for its survival. Among them,
ribonucleotide reductase [21], ornithine decarboxylase [50], S-
adenosylmethionine decarboxylase [51], and cysteine pro-
teases [13,52] have been shown to be inhibited by nitric oxide.
Enzyme inhibition is frequently attributed to nitrosation of
crucial cysteine residues, a process that requires nitric oxide
metabolites such as nitrogen dioxide and dinitrogen trioxide
[53–56]. Further studies will be required to clarify the
mechanisms by which nitric oxide limits virus replication
and liver injury.

In conclusion, our data strongly support a role for nitric
oxide in the development of resistance against MHV-3
infection, suggesting that nitric oxide donors may be a useful
adjuvant therapy for controlling some viral infections.
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