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Abstract

The novel DSE Laburnicola rhizohalophila (Pleosporales, Ascomycota) is frequently found in the halophytic seepweed (Suaeda salsa).

In this article, we report a near-chromosome-level hybrid assembly of this fungus using a combination of short-read Illumina data to

polish assemblies generated from long-read Nanopore data. The reference genome for L. rhizohalophila was assembled into 26

scaffolds with a total length of 64.0 Mb and a N50 length of 3.15 Mb. Of them, 17 scaffolds approached the length of intact

chromosomes, and 5 had telomeres at one end only. A total of 10,891 gene models were predicted. Intriguingly, 27.5 Mb of repeat

sequences that accounted for 42.97% of the genome was identified, and long terminal repeat retrotransposons were the most

frequent known transposable elements, indicating that transposable element proliferation contributes to its increased genome size.

BUSCO analyses using the Fungi_odb10 data set showed that 95.0% of genes were complete. In addition, 292 carbohydrate active

enzymes, 33 secondary metabolite clusters, and 84 putative effectors were identified in silico. The resulting high-quality assembly

and genome features are not only an important resource for further research on understanding the mechanism of root-fungi

symbiotic interactions but will also contribute to comparative analyses of genome biology and evolution within Pleosporalean

species.
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Introduction

Dark septate endophytes (DSEs) are a unique group of root-

colonizing fungi that have recently received considerable

attention, due not only to their wide host ranges but also

their potential to mineralize organic matters and improve

stress resistance in hosts (Mandyam and Jumpponen 2005;
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Knapp et al. 2012; Berthelot et al. 2016; Qin et al. 2017;

Knapp et al. 2018; Vergara et al. 2018; Mateu et al. 2020).

It has been increasingly appreciated that DSEs often occur

simultaneously with both arbuscular mycorrhizal and ectomy-

corrhizal fungi and the colonization rates of these multiple

fungal symbionts differed greatly in response to elevated at-

mosphere CO2 and warming, and in turn alter plant response

to global change (Olsrud et al. 2009; Kivlin et al. 2013).

Despite DSEs dominating several biomes and climatic

regions, the mechanisms underlying DSE–plant symbiotic rela-

tionships and their genomic evolution and adaptation are still

elusive (Knapp et al. 2018). In the past few years, genome

sequences of several important DSEs species, such as the

Phialocephala fortinii s.l.–Acephala applanata species complex

(Grünig et al. 2008; Schlegel et al. 2016), Harpophora oryzae

(Xu et al. 2015), Phialocephala subalpine (Schlegel et al.

2016), Microdochium bolleyi (David et al. 2016), Cadophora

sp., and Periconia marospinosa (Knapp et al. 2018), across a

wide range of ascomycetes, are currently available.

Prior to this work, we identified a novel DSE fungus,

Laburnicola rhizohalophila sp. nov. (Yuan et al. 2016, 2020)

from roots of a halophyte seepweed (Suaeda salsa).

Experimental resynthesis confirmed that L. rhizohalophila suc-

cessfully colonized root tissues and showed phytobeneficial

effects (Yuan et al. 2020). The availability of the

L. rhizohalophila genome will increase our knowledge of

this novel root-fungi symbiosis. To this end, we combined

Nanopore long-reads and Illumina short-reads to obtain a

high-quality hybrid genome assembly. Moreover, we anno-

tated the secondary metabolite biosynthetic gene clusters,

carbohydrate-active enzymes (CAZymes), and potential

effectors.

Materials and Methods

Fungi Culture and DNA Extraction

The dried and living cultures of L. rhizohalophila isolate R22-1

are deposited in the Herbarium of Institute of Microbiology,

Academia Sinica (HMAS 248145) and China General

Microbiological Culture Collection Center (CGMCC

3.19615), respectively. The isolate was cultured in modified

Melin-Norkrans liquid medium (Marx 1969) at room temper-

ature in the dark for 1 week. The mycelium was harvested by

filtration through Whatman filter paper, washed with distilled

water, flash-frozen in liquid nitrogen, and ground into a pow-

der. Genomic DNA was extracted from 2.5 g mycelia using a

modified Cetyltrimethyl Ammonium Bromide protocol

(Watanabe et al. 2010). DNA concentration and purity were

determined using a Qubit fluorometer and Nanodrop 2000

spectrophotometer (Thermo Fisher Scientific, Carlsbad, CA).

DNA integrity was assessed via 0.5% agarose gel electropho-

resis. The strain collection is compliant with the Nagoya

Protocol.

Library Construction and Genome Sequencing

Whole genome sequencing was performed on the Illumina

HiSeq2500 and Oxford Nanopore Technologies PromethION

P24 device at BGI (Shenzhen, China). Long reads generated

from the Nanopore platform were used for genome assem-

bly, and the short but accurate reads from the Illumina plat-

form were analyzed for genome survey and base-level

correction after assembly. For the Illumina sequencing library,

the insert size was 350 bp with a pair-end sequencing length

of 150 bp; it was constructed using the NEBNext Ultra II DNA

Library Prep Kit for Illumina (NEB). A Nanopore 20-kb insert

library was prepared with 1mg genomic DNA using a ligation

sequencing kit SQK-LSK109 (Oxford Nanopore Technologies).

The constructed library was quantified using a Qubit DNA HS

Assay Kit in a Qubit fluorometer (Thermo Fisher Scientific,

MA).

Genomic Assembly and Assessment

NECAT (version 0.0.1_20200803, https://github.com/xiao-

chuanle/NECAT) was used to assemble the Nanopore long-

reads data with default parameters (Chen et al. 2020). After

the assembly step, each set of scaffolds was polished with

Pilon (version 1.22) using Illumina cleaned reads. To improve

the assembly, a second Pilon polishing step was conducted as

described above (Walker et al. 2014). The bacterial contami-

nation was identified by aligning the assembled scaffolds to

the bacterial sequence database from National Center for

Biotechnology Information (NCBI) using the BlastN alignment

algorithm. The completeness and accuracy of the genome-

assembly and gene predictions were evaluated using

Benchmarking Universal Single-Copy Orthologs (BUSCO ver-

sion 4.0.6) with fungus lineage-specific single-copy orthologs

(Fungi_odb10) data set (Sim~ao et al. 2015).

Gene Prediction and Annotation

Protein-coding genes were annotated based on homology and

ab initio predictions. For homology-based prediction, protein

sequences of Birnuria novae-zelandiae, Karstenula rhodostoma,

and Paraconiothyrium sporulosum were obtained from a JGI

Genome Portal at the MycoCosm database (https://genome.

jgi.doe.gov/programs/fungi/index.jsf). The three species were ge-

netically close to L. rhizohalophila. For ab initio prediction,

GeneMark-ES was performed on the repeat-masked genome

using the fungal module (Ter-Hovhannisyan et al. 2008). Then,

EVidenceModeler (EVM, version 1.1.1) was applied to combine

all gene models that were predicted by homology and ab initio

to form comprehensive and nonredundant reference gene sets

(Haas et al. 2008). Public biological function databases, including

the nonredundant protein sequences (NR), Kyoto Encyclopedia

of Genes and Genomes (KEGG), Swissprot, and TrEMBL data-

bases (Zhao et al. 2012), were used for functional annotation of

the predicted genes using RAPSearch2 (version 2.22) (Zhao et al.

He and Yuan GBE

2 Genome Biol. Evol. 13(3) doi:10.1093/gbe/evab026 Advance Access publication 11 February 2021

https://github.com/xiaochuanle/NECAT
https://github.com/xiaochuanle/NECAT
https://genome.jgi.doe.gov/programs/fungi/index.jsf
https://genome.jgi.doe.gov/programs/fungi/index.jsf


2012) applying HSSP criteria. The InterPro database (Finn et al.

2017) was used to predict protein function based on PFAM

domains annotated by the InterproScan tool and having an E-

value < 1e-05 (Jones et al. 2014). Gene Ontology (GO) terms

were assigned to the genes using the Blast2GO pipeline.

Transposable elements (TEs) were identified using

homolog-based and ab initio strategies. For ab initio predic-

tions, RepeatModeler (version 1.0.11, http://repeatmasker.

org/RepeatModeler/), RepeatScout version 1.0.5, Piler, and

LTR_FINDER (http://tlife.fudan.edu.cn/tlife/ltr_finder/, Jurka

et al. 2005; Xu and Wang 2007) were performed with default

parameters. Tandem repeats were also predicted ab initio

using Tandem Repeats Finder (TRF, version 4.0.9b).

RepeatMasker (version 4.07) and the associated

RepeatProteinMask were used for homologous comparisons

by searching against Repbase (version 23.06, http://www.gir-

inst.org/repbase) (Bao et al. 2015).

Annotation of Specific Gene Categories

Genes and gene clusters involved in secondary metabolism

were predicted using antiSMASH version 4.0.2 (Blin et al.

2017). To identify the CAZyme repertoire of

L. rhizohalophila, three tools for CAZyme annotation in

dbCAN2 (http://cys.bios.niu.edu/dbCAN2) were combined:

HMMER searches against the dbCAN hidden Markov model

(HMM) database, DIAMOND searches against the CAZy pre-

annotated CAZyme sequence database, and Hotpep searches

against the conserved CAZyme short peptide database

(Zhang et al. 2018). Only CAZyme domains that were pre-

dicted by at least two of the three algorithms were kept.

The secretome was predicted by screening the predicted

proteins for different features using a bundle of eight different

prediction tools implemented in the web-based program

SECRETOOL (Cort�azar et al. 2014, http://genomics.cicbio-

gune.es/SECRETOOL/STP_Parser.php). Then, we used

EffectorP version 2.0 (http://effectorp.csiro.au/) to improve

the effector prediction based on an EffectorP score (effector

probability) > 0.5 (Sperschneider et al. 2016, 2018).

Phylogeny Construction

The protein sequences for 36 species were retrieved from JGI

and Ensembl Fungi, and mainly consisted of all current available

genomes within Pleosporales and some DSE and ericoid mycor-

rhizal fungi in Helotiales. A phylogenetic tree was constructed

using 761 core single-copy orthologs after filtering (< 200

amino acids). The amino acid sequences of single-copy ortholo-

gous groups were aligned using Muscle version 3.8.31. The

well-aligned, conserved blocks of these alignments were

extracted using Gblocks version 0.91b with default parameters.

The concatenated alignment was used to infer a phylogeny with

the maximum likelihood method using RAxMLversion 8.2.12

with 1,000 bootstrap replicates. We chose the

PROTGAMMAWAG model of evolution for analysis.

Results and Discussion

Genome Assembly and Statistics

The genome structure and locations of transposable and re-

petitive elements, putative effectors, CAZymes, and second-

ary metabolite clusters were graphed on a Circos plot

(supplementary fig. S1, Supplementary Material online). A

total of 8.27 Gb Nanopore long reads and 6.84 Gb Illumina

short reads were generated with an estimated 129.2� aver-

age depth of sequencing coverage.

After assembly and polishing, we obtained a final genome

without gaps of 64.0 Mb, with 26 scaffolds, an N50 length of

3.15 Mb, and an overall GC content of 44.4% (table 1). The

maximum scaffold size exceeded 4.9 Mb (table 1). The assem-

bly size is the second largest of the published genomes in the

Pleosporales (supplementary table S1, Supplementary

Material online). Of the 26 scaffolds, 17 scaffolds had a char-

acteristic telomere sequence (50-TTAGGG-30) at both ends,

indicating that the 17 scaffolds approach the length of intact

chromosomes (Aksenova and Mirkin 2019), and 5 scaffolds

contained telomeric repeat sequences on the 50 or 30 end.

Homology analysis of assembled scaffolds supports an ab-

sence of bacterial contamination in our genome assembly.

BUSCO evaluation revealed that the genome completeness

reached 98.02% (a total of 758 BUSCO groups searched)

(Sim~ao et al. 2015), and 1 and 14 BUSCO orthologs were

fragmented (0.13%) and missing (1.85%), respectively.

These results suggest good integrity of the assembled ge-

nome (table 1).

Genomic Repeats

Multivariate repeated DNA sequences may account for varia-

tion in genome size (Biemont, 2008). In all, �27.5 Mb repeat

Table 1

Summary Assembly and Annotation Statistics for Nanopore Long-Read

Sequencing of Laburnicola rhizohalophila R22-1

Assembly Statistics R22-1

Genome size (bp) 64,007,018

Total sequenced bases �8.27 Gb

Coverage 129.20

Number of scaffolds 26

Largest scaffold size 4,903,573

N50 (bp) 3,149,867

GþC content (%) 44.40

Complete chromosomes 17

Number of protein coding genes 10,891

Predicted secreted proteins 376

Predicted small secreted proteins (SSPs) 181

Predicted effectors 84
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sequences that accounted for 42.97% of the genome were

identified by four repeat annotation processes (supplementary

table S2, Supplementary Material online). The most abundant

of the transposable and repetitive element types were Class I,

long terminal repeats (LTRs) with 16.30 Mb (25.46%), Class II

DNA transposons (DNA), with 8.03 Mb (12.55%) (supple-

mentary table S3, Supplementary Material online).

Compared with other Pleosporalean fungi included in this

study, L. rhizohalophila had a larger genome (Mohanta and

Bae 2015; Knapp et al. 2018) (supplementary table S1,

Supplementary Material online). As previously reported, TEs

are positively correlated with genome size (Kidwell 2002;

Hua-Van et al. 2005; Biscotti et al. 2015). Our data also sug-

gest that TE content in 19 Pleosporalean genomes was pos-

itively correlated to genome assembly size (Pearson’s

correlation ¼ 0.631, P-value ¼ 3.0e-05) (supplementary fig.

S2, Supplementary Material online). Therefore, the larger ge-

nome of L. rhizohalophila is mainly driven by TE proliferation.
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FIG. 1.—Maximum likelihood species phylogeny of the 36 fungal species used in this study (A). Two basidiomycetes, Laccaria bicolor and Sebacina

vermifera, were used as outgroups. Three groups of mutualistic root fungi including dark septate endophytes, ericoid mycorrhizal fungi, and ectomycorrhizal

fungi are indicated in blue, brown, and green, respectively. Bootstrap values of 100% are indicated above the nodes; the arrow indicates the base of the

Pleosporales and Helotiales. The parameters used in the ML include the GTRGAMMA model of evolution and 1,000 bootstrap replicates for branch support

estimation. (B) Number of gene clusters encoded for secondary metabolism enzymes predicted for each of the 46 fungal species using antiSMASH v4.0.2,

shown as a bar chart. T1PKS, type I polyketide synthases; T3PKS, type III PKSs; NRPS, nonribosomal peptide synthases; hybrid, NRPS/PKS hybrid. (C)

Comparison of the relative number of genes per funtional group of CAZymes. GH, glycoside hydrolases; GT, glycosyl transferases; PL, polysaccharide

lyases; CE, carbohydrate esterases; AA, auxiliary activity enzymes; CBM, carbohydrate-binding modules.

He and Yuan GBE

4 Genome Biol. Evol. 13(3) doi:10.1093/gbe/evab026 Advance Access publication 11 February 2021



Many plant pathogenic fungi have an increased TE content,

particularly (hemi) biotrophic and symbiotic fungi (Raffaele

and Kamoun 2012; Peter et al. 2016).

Protein-Coding Gene Prediction and Functional
Annotation

We ultimately generated a gene set of 10,981 protein coding

genes with an average length of 1,377 bp (table 1). Among

them, 10,796 (99.13%) could be annotated with at least one

database (InterProScan, Gene Ontology, Kyoto Encyclopedia

of Genes and Genomes, and SwissProt). Specifically, 10,657

proteins (97.85%) had significant InterPro hits, and 9,741

proteins (89.44%) had GO annotations. BUSCO assessment

on gene annotation showed that the annotation complete-

ness reached 95.0%, and only 14 (1.8%) and 24 (3.2%)

BUSCO orthologs were fragmented and missing, respectively.

Secondary Metabolite Biosynthetic Clusters

We detected a total of 33 secondary metabolite biosynthetic

gene clusters in L. rhizohalophila. Of them, 12 belonged to

the type I polyketide synthases (PKS) group, 8 to the non-

ribosomal peptide synthases (NRPS), 5 to the terpene synthase

group, and the remaining clusters are unknown (fig. 1). The

gene clusters were not equally distributed over the chromo-

somes (or scaffolds), and were often located subtelomerically

(supplementary fig. S1, Supplementary Material online).

CAZyme Repertoire

The fungi produced a diverse array of CAZymes for nutrition

and plant infection. Overall, the genome of L. rhizohalophila

contained only 292 genes encoding putative CAZymes, con-

siderably lower than the average in Pleosporales and

Helotiales, only slightly larger than Laccaria bicolor (149),

Neurospora crassa (213), and Tuber melanosporum (109)

(fig. 1). Plant cell wall degrading enzymes (PCWDEs) are

mainly distributed in the CE, GH, and PL classes (Chang

et al. 2016). In the case of L. rhizohalophila, the number of

PCWDE-related genes (174 GHs, 9 PLs, and 8 CEs) was also

lower than in most other fungal members (fig. 1). This sce-

nario is consistent with some ectomycorrhizal fungi, in which

their genomic idiosyncrasies are often accompanied by a re-

stricted set of PCWDEs (Peter et al. 2016). Low-diversity

PCWDE genes are often imprinted in the genomes of bio-

trophs (both symbiotic and pathogenic) to avoid triggering

plant defense mechanisms (Spanu 2012), thus facilitating ad-

aptation to their biotrophic lifestyles (Veneault-Fourrey and

Martin 2011). Our data further support a convergent de-

crease in plant cell wall degrading capacity of ectomycorrhizal

and DSE fungi (Kohler et al. 2015).

Secreted Proteins and Effectors

With the SECRETOOL pipeline, 376 proteins were predicted to

be secreted, which is 3.42% of the whole predicted proteome

of L. rhizohalophila. Within the secretome, small secreted pro-

teins (SSPs) with sequence lengths of <300 amino acids have

been widely studied for their role in fungus–plant interactions,

and 181 SSPs were predicted in silico. A few of the SSPs have

been found to act as effectors that manipulate plant immune

responses in plants. We further divided the SSPs into effector

based on certain sequence characteristics, such as size and cys-

teine content, and ultimately predicted 84 potential effector

candidates with probabilities ranging from 0.56 to 0.97 (table 1).

Phylogenomics of L. rhizohalophila

The amino acid sequences of 761 single-copy orthologous

groups were used to construct a genome-based maximum-like-

lihood (ML) tree in which L. bicolor and Sebacina vermifera, two

basidiomycetous species, were treated as the outgroups. The

topology of the phylogenetic tree was strongly supported by

100% bootstrap values on most branches (fig. 1). According

to this phylogram, Bimuria novae-zelandiae was the most closely

related species to L. rhizohalophila, followed by K. rhodostoma,

and P. sporulosum. All of them belonged to the

Didymosphaeriaceae family (Pleosporales, Dothideomycetes).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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