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Bacterial resistance to antibiotics is an ever-growing problem in heathcare. We have
previously identified a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-
sandwich type complexes with bidentate monosaccharide ligands possessing
cytostatic properties against carcinoma, lymphoma and sarcoma cells with low
micromolar or submicromolar IC50 values. Importantly, these complexes were not
active on primary, non-transformed cells. These complexes have now been assessed
as to their antimicrobial properties and found to be potent inhibitors of the growth of
reference strains of Staphylococcus aureus and Enterococcus faecalis (Gram-positive
species), though the compounds proved inactive on reference strains of Pseudomonas
aerugonisa, Escherichia coli, Candida albicans, Candida auris and Acinetobacter
baumannii (Gram-negative species and fungi). Furthermore, clinical isolates of
Staphylococcus aureus and Enterococcus sp. (both multiresistant and susceptible
strains) were also susceptible to the organometallic complexes in this study with
similar MIC values as the reference strains. Taken together, we identified a set of
osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich type antineoplastic
organometallic complexes which also have antimicrobial activity among Gram-positive
bacteria. These compounds represent a novel class of antimicrobial agents that are not
detoxified by multiresistant bacteria suggesting a potential to be used to combat
multiresistant infections.
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INTRODUCTION

Bacterial resistance to registered antibiotics is one of the biggest
challenges of mankind (Hernando-Amado et al., 2019; Murray
et al., 2022) that begs for the discovery of novel antibacterial
compounds. There are multiple examples of antibacterial agents
that were repurposed as anticancer drugs [e.g., Methenamine
(Altinoz et al., 2019)], or anticancer medications being
repurposed as antibacterial ones, such as platinum(II) remedies.
Indeed, cisplatin and carboplatin do have bacteriostatic properties
on Acinetobacter, Mycobacteria, and Pseudomonas aeruginosa
(Zhang et al., 2011; McCarron et al., 2012; Yuan et al., 2018)
and other pathogens (Hummell and Kirienko, 2020). To
complement the registered platinum-based anticancer agents,
there is a thrust towards identifying novel complexes of
transition metals with anticancer activity (Kenny and Marmion,
2019). Ruthenium complexes have emerged as anticancer agents,
characterized by low toxicity (Melchart and Sadler, 2006; Mello-
Andrade et al., 2018; Gano et al., 2019; Liu et al., 2019; Mihajlovic
et al., 2020), good cellular entry properties (Graf and Lippard, 2012;
Yadav et al., 2013) and with excellent targetability (Berger et al.,
2008; Hanif et al., 2013; Florindo et al., 2014; Zeng et al., 2017;
Kenny and Marmion, 2019; Hamala et al., 2020). In fact, a
ruthenium complex, IT-139 has passed clinical phase I to be
applied in colorectal cancer (Burris et al., 2016). Furthermore,
rhodium (Leung et al., 2013; Gichumbi and Friedrich, 2018; Štarha
and Trávníček, 2019; Máliková et al., 2021), osmium (Hartinger
et al., 2011; Hanif et al., 2014; Gichumbi and Friedrich, 2018;
Konkankit et al., 2018; Meier-Menches et al., 2018; Štarha and
Trávníček, 2019; Nabiyeva et al., 2020; Li et al., 2021) and iridium
(Leung et al., 2013; Liu and Sadler, 2014; Gichumbi and Friedrich,
2018; Konkankit et al., 2018; Štarha and Trávníček, 2019; Li et al.,
2021) compounds were also described as anticancer agent
candidates.

We synthesized a set of half-sandwich complexes of
ruthenium(II), osmium(II), iridium(III) and rhodium(III)
incorporating real C- and N-glycopyranosyl azole type
N,N-bidentate ligands (Figure 1) (Kacsir et al., 2021;
Kacsir et al., 2022). To get the 1,3,4-oxadiazole type L-1–L-
3 ring-transformation of C-glycosyl tetrazoles I with picolinic
acid was performed (Bokor et al., 2017), while for 1,2,3-
triazole-based chelator L-4 copper(I) catalyzed azide alkyne
cycloadditon (CuAAc) (Agrahari et al., 2021) of glucosyl azide
II was used. The ligands were reacted with dimeric chloro-
bridged platinum-group metal complexes in the presence of
TlPF6 to result in complexes Ru-1‒Ru-4,Os-1‒Os-4, Ir-1‒Ir-
4 and Rh-1‒Rh-4 (Figures 1, 2). These complexes were
identified to show cytostatic properties on carcinomas
(representative data listed in Table 1), sarcomas and
lymphomas in the low micromolar or submicromolar
range, but have no bioactivity on primary, non-
transformed fibroblasts (Kacsir et al., 2021; Kacsir et al.,
2022). The compounds exert their cytostatic activity
through inducing oxidative stress (Kacsir et al., 2021;
Kacsir et al., 2022). The cytostatic activity of the
compounds can be alleviated by vitamin E, an apolar,
membrane antioxidant (Kacsir et al., 2021; Kacsir et al.,
2022) suggesting that the compounds likely target the cell
membrane or other apolar compartments in the cells. On the
analogy of the bacteriotoxic activity of platinum or palladium
compounds (Quirante et al., 2011; Vieites et al., 2011; Zhang
et al., 2011; McCarron et al., 2012; Yuan et al., 2018; Hummell
and Kirienko, 2020; Yufanyi et al., 2020; Frei et al., 2021;
Mansour, 2021) we set out to assess whether the above
cytostatic complexes Ru-1‒Ru-4, Os-1‒Os-4, Ir-1‒Ir-4 and
Rh-1‒Rh-4 in Figure 2 (Kacsir et al., 2021; Kacsir et al., 2022),
might have bacteriostatic properties. For comparative studies,
the precursors of these complexes (Kacsir et al., 2021; Kacsir

FIGURE 1 | Outline of the syntheses of the compounds to be tested in this study (the precise structures of the compounds are shown in Figure 2).
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et al., 2022), such as the chloro-bridged platinum-metal
dimeric complexes (Ru-dimer, Os-dimer, Ir-dimer and
Rh-dimer) and the glycosyl heterocyclic N,N-bidentate

ligands (L-1‒L-4), as well as, the reference platinum-based
anticancer drugs (cisplatin, carboplatin, oxaliplatin) were also
planned to be tested (Figure 2).

FIGURE 2 | Selected compounds to be tested for antimicrobial activity.
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MATERIALS AND METHODS

Chemical Compounds
All compounds (including cisplatin, carboplatin and oxaliplatin) were
from Sigma-Aldrich (St. Louis, MO, United States). Ligands L-1‒L-4,
complexes Ru-1‒Ru-4, Os-1‒Os-4, Ir-1‒Ir-4, Rh-1‒Rh-4 were
published in (Kacsir et al., 2021; Kacsir et al., 2022). The Os-dimer
was published in (Godó et al., 2012), Ru-dimer was from Strem
Chemicals (Newburyport, MA, United States), Ir-dimer was from
Acros Organics (Gael, Belgium) and the Rh-dimer was from Alfa
Aesar (Ward Hill, MA, United States). Compounds were dissolved in
DMSO. In experiments the highest DMSO concentration was 0.04%,
therefore, control cells were treated with 0.04% DMSO.

Synthesis of the Compounds Tested
Synthesis and assessment of structural integrity of the sugar-
based compounds (L-1‒L-4, Ru-1‒Ru-4, Os-1‒Os-4, Ir-1‒Ir-4,
Rh-1‒Rh-4 used in the manuscript (Figures 1, 2) were described
in (Kacsir et al., 2021) and (Kacsir et al., 2022).

Reference Strains
For testing we used the following reference strains: Pseudomonas
aeruginosa (ATCC27853), Escherichia coli (ATCC25922),

Staphylococcus aureus (ATCC11007), Candida albicans
(SC5314), Candida auris (ATCC21092) and Enterococcus
faecalis (ATCC29112). All were purchased from ATCC
(Manassas, VA, United States).

Clinical Isolates of S. aureus andE. Faecium
We used a set of clinical isloates of S. aureus and E. faecium that
were collected at the Medical Center of the University of
Debrecen (Hungary) between 01.01.2018. ‒ 31.12.2020.
(Table 2). We also included a multiresistant clinical isolate of
Acinetobacter baumannii. These were identified using aMicroflex
MALDI-TOF mass spectrometer (Bruker, Billerica, MA,
United States). Antibiotic susceptibility of the isolates was
tested following the European Committee on Antimicrobial
Susceptibility Testing (EUCAST, 2021) guidelines valid at the
time of collection.

Broth Microdilution
Microdilution experiments were performed according to the
standards of EUCAST (EUCAST, 2021). The bacterial isolates
to be tested were grown in Mueller-Hinton broth. Candida
species were grown in RPMI (Roswell Park Memorial
Institute) -1,640 medium. Inoculum density of bacteria or

TABLE 1 | The IC50 values [(µM)] of the selected compounds on A2780 ovarian cancer cells in (Kacsir et al., 2021; Kacsir et al., 2022).

L-1 L-2 L-3 L-4 Ru-Dimer Os-Dimer Ir-Dimer Rh-Dimer
ND ND ND ND ND ND ND ND
Ru-1 Ru-2 Ru-3 Ru-4 Os-1 Os-2 Os-3 Os-4
6.2 4.3 8.5 0.9 2.5 3.2 2.8 0.7
Ir-1 Ir-2 Ir-3 Ir-4 Rh-1 Rh-2 Rh-3 Rh-4
ND ND ND 1.6 ND ND ND 25.3

Cisplatin Oxaliplatin Carboplatin ND: no effect
1.2 0.1 28.0

TABLE 2 | Clinical isolates used in the study: MSSA–methicillin-susceptible Staphylococcus aureus, MRSA–methicillin-resistant Staphylococcus aureus, VSE–vancomycin-
susceptible Enterococcus, VRE - vancomycin-resistant Enterococcus.

Species Year Sample

20276 S. aureus MSSA 2018 Wound
20478 S. aureus MSSA 2018 Bronchial
20559 S. aureus MSSA 2018 Wound
20627 S. aureus MSSA 2018 Ear
20650 S. aureus MSSA 2018 Nasal
20904 S. aureus MSSA 2018 Abscess
20426 S. aureus MRSA 2020 Blood
24035 S. aureus MRSA 2018 Wound
24268 S. aureus MRSA 2018 Throat
24272 S. aureus MRSA 2018 Throat
24328 S. aureus MRSA 2018 Throat
24408 S. aureus MRSA 2018 Bronchial
28046 E. faecium VSE 2021 Abdominal
28386 E. faecium VSE 2021 Urine
25051 E. faecium VRE 2018 Nephrostoma
25342 E. faecium VRE 2021 Urine
25498 E. faecium VRE 2018 Rectal swab for screening for multiresistant pathogens
27085 E. faecium VRE 2018 Wound
28209 E. faecium VRE 2021 Urine
28085 E. faecium VRE 2021 Urine
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fungi was set at 5.0 × 105 CFU/ml in microtiter plates in a final
volume of 200 µl Mueller-Hinton broth (for bacteria) or in RPMI
(for fungi). Tested concentration range was 0.08–40 µM (10
concentrations, two-fold serial dilutions), drug-free growth
control and inoculum-free negative control were included. The
inoculated plates were incubated for 24 h at 37°C then were
assessed visually. Minimum inhibitory concentration (MIC)
was defined as the lowest concentration with 50% ≤ inhibitory
effect. All experiments were performed at least twice in
duplicates.

RESULTS

The Complexes Can Inhibit the Growth of
Gram-Positive Bacteria
First, we tested the ruthenium(II), osmium(II), iridium(III) and
rhodium(III) complexes (Ru-1‒Ru-4, Os-1‒Os-4, Ir-1‒Ir-4,
Rh-1‒Rh-4; Figure 2) identified in the studies by Kacsir et al.
(2021); Kacsir et al., 2022). These compounds were not active on
the reference strains of Gram-negative bacteria, such as
Pseudomonas aerugonisa (ATCC27853), Escherichia coli
(ATCC25922), or a clinical isolate of Acinetobacter baumannii,
nor on fungi as Candida albicans (SC5314) and Candida auris
(ATCC21092). Nevertheless, the Gram-positive Staphylococcus
aureus (ATCC11007) and Enterococcus faecalis (ATCC29112)
were susceptible to Ru-1, Os-1, Ru-2, Os-2, Ru-3, Os-3, Ru-4,
Os-4 and Ir-4, the best being osmium and ruthenium complexes
and the complexes of the free ligand L-4 (Figure 3). Cisplatin,
carboplatin and oxaliplatin were included in the study as controls,
as they were reported to have antibacterial activity (Zhang et al.,
2011; McCarron et al., 2012; Yuan et al., 2018; Hummell and
Kirienko, 2020). Cisplatin inhibited the growth of P. aurigenosa at
a high MIC value of 40 μM, carboplatin and oxaliplatin had no
effect suggesting that the effects of platinum complexes were
fundamentally different from that of the organometallic bidentate
complexes. Neither the free ligands (L-1‒L-4), the Ru(II)/Os(II)
hexahapto p-cymene dimer (Ru-dimer and Os-dimer), or the
Rh(III)/Ir(III) pentahapto arenyl dimer (Ir-dimer and Rh-
dimer), Ir-1‒Ir-3 and Rh-1‒Rh-4 complexes had any
bacteriostatic activity.

Complexes Are Active on Multiresistant
Staphylococcus aureus and Enterococcus
isolates
Subsequently, we assessed whether the compounds were active
on the clinical isolates of Staphylococcus aureus [6 methicillin
susceptible (MSSA) and six methicillin resistant (MRSA)] and
Enterococcus sp [2 vancomycin susceptible (VSE) and six
vancomycin resistant (VRE)] (Figure 4; Tables 3, 4, 5, 6).
MSSA, MRSA, VSE and VRE growth was inhibited by the
complexes Os-2‒Os-4 and Ir-4 in all isolates (Figures 4, 5;
Tables 3, 4, 5, 6). Ir-1‒Ir-3, Ru-1‒Ru-4 and Os-1 were active
only on a subset of isolates (Figures 4, 5; Tables 3, 4, 5, 6). The
best activity was observed for the osmium, ruthenium and
iridium complexes of L-4 (Os-4, Ru-4, Ir-4) showing MIC
values in the low micromolar range (MIC<10 µM) and being
active on most or all clinical isolates tested, as well as, on the
reference strains (Figures 3, 4; Tables 3, 4, 5, 6). Rh-4 was
active only on Enterococcus isolates (both VSE and VRE), but
not on MSSA or MRSA isolates (Figures 4, 5; Tables 3, 4, 5, 6).
Rh-1‒Rh-3 complexes were inactive (Figures 4, 5; Tables 3,
4, 5, 6).

DISCUSSION

We assessed a set of half-sandwich type ruthenium(II),
osmium(II), rhodium(III) and iridium(III) complexes of
monosaccharide derivatives bearing bidentate N,N-chelating
sets. The compounds discussed in the study and compounds
with similar structure were identified earlier as anticancer
agents (Florindo et al., 2014; Florindo et al., 2015; Florindo
et al., 2016; Hamala et al., 2020; Kacsir et al., 2021; Kacsir et al.,
2022). From the perspective of the current study it is important
to note that the complexes were not active on primary human
fibroblasts up to 33.3 µM (i.e., their IC50 values were higher
than 33.3 µM), but only had activity on neoplastic cell lines in
low micromolar to submicromolar range (Kacsir et al., 2021;
Kacsir et al., 2022) and here we show that these compounds
have antimicrobial effects. These suggest that the complexes
would be selective towards bacteria and neoplastic cells, which

FIGURE 3 | The effects of the complexes on the reference strains of S. aureus (ATCC11007) and E. faecalis (ATCC29112). Bacterial reference strains were
subjected to microdilution assays (repeated at least twice in duplicates) as described in Materials and Methods.
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may be an advantageous feature in a clinical setting. The type
of the central metal ion and the ligands, the stability and
kinetic behavior as well as hydrolytic properties and the
lipophilicity of a complex contribute significantly to its
biological activity.

FIGURE 4 | The effects of the complexes on clinical isolates of S. aureus and E. faecium. MICs were determined by microdilution assays (repeated at least twice in
duplicates) as described in Materials and Methods. Abbreviations: MSSA–methicyllin-susceptible Staphylococcus aureus, MRSA–methicyllin-resistant Staphylococcus
aureus, VSE–vancomycin-susceptible Enterococcus, VRE–vancomycin-resistant Enterococcus.

TABLE 3 | MIC values [(µM)] of the complexes against MSSA isolates.

Strain Ru-1 Os-1 Ru-2 Os-2 Ir-2 Ru-3 Os-3 Ir-3 Ru-4 Os-4 Ir-4

20627 20 >40 40 10 20 20 1.25 5 2.50 0.3 0.60
20559 20 >40 40 20 >40 10 0.60 10 5 0.60 1.25
20650 40 20 40 20 >40 20 0.60 5 5 0.60 0.30
20904 40 >40 40 20 >40 20 2.50 >40 5 2.5 5
20276 20 10 20 5 >40 10 1.25 10 2.50 1.25 1.25
20478 20 >40 40 10 >40 10 2.50 20 2.50 2.50 2.50

TABLE 4 | MIC values [(µM)] of the complexes against MRSA isolates.

Strain Ru-1 Os-1 Ir-1 Ru-2 Os-2 Ir-2 Ru-3 Os-3 Ir-3 Ru-4 Os-4 Ir-4

20426 40 20 >40 40 20 >40 20 5 5 2.50 5 5
24408 20 >40 >40 40 10 2.5 20 2.5 2.5 2.50 2.50 2.50
24268 40 20 20 >40 10 >40 20 5 5 2.50 2.50 2.50
20328 20 >40 >40 40 20 >40 20 5 20 2.50 2.50 5
24272 20 20 >40 >40 20 20 20 5 10 5 2.50 2.50
24035 20 >40 >40 40 10 >40 20 5 20 5 2.50 5

TABLE 5 | MIC values [(µM)] of the complexes against VSE isolates.

Strain Ru-1 Os-1 Os-2 Ru-3 Os-3 Ru-4 Os-4 Ir-4 Rh-4

28386 20 10 10 20 5 2.50 2.50 1.25 40
28046 20 40 40 40 10 5 2.50 2.50 >40
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With respect to the central metal ion of the complex, osmium
compounds were the most efficient on bacteria, followed by
ruthenium complexes both in terms of the number of active
complexes, as well as, their MIC values, while the iridium and
rhodium complexes showed less activity. These findings are
similar to our data on cancer cells (Kacsir et al., 2022). In other
words, when comparing the Ru(II) and Os(II) complexes with
hexahapto p-cymene ligand to the pentahapto arenyl-
containing Ir(III) and Rh(III) complexes, the former ones
were found to show better activity. There are multiple
chemical features that can explain this finding. For the
mentioned two pairs of metal ions in Ru and Os complexes,
the hexahapto coordinated p-cym ligand provides less electron
densitiy than the Cp* arenyl in the corresponding Rh or Ir
compounds and their steric hindrance is different. Kinetic
differences may also provide an explanation, as it is widely
accepted that the half-sandwich type Os and Ir complexes, in
general, exhibit much lower ligand exchange rates than the Ru
and Rh analogues (Bruijnincx and Sadler, 2009). When
comparing the IC50 values for cancer cells with the MIC
values against bacteria, it is apparent that the MIC values of

the active complexes are higher than their IC50 values on the
most sensitive cancer cell model [e.g., for Os-4 IC50 = 0.7 µM
on 2780 ovarian cancer cells (Kacsir et al., 2021; Kacsir et al.,
2022) vs. MIC range = 0.3–5 µM on multiresistant bacteria].
When comparing the MIC values of the complexes we found
similar trends as a function of the central metal ion or the
ligand as the IC50 values of the complexes on cancer cells.
Complexes of L-4 were considerably more effective than
complexes of L-3, L-2 or L-1. These findings are also in
good correlation with our observations on cancer cells
(Kacsir et al., 2021; Kacsir et al., 2022) and may support the
importance of the high hydrophobicity of the complexes.
Importantly, for the complexes with good bacteriostatic
activity (e.g., Os-4) there was no difference in the MIC
value on the reference strains, the susceptible (MSSA, VSE)
or the multiresistant isolates (MRSA, VRE). The activity of the
complexes in previous antineoplastic studies was dependent
on the apolar character of the compounds (Kacsir et al., 2021;
Kacsir et al., 2022). We provided experimental evidence the
carbohydrate moiety has a key role in bringing about the
apolar character of the molecules by harboring multiple

TABLE 6 | MIC values [(µM)] of the complexes against VRE isolates.

Strain Ru-1 Os-1 Ir-1 Os-2 Ru-3 Os-3 Ru-4 Os-4 Ir-4 Rh-4

25051 >40 10 >40 10 >40 10 >40 2.50 1.25 >40
25085 >40 10 >40 10 >40 10 >40 2.50 1.25 >40
25498 >40 10 >40 10 >40 5 >40 2.50 2.50 >40
25342 >40 20 >40 20 >40 5 >40 2.50 2.50 >40
28209 >40 20 20 10 20 5 2.50 2.50 2.50 40
28085 10 10 >40 10 20 10 2.50 2.50 1.25 >40

FIGURE 5 | Effects of the complexes on the reference strains and clinical isolates.
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OBz groups. The replacement of the carbohydrate moiety with
one single aromatic group largely hampered or eliminated the
biological activity of the complexes (Kacsir et al., 2021).
Therefore, the complexes supposedly affect the cell
membrane that may be the case in bacteria as well. It is also
of note that the exact target of the complexes has not been
identified yet. Taken together, we identified osmium,
ruthenium, iridium and rhodium complexes that exhibit
antibacterial effects. The complexes have multiple
advantageous properties, they are stable over extended
periods [2 days were assessed in (Kacsir et al., 2021)], their
MIC and IC50 values are in the low micromolar or
submicromolar range, respectively, and they are not active
on non-transformed cells. As noted earlier, the active
complexes have similar MIC values against multiresistant
clinical isolates of MRSA and VRE and on sensitive isolates
or reference strains suggesting a novel, yet unidentified target
in Gram-positive bacteria that is not detoxified by existing
resistance mechanisms. These findings suggest that the
complexes studied here and similar ones may represent a
novel class of antibiotics against multiresistant Gram-
positive bacteria.
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