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Abstract

Theoretical and empirical investigations of search strategies typically have failed to distinguish the distinct roles played by
density versus patchiness of resources. It is well known that motility and diffusivity of organisms often increase in
environments with low density of resources, but thus far there has been little progress in understanding the specific role of
landscape heterogeneity and disorder on random, non-oriented motility. Here we address the general question of how the
landscape heterogeneity affects the efficiency of encounter interactions under global constant density of scarce resources.
We unveil the key mechanism coupling the landscape structure with optimal search diffusivity. In particular, our main result
leads to an empirically testable prediction: enhanced diffusivity (including superdiffusive searches), with shift in the diffusion
exponent, favors the success of target encounters in heterogeneous landscapes.
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Introduction

The random search problem has lately received a great deal of

attention [1,2]. This is partly due to its broad interdisciplinary range

of applications, which include, e.g., enhanced diffusion of regulatory

proteins while ‘‘searching’’ for specific DNA spots [3,4] and the

finding of binding sites on transmembrane proteins by neurotrans-

mitters in the brain [5]. Recently, this problem has also found

interesting connections with human mobility and related topics [6–9].

A classical context in which the random search problem has

been applied in the last four decades is animal foraging [1,2,10–

27], with the searcher (i.e. forager) typically represented by an

animal species in quest of target sites (prey, food, other individuals,

shelter, etc.) in a search landscape.

Among the most studied random walk models proposed as

plausible search strategies, we cite correlated random walks

[12,28,29], Lévy flights and walks [13–17,19,20,24,25,27,30–39],

intermittent walks [40–46], and composite Brownian walks [47,48].

In particular, Lévy random searchers, with probability distribution

of step lengths p(‘)*‘{m, for 1vmƒ3, have successfully explained

[34] the emergence of optimal searches in landscapes with randomly

and scarcely distributed target sites. On the other hand, when

resources are plentiful Lévy strategies are unnecessary [34], and

efficient Brownian optimal searches may arise with, e.g., a Poisson-

like exponential distribution p(‘) [24,25]. Lévy flights and walks

have been also shown to be relevant in several other contexts [1],

such as in proteins searching for specific DNA sites [49], in which the

optimal Lévy mechanism emerges directly from the underlying

physics of the problem (polymer scaling theory in three dimensions).

In the regime of low density of resources of the random search

problem, two limiting situations have been extensively considered

[34]: (i) non-destructive searches, in which the searcher always

departs from a position at the vicinity of the last target found with

unrestricted revisits; and (ii) destructive searches, in which, once

found, the target becomes inaccessible to future visits, so that the

starting point of the searcher is, on average, faraway from all

targets. In the former case the maximum efficiency is achieved

[34] for m opt,nd&2 (a ‘‘compromise’’ superdiffusive solution),

whereas in the latter m opt,d?1 (ballistic motion). It is important to

observe, nevertheless, that by varying the searcher’s starting point

[44,48] or the degree of target revisitability or temporal

regeneration [50,51], intermediate values of the optimal Lévy

exponent arise, 1vm opt *v 2.

It is also interesting to comment on the effect of an energy cost

function on the efficiency of search strategies. Indeed, as reported in

[50,51], the range of m-values associated with search paths in which

the net energy gain (the balance between the energy income due to

the finding of targets and the energy cost of the search process itself)

remains always positive is actually limited. In such a case, low values

of m giving rise to very large search jumps might not be acceptable,

since they imply a high energy cost, with intermediate values of m opt

emerging as the best strategy. In addition, we also refer to the study

reported in [52] in which exact results for the first passage time and

leapover statistics of Lévy flights are presented. In this case, the

targets might not be always detected, being thus overshoot by jumps

whose length distribution displays infinite variance.

Despite the intense progress in the fields of random searches

and animal foraging, a number of relevant issues still remain open.
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A particularly important one is to understand the coupling

mechanism between landscape spatiotemporal dynamics and

efficient search motility, when resources are scarce and environ-

mental information is limited. In this sense, the pervasiveness of

different animal search strategies is expected to strongly depend on

a few but essential features of actual landscapes. For instance,

targets distributions in realistic search processes usually present

heterogeneous properties through time and space, such as diverse

degrees of temporal regeneration and spatial aggregation

[26,53,54]. Although the effect of (global) resource density on

animal foraging behavior is well documented [25,26,37,42,55],

much less is known about how spatiotemporal landscape

heterogeneity dynamics affects the target revisitability and/or

searcher-to-targets distances, both known to be key properties to

optimize perception-limited searches [44,48,50,51]. Thus, a

mechanistic understanding of how and which landscape features

are related to search efficiency should be a relevant step towards a

comprehensive view of animal foraging behavior.

Here we address the question of how the landscape heterogeneity

influences the encounter success and search efficiency under

conditions of constant (global) density of scarce resources. We

develop a random search model in which diverse degrees of

inhomogeneities are considered by introducing fluctuations in the

starting distances to target sites. We thus ask what happens to the

optimal search strategy in an heterogeneous landscape, as the

searcher’s initial distances to the targets fluctuate along the search.

We answer to this query qualitatively for the general case and

quantitatively for Lévy random searches in particular, in the constant

density regime of scarce resources. In patchy or aggregated

landscapes, we find that enhanced diffusivity (including superdiffusive

strategies) favors the encounter of targets and the success of foraging.

Eventually, for strong enough fluctuations in the starting distances to

nearby targets a crossover to ballistic strategies might emerge.

These predictions are empirically testable through feasible

experiments which investigate the dynamics (e.g. diffusion

exponent) of foraging organisms in specially designed low-density

environments of controlled heterogeneity.

Materials and Methods

Distributions of starting positions: General considerations
We consider a random search model in which diverse degrees of

landscape heterogeneity are taken into account by introducing

fluctuations in the starting distances to target sites in a one-

dimensional (1D) search space, with absorbing boundaries

separated by the distance l. Every time an encounter occurs the

search resets and restarts over again. Thus, the overall search

trajectory can be viewed as the concatenated sum of partial paths

between consecutive encounters. The targets’ positions are fixed –

targets are in fact the boundaries of the system. Fluctuations in the

starting distances to the targets are introduced by sampling the

searcher’s departing position after each encounter from a

probability density function (pdf) p(x0) of initial positions x0.

Importantly, p(x0) also implies a distribution of starting (a)sym-

metry conditions regarding the relative distances between the

searcher and the boundary targets.

This approach allows the typification of landscapes that, on

average, depress or boost the presence of nearby targets in the

search process. Diverse degrees of landscape heterogeneity can

thus be achieved through suitable choices of p(x0).

For example, a pdf providing a distribution of nearly symmetric

conditions can be assigned to a landscape with a high degree of

homogeneity in the spatial arrangement of targets. In this sense,

the mentioned destructive search represents the fully symmetric

limiting situation, with the searcher’s starting location always

equidistant from all boundary targets. On the other hand, a

distribution p(x0) which generates a set of asymmetric conditions

is related to a patchy or aggregated landscape. Indeed, in a patchy

landscape it is likely that a search process starts with an

asymmetric situation in which the distances to the nearest and

farthest targets are very dissimilar. Analogously, the non-

destructive search corresponds to the highest asymmetric case, in

which at every starting search the distance to the closest (farthest)

target is minimum (maximum). Finally, a pdf p(x0) giving rise to

an heterogeneous set of initial conditions (combining symmetric

and asymmetric situations) can be associated with heterogeneous

landscapes of structure in between the homogeneous and patchy

cases.

More specifically, the limiting case corresponding to the

mentioned destructive search can be described by the pdf with

fully symmetric initial condition,

p(x0)~d(x0{l=2), ð1Þ

where d(x0) denotes Dirac d-function. This means that every

destructive search starts exactly at half distance from the boundary

targets. In this context, it is possible to introduce fluctuations in x0

by considering, e.g., a Poisson-like pdf [56] exponentially decaying

with the distance to the point at the center of the search space,

x0~l=2:

p(x0)~A exp½{(l=2{x0)=a�, ð2Þ

where rvƒx0ƒl=2, with rv the ‘‘radius of vision’’ of the searcher

(see below), A the normalization constant, and p(x0)~p(l{x0)
due to the symmetry of the search space.

On the other hand, the highest asymmetric non-destructive

limiting case is represented by

p(x0)~d(x0{rv), ð3Þ

so that every search starts from the point of minimum distance in

which the nearest target is undetectable, x0~rv. Similarly,

fluctuations in x0 regarding this case can be introduced by

considering a Poisson-like pdf decreasing with respect to the point

x0~rv:

Author Summary

Understanding how animals search for food is crucial for
animal ecology. Although much has been learned about
the main aspects of the so-called foraging problem, some
important questions still remain unanswered. In this work
we address the issue of the relevance of heterogeneity in
the resources distribution to efficient animal foraging
behavior. Our results unveil the key mechanism coupling
landscape heterogeneity dynamics with optimal search
diffusivity. Indeed, although the effect of (global) resource
density on animal foraging behavior is well documented,
much less has been known about how spatiotemporal
landscape heterogeneity affects the efficiency of encoun-
ter interactions by foraging organisms. In this sense, we
propose a new empirically testable theoretical prediction
on the dynamics (e.g. diffusion exponent) of foraging
organisms in heterogeneous environments. We also show
that the conditions in which Lévy strategies are optimal
are much broader than previously considered.

Landscape Heterogeneity and Optimal Searches
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p(x0)~B exp½{(x0{rv)=a�, ð4Þ

where rvƒx0ƒl=2, B is a normalization constant, and

p(x0)~p(l{x0). In Eqs. (2) and (4), the parameter a controls

the range and magnitude of the fluctuations. Actually, the smaller

the value of a, the less disperse are the fluctuations around

x0~l=2 and x0~rv in Eqs. (2) and (4), respectively.

Random search model in 1D
When looking for boundary target sites in a 1D interval, the

searcher’s step lengths ‘ are taken from a general pdf p(‘). At each

step the probabilities to move to the right or to the left are equal.

We define the ‘‘radius of vision’’ rv as the distance below which a

target becomes detectable by the searcher. Thus, if the targets are

located at the boundary positions x~0 and x~l, the search keeps

on as long as the walker’s position lies in the range rvƒxƒl{rv.

Here we are interested in searches in environments scarce in

targets, i.e. for l&rv. In this case, leaving the present position to

look randomly for targets should occur much more frequently than

simply detecting a site in the close vicinity, a regime favored when

targets are plentiful.

Suppose initially that, as a target is found, the search always

restarts from the same position x0 in the interval rvƒx0ƒl{rv.

As discussed, the highest asymmetric (non-destructive) and fully

symmetric (destructive) cases correspond respectively to setting

x0~rv (or x0~l{rv, due to symmetry) and x0~l=2. After the

encounter of a statistically large number of targets, the efficiency of

the search, g, is evaluated [34] as the ratio of the number of sites

found to the total distance traversed by the searcher. Since this

distance is equal to the product of the number of encounters and

the average distance traveled between consecutive findings,

SLTp(x0), then g(x0)~1=SLTp.

Consider now that, instead of always departing from the same

location after an encounter, the searcher can restart from any

initial position x0 in the range rvƒx0ƒl{rv, chosen from a pdf

p(x0). The fluctuating values of x0 imply a distribution of SLTp

values. Since searches starting at x0 are statistically indistinguish-

able from searches starting at l{x0 (in both cases the closest and

farthest targets are at distances x0 and l{x0 from the starting

location), the symmetry of the search space regarding the position

x~l=2 implies SLTp(x0)~SLTp(l{x0). The average efficiency

thus becomes

g~1=SLTp~1= 2

ðl=2

rv

SLTp(x0)p(x0)dx0

 !
, ð5Þ

where p(x0)~p(l{x0) due to the above mentioned symmetry.

To study the effect of fluctuations in the starting distances of a

searcher, we note that the exact average distance SLTp(x0) in Eq.

(5) can be formally expressed [57,58] as

SLTp(x0)~½(I{L){1Sj‘jT�(x0), ð6Þ

where the integral operator L acts as follows:

½LSj‘jT(x
0
)�(x)~

ðl{rv

rv

p(x{x
0
)Sj‘jT(x

0
)dx
0
, ð7Þ

and I and Sj‘jT(x0) are, respectively, the unity operator and the

average length of a single step starting at x0. Specifically, we can

write for a general pdf p(‘)

Sj‘jT(x
0
)~(x

0
{rv)

ð{(x
0
{rv)

{?
p(‘)d‘z

ð{rv

{(x
0
{rv)

j‘jp(‘)d‘

z

ðl{rv{x
0

rv

j‘jp(‘)d‘z(l{rv{x
0
)

ð?
l{rv{x

0 p(‘)d‘:

ð8Þ

The second and third integrals above represent steps to the left

and to the right which are not truncated by the encounter of a

target site at the boundaries; the first and last ones concern steps

truncated by the detection of the targets at x~0 and x~l,

respectively (what actually happens at x~rv and x~l{rv, due to

the searcher’s ‘‘radius of vision’’).

Despite the formal aspect of Eq. (6), the numerical calculation of

SLTp(x0) with a given p(‘) can be performed by discretizing

[57,58] the search interval rvƒxƒl{rv, i.e. x~j dx, with j
integer and dx%l. In this procedure, integrals are approximated

by summations, and so on.

In the next section, we use this model to study the role of

landscape heterogeneity on the search efficiency and diffusivity.

The presented analysis is qualitative for the general case and

quantitative for Lévy random searches.

Results

Efficient search strategies with a general pdf of step
lengths

Consider, first, the limiting case with no fluctuation in the

starting distances. The underlying mechanisms of efficient searches

with asymmetric and symmetric initial conditions are fundamen-

tally distinct. In the fully symmetric (destructive) case (x0~l=2)
the closest sites are located at equal initial distances l=2&rv from

the searcher in the low-density regime. Thus, for a general

distribution of step lengths p(‘) characterized by a set of

parameters fkig, the one (fkig s) that leads to the largest efficiency

g must present the fastest possible diffusivity in order to reach these

faraway targets. For example, in the case of the single-parameter

power-law pdf p(‘)*‘{m, g is maximized with ballistic strategy

[34]: k1, s~m opt,s?1.

In contrast, in the highest asymmetric (non-destructive) situation

(x0~rv or x0~l{rv) the most efficient search must compromise

between performing large steps to access the farthest site and

sweeping in detail at the vicinity of the closest site. In the

parameter space, this solution, related to a set fkig as, displays

intermediate diffusivity between normal (Brownian) and the fastest

possible one, assigned to the set fkig s. In the same example, this

implies [34] k1, as~m opt,as&2, in contrast with Brownian diffusion

resulting from mw3 (see Figs. 1 and 2).

When the starting positions are not fixed, heterogeneous

landscapes with stronger fluctuations in the distances to nearby

targets lead to optimal search strategies with faster dynamics

(enhanced diffusivity). The arguments giving rise to this general

conclusion are as follows.

On one hand, sampling starting positions around x0~l=2
corresponds to introduce fluctuations in the initial distances to the

faraway boundary targets in the low-density regime, as discussed.

In this case, we expect that starting positions far away from

x0~l=2 are chosen with smaller probabilities. This implies a

decreasing pdf p(x0) from l=2 to rv, such as found in Eq. (2).

Consequently, both p(x0) and SLTp(x0) increase monotonically

from rv to l=2 (Fig. 3). The most relevant contribution to the

product SLTp(x0)p(x0) in Eq. (5) thus comes from positions near

x0~l=2. No qualitative difference is expected to occur between

Landscape Heterogeneity and Optimal Searches
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SLTp and SLTp(x0~l=2), indicating that searches with fully

symmetric (fixed) initial condition and those comprising fluctua-

tions in the faraway targets present similar optimal dynamics,

related to the set fkig s, namely ballistic, if supported by p(‘).
On the other hand, in the asymmetric case fluctuations in the

starting distances to the nearby boundary target can be introduced

by a decreasing pdf p(x0) from rv to l=2, such as in Eq. (4).

Therefore, as SLTp(x0) increases and p(x0) diminishes, the initial

position associated with the most relevant contribution to

SLTp(x0)p(x0) in Eq. (5) crosses over to somewhere in between

x0~rv and x0~l=2. Indeed, the slower p(x0) decays, the larger

such position becomes. As a consequence, the asymmetric optimal

set fkig as in the absence of fluctuations might give away the role of

the most efficient search strategy to some other intermediate

compromising solution fkig int, which is closer to the symmetric set

fkig s in the parameter space and, therefore, presents enhanced

dynamics (e.g., a larger diffusion exponent). Eventually, for some

proper choice of p(x0) encompassing strong fluctuations with large

weight near x0~l=2, the justification for such compromising

solution might even fade away, so that fkig int?fkig s, with

strategies of fastest possible diffusivity becoming optimal. In this

uttermost case fluctuations lose their local character, and a crossover

from superdiffusive to ballistic search behavior may take place.

We observe that the above rationale should also apply, at least

qualitatively, to searches in higher-dimensional spaces. In this

situation, as the search path can be approximated by a sequence of

nearly rectilinear moves, the general qualitative features of 1D

random searches usually hold true in higher dimensions [34,39].

Nevertheless, the finding of targets in 2D and 3D occurs with

considerably lower probability, since the extra spatial directions

yield a larger exploration space, resulting in lower encounter rates

and search efficiencies. The impact of target spatial fluctuations on

high-dimensional search strategies should also reduce [39]. We

can thus conclude that, beyond representing the realistic

exploration space of some animal species [27], the 1D analysis

presented here is also useful in establishing upper limits for the

influence of landscape heterogeneities in random searches.

Therefore, the understanding of animal foraging behavior in 2D

and 3D, as well as other practical realizations of the random

search problem, might also benefit from the present results.

We next apply the above arguments, valid for a general pdf p(‘),
to the particular case of Lévy random searchers.

Lévy searches in heterogeneous landscapes
We now specifically consider a random searcher with step

lengths chosen from the pdf

p(‘)~
(m{1)‘m{1

0

2

1

j‘jm , j‘j§‘0, ð9Þ

and p(‘)~0 otherwise, with ‘0 representing a lower cutoff length.

We assign a ‘‘negative step length’’ (j‘j~{‘) if the searcher

moves to the left and take ‘0~rv for simplicity. Equation (9) for

1vmƒ3 corresponds to the long-range asymptotical limit of Lévy

a-stable distributions with index a~m{1, characterized by the

Figure 1. Robustness of the ballistic optimal search strategy
with respect to fluctuations in the distances to faraway target
sites. In the case of Lévy random searchers, for l~103 and rv~1, the
average search efficiency g, Eq. (5), is always highest for m?1 (ballistic
dynamics), for any value of the parameter a of the Poissonian
fluctuations around the maximum allowed distance, x0~l=2, Eq. (2).
Cases with uniform and without any (d-function) fluctuation are also
shown. Solid lines are a visual guide.
doi:10.1371/journal.pcbi.1002233.g001

Figure 2. Shift in the optimal search strategy towards an
enhanced superdiffusive dynamical regime, as landscapes with
distinct degrees of heterogeneity are considered. For Lévy
random searchers, using l~103 and rv~1 (solid symbols), the average
search efficiency g, Eq. (5), is maximized for smaller m opt(a) (faster
diffusivity) in the case of wider (larger-a) Poissonian fluctuations in the
distances to nearby target sites, Eq. (4). Cases with uniform and without
any (d-function) fluctuation are also shown (solid lines are a visual
guide). Empty symbols locate the maximum g obtained from the
condition f (m~m opt,a)~LSLTp=Lmjm~m opt

~0. For strong enough fluc-
tuations, with awa cross&312:2, a crossover to ballistic dynamics (m?1)
emerges.
doi:10.1371/journal.pcbi.1002233.g002

Figure 3. Nice adjustment of the average distance SLTp

traversed between consecutive findings by a Lévy random
searcher starting at position x0. Results obtained by numerical
discretization of Eq. (6) (solid lines) and multiple regression (symbols),
for l~103 and rv~1.
doi:10.1371/journal.pcbi.1002233.g003

Landscape Heterogeneity and Optimal Searches
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existence of rare, large steps alternating between sequences of

many short-length jumps [13,14,16]. As its second moment

diverges the central limit theorem does not hold, and anomalous

(superdiffusive) dynamics governed by the generalized central limit

theorem takes place. Indeed, Lévy random walks and flights are

related to a Hurst exponent [13,14] Hw1=2, with ballistic

dynamics in the case m?1, whereas diffusive behavior (H~1=2)

emerges for mw3. For mƒ1 pdf (9) is not normalizable and m~2
corresponds to the Cauchy distribution.

The search path eventually comprises truncated steps due to the

encounter of targets, so that the power-law decay of Eq. (9) cannot

extend all the way to infinity, thus implying an effective truncated

Lévy distribution [59]. In spite of this, in the regime l&rv the

search should retain the most relevant properties of a non-

truncated Lévy walk to a considerable extent. Indeed, the ratio r of

the number of truncated steps to the non-truncated ones,

essentially equal to the inverse of the average number of steps

performed between consecutive targets, is given by

r*(l=rv)(1{m)=2 and r*(l=rv)1{m, for l&rv, in the highest

asymmetric (non-destructive) and fully symmetric (destructive)

cases, respectively [34,57,58]. Thus, except for m?1 ballistic

walks, one has that r%1 if l&rv. Further, the justification for

truncated distributions also arises naturally in the context of

animal foraging since directional persistence due to scanning is

likely to be broken at the finding of targets [19]. Indeed, infinitely

long rectilinear paths are not allowed for searching organisms.

By inserting Eq. (9) into Eqs. (6) and (7), we numerically

calculate SLTp(x0) through the discretization of the search space

(see previous section). Results are displayed in solid lines in Fig. 3.

Notice first the presence of the symmetry SLTp(x0)~SLTp(l{x0)
discussed above. In the absence of fluctuations in the initial

distances, the existence of a maximum efficiency with an

intermediate exponent m opt,as&2 (see Fig. 2) for searches starting

at fixed x0~rv (highest asymmetric condition) can be understood

as follows: strategies with m?1 might access the farthest target at

x~l in a ballistic way after a small number of very large steps,

implying a large SLTp(x0~rv) and low efficiency; in contrast,

searches with m?3 tend on average to find the closest site at x~0
after a great number of small steps, also giving rise to a large

SLTp(x0~rv); the efficient compromise between these two trends,

leading to the lowest SLTp(x0~rv) and maximum g, is therefore

represented by a strategy with an intermediate value, m opt,as&2.

In the presence of fluctuations in the starting distances, the

integral (5) must be evaluated. Although the explicit expression for

SLTp(x0), Eq. (6), is not known up to the present, a multiple

regression can be successfully performed,

SLTp(x0)~
XNx

i~0

XNm

j~0

aijx
i
0mj , ð10Þ

as indicated by the nice adjustment shown in Fig. 3, obtained with

Nx~10 and Nm~8. Thus, the integral (5) can be done using Eqs.

(2), (4) and (10), with results displayed in Figs. 1 and 2 for several

values of the parameter a.

By considering fluctuations in the starting distances to faraway

targets through Eq. (2), we notice in Fig. 1 that the efficiency is

qualitatively similar to that of the fully symmetric condition, Eq.

(1), in agreement with the general arguments of the previous

section. Indeed, in both cases the maximum efficiency is achieved

as m?1. For 1vmv3 the presence of fluctuations only slightly

improve the efficiency. These results indicate that ballistic

strategies remain robust to fluctuations in the distribution of

faraway targets.

On the other hand, fluctuations in the starting distances to

nearby targets, Eq. (4), are shown in Fig. 2 to decrease

considerably the search efficiency, in comparison to the highest

asymmetric case, Eq. (3). In this regime, since stronger fluctuations

increase the weight of starting positions far from the target at

x~0, the compromising optimal Lévy strategy displays enhanced

superdiffusion, observed in the location of the maximum efficiency

in Fig. 2, which shifts from m opt&2, for the delta pdf and Eq. (4)

with small a, towards m opt?1, for larger a (slower decaying p(x0)).
Indeed, both the pdf of Eq. (4) with a vanishing a and Eq. (3) are

very acute at x0~rv. It is also worth noticing that a lower m opt is

related to a larger Hurst exponent [1,13,14], and therefore to a

larger diffusion exponent, as argued in the previous section.

As even larger values of a are considered, fluctuations in the

starting distances to the nearby target become non-local, and Eq.

(4) approaches the a?? limiting case of the uniform distribution,

p(x0)~(l{2rv){1 (see Fig. 2). In this situation, search paths

departing from distinct x0 are equally weighted in Eq. (5), so that

the dominant contribution to the integral (and to the average

efficiency g as well) comes from search walks starting at positions

near x0~l=2. Since for these walks the most efficient strategy is

ballistic, a crossover from superdiffusive to ballistic optimal

searches emerges, induced by such strong fluctuations. Conse-

quently, the efficiency curves for very large a (Fig. 2) are

remarkably similar to that of the fully symmetric case (Fig. 1).

We can quantify this crossover shift in m opt by defining a

function m opt(a) that identifies the location in the m-axis of the

maximum in the efficiency g, for each curve in Fig. 2 with fixed a.

As discussed, eventually a compromising solution with m opt(a)w1
cannot be achieved, and an efficiency function g monotonically

decreasing with increasing m arises for awa cross. In this sense, the

value a cross for which such crossover occurs marks the onset of a

regime dominated by ballistic optimal search strategies.

The value of m opt for each a can be determined from the

condition f (m~m opt,a)~LSLTp=Lmjm~m opt
~0, so that, by con-

sidering Eqs. (4), (5) and (10),

f (m,a)~2A
XNx

i~0

XNm

j~0

aij jm
j{1

Xi

k~0

i!akz1

(i{k)!
e{arv ri{k

v {e{al=2 l

2

� �i{k
 !" #( )

,

ð11Þ

with A~f2a½exp({rv=a){exp({l=(2a))�g{1
. Solutions are

displayed in Fig. 4 and also in Fig. 2 as empty symbols, locating

the maximum of each efficiency curve. In addition, the crossover

value can be determined through f (m?1z,a~a cross)~0. In the

case of pdf (4), we obtain (Fig. 4) a cross&312:2 for l~103 and

rv~1 (regime l&rv).

We also note that the scale-dependent interplay between the

target density and the range of fluctuations implies a value of a cross

which is a function of l. For instance, a larger l (i.e., a lower target

density) leads to a larger a cross and a broader regime in which

superdiffusive Lévy searchers are optimal. Nevertheless, the above

qualitative picture should still hold as long as low target densities

are considered.

Moreover, since ballistic strategies lose efficiency in higher

dimensional spaces [44], it might be possible that in 2D and 3D

the crossover to ballistic dynamics becomes considerably limited.

In spite of this, enhanced superdiffusive searches, with

1vm optv2, should still conceivably emerge due to fluctuations

in higher-dimensional heterogeneous landscapes.
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From these results we conclude that, in the presence of

Poissonian-distributed fluctuating starting distances with

aƒa cross, Lévy search strategies with faster (enhanced) super-

diffusive properties, i.e. 1vm optvm opt,as&2, represent optimal

compromising solutions. In this sense, as local fluctuations in

nearby targets give rise to landscape heterogeneity, Lévy searches

with enhanced superdiffusive dynamics actually maximize the

search efficiency in aggregate and patchy environments. On the

other hand, for strong enough fluctuations with awa cross, a

crossover to the ballistic strategy emerges in order to access

efficiently the faraway region where targets are distributed. These

findings are in full agreement with the general considerations

discussed in the previous section.

At last, to further test the robustness of these results we have also

considered the power-law distribution of starting positions,

p(x0)~Cx{n
0 , with rvƒx0ƒl=2, p(x0)~p(l{x0), and C as

the normalization constant. Differently from distributions (2) and

(4), the long tail in this pdf confers self-affine scale-invariant

properties over a long spatial range in the low-density regime,

l&rv. The evidence of scale-free distributions of targets has been

reported in the context of animal foraging, e.g. in [24]. In the

present analysis we have essentially verified all the general features

previously discussed. In particular, all strategies with

nvn cross&0:35 are ballistic, with compromising superdiffusive

solutions arising for n§n cross.

Discussion

The effect of limited resources on animal motility is well

documented in ecology. Scarcity coming from resource competi-

tion is known to induce higher dispersal rates [60,61] and larger

home ranges [62,63]. Habitat fragmentation also reshapes

dispersal kernels, often increasing dispersal distances [64]. In the

context of foraging behavior, the role of (global) resource density

has been considerably investigated, with strong evidence pointing

to shifts from Brownian to superdiffusive search strategies as

animals move from high to low productive areas. Examples range

from microorganisms [37] to large marine predators [25,26,55]. In

contrast, much less is known about the influence of heterogeneity

in the resource distribution on the foraging success.

Most theoretical efforts relying on core random search theory

have by far provided only a limited approach to the issue of

optimal searches, since they mostly assume oversimplified

landscapes [2,40]. Nonetheless, a few simulation studies have

addressed the effect of environmental heterogeneity, including

target motion, on encounter success for different searcher types

[19,24,39,65,66]. These works give support to the hypothesis that

search processes are linked to target distributions and dynamics,

thus agreeing with our results in that the optimal strategy can

actually change, e.g. from superdiffusive to ballistic motion,

depending on the landscape heterogeneity. In a more recent

example, it was shown [65] that Lévy optimal foragers can be

evolutionarily optimal in heterogeneous environments, for suitable

details of the simulations and definition of efficiency. Our work

advances on this topic by pinpointing a very general mechanism

which seems essential to understand previous simulation results

[19,24,39,65].

By comprehensively describing the key mechanism coupling

landscape dynamics and search diffusivity, we have shown that

statistical fluctuations in the set of initial search conditions play a

crucial role for determining which strategy is optimal. The

presence of such fluctuations sets a clear basis for the non-

universality of search patterns, and shows that enhanced diffusivity

(including superdiffuse strategies) favors random encounter success

in patchy and aggregated landscapes. As a consequence, the

foraging conditions in which Lévy strategies appear as optimal are

much broader than previously suggested [40,44–46].

In dynamic and complex landscapes with scarcity of resources

neither ballistic nor Lévy strategies should be considered as

universal (see, e.g., [45,46]), since realistic fluctuations in the

targets distribution may induce switches between these two

regimes. This observation has been confirmed by recent empirical

results [25,27], showing that foragers in the wild do not exhibit

movement patterns that can be approximated, at all times, by

Lévy, ballistic or exponential models. Nevertheless, the relevant

finding is that in the low-density regime superdiffusive Lévy

strategies remain as the optimal solution in a broad range of

heterogeneous landscape conditions, with the optimal exponent

1vm opt *v 2 dependent on specific environment properties.

Crossovers between superdiffusive and ballistic strategies may also

emerge depending on whether strong target spatial fluctuations are

local or not, and if they depress or boost the presence of nearby

targets. For instance, recent data on a species of jellyfish have

reported [27] on Lévy flight foraging strategies with optimal index

as low as m opt~1:18. Moreover, studies on marine predators have

also found [24] small values as m opt~1:63. Such rather fast,

enhanced superdiffusion (with respect to m opt&2) suggests the

occurrence of foraging activity in a highly dynamic and

heterogeneous landscape, as it is clearly the case for marine prey

landscapes [25,26,67].

In the present work, the question of how the landscape

heterogeneity affects the search efficiency in encounter interactions

is addressed under conditions of constant global density of scarce

resources. In such conditions we predict that efficient strategies

with larger diffusion exponents (including superdiffusive ones)

should arise, as heterogeneous environments with wider distribu-

tions of starting distances between the foraging organism and the

nearby targets are considered. Similarly to what occurs in

homogeneous landscapes [42], we do not expect density

fluctuations in the scarcity regime to modify optimal Lévy

solutions per se, but only to the extent that fluctuations in density

modify the initial searcher-to-targets distances. In other words,

Figure 4. Determination of the optimal search strategy of Lévy
random searchers with Poissonian fluctuations in the distances
to nearby targets, Eq. (4). The condition f (m~m opt,a)~
LSLTp=Lmjm~m opt

~0, for l~103 and rv~1, provides the optimal Lévy
exponent, m opt, associated with the strategy of maximum average
efficiency. Inset: since strategies with mƒ1 are not allowed (non-
normalizable pdf of step lengths), the highest efficiency is always
obtained for m?1 as fluctuations with awa cross&312:2 are considered,
marking the onset of a regime dominated by ballistic optimal search
dynamics.
doi:10.1371/journal.pcbi.1002233.g004
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provided that the asymmetry in the searcher-to-targets distances is

maintained as density changes, optimal Lévy strategies should

result insensitive to target density fluctuations. This means that for

a Lévy searcher is less important to have advanced knowledge of

the density than of the relative positions of the targets. Clearly,

robustness to changes in environmental parameters (i.e. density)

should be considered as an advantage in non-informed optimal

search solutions [42].

If we acknowledge the presence of selective pressures respon-

sible for the evolution and maintenance of non-oriented motility in

organisms [68], our results lead to a neat empirically testable

prediction: patchy and heterogeneous landscapes should promote

the emergence of enhanced diffusivity and compromising optimal

Lévy strategies. Even though the empirical inference of large scale

movement patterns from heterogeneity properties of the landscape

is a difficult task [26], specifically designed and controlled large

scale experiments are feasible in the laboratory [68–71] and even

in the field [54].

We hope the present study might shed light on unsettled issues

related to the efficiency and associated dynamics of organisms

performing random searches. Besides the well documented depen-

dence of search efficiency on resource density [25,26,34,37,55], our

results suggest another relevant aspect of non-universal random

search behavior: landscape heterogeneity frames optimal diffusivity.
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