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Abstract: Cytochrome P450 2D6 (CYP2D6) activity is highly variable due to several factors, including
genetic polymorphisms and drug-drug-gene interactions. Hydrocodone, oxycodone, codeine, and
tramadol the most commonly prescribed CYP2D6-activated opioids for pain. However, the co-
administration of CYP2D6 interacting drugs can modulate CYP2D6-medicated activation of these
opioids, affecting drug analgesia, effectiveness, and safety, and can impact healthcare costs. A
retrospective, observational cohort analysis was performed in a large (n = 50,843) adult population.
This study used drug claims data to derive medication risk scores and matching propensity scores to
estimate the effects of opioid use and drug-drug interactions (DDIs) on medical expenditures. 4088
individuals were identified as opioid users; 95% of those were prescribed CYP2D6-activated opioids.
Among those, 15% were identified as being at risk for DDIs. Opioid users had a significant increase in
yearly medical expenditure compared to non-opioid users ($2457 vs. $1210). In matched individuals,
average healthcare expenditures were higher for opioid users with DDIs compared to those without
DDIs ($7841 vs. $5625). The derived medication risk score was higher in CYP2D6 opioid users with
interacting drug(s) compared to no DDI (15 vs. 12). Higher costs associated with CYP2D6 opioid use
under DDI conditions suggest inadequate CYP2D6 opioid prescribing practices. Efforts to improve
chronic opioid use in adults should reduce interacting drug combinations, especially among patients
using CYP2D6 activated opioids.

Keywords: CYP2D6; drug-drug interactions; opioids; medical expenditure; pharmacoeconomics;
medication risk score

1. Introduction

Chronic pain is prevalent in the U.S. population [1,2]. Studies conducted over the past
two decades have estimated the prevalence of chronic pain to range from 10% to 60%, and
sometimes as high as 80%, among adults (aged ≥ 18 years) [3–7]. Chronic pain is defined
as pain that persists beyond the expected healing time and is ongoing, lasting at least
three to six months [8,9]. Chronic pain contributes to rising healthcare costs and is linked
to a number of physical and mental conditions that result in a loss of productivity [10–
12]. Better and more effective pain management strategies for chronic pain are needed.
Chronic pain is one of the most common reasons adults seek medical care, accounting
for 15 to 20% of physician visits, and can lead to a dependence on opioids, poor health,
and a reduced quality of life [1,13,14]. In 2017, more than 191 million opioid prescriptions
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were filled in the U.S., and prescriptions for opioids to treat chronic pain continue to rise
dramatically [15–18].

Several opioids are metabolized by the cytochrome P450 (CYP) enzymatic system,
including codeine, fentanyl, hydrocodone, methadone, oxycodone, and tramadol [19–21].
Among these opioids, some behave like prodrugs, requiring CYP-mediated metabolism
for activation. Specifically, codeine, hydrocodone, oxycodone, and tramadol are metab-
olized by the polymorphic CYP2D6 isoenzyme into their respective active metabolites,
i.e., morphine, hydromorphone, oxymorphone, and O-desmethyl-tramadol [19,20,22,23].
These metabolites are much more potent antagonists of the µ-opioid receptor than their
parent compounds, and are primarily responsible for analgesic response. However, the
parent compounds may be responsible for -receptor independent adverse effects [20,22,24].
Concomitant administration of CYP2D6 inhibitors or of substrates with greater affinity
for the CYP2D6 isoenzyme can interfere with the bioactivation process of these drugs.
Consequently, drug-drug interactions (DDIs) involving CYP2D6 opioids are associated
with decreased concentrations of opioid active metabolites and may lead to inadequate
analgesia [25].

DDIs involving opioids may occur more commonly in clinical practice than generally
recognized. More than 65% of patients taking an opioid for chronic pain take at least one
other drug concomitantly [25]. In clinical practice, concurrent use of non-opioid drugs
increases the risk for patients taking opioids to experience DDIs; these prescribing practices
may contribute to the economic and physical burdens associated with chronic pain [26].
Approximately 9.5 to 11.5 million patients are prescribed opioids for chronic pain, and the
degree and extent to which these patients might have conditions that put them at risk for
potential opioid-involved DDIs has been insufficiently studied [15].

Drug claims data could represent a reliable source to attribute risk of adverse drug
events (ADE) associated with medications in outpatient populations [27]. We recently
reported the association of a proprietary medication risk score (MRS) based on drug claims
with health outcomes including ADE, medical expenditures, hospitalizations, emergency
department visits, hospital length of stay and death [28–30].

In this study, we conducted a retrospective, observational cohort analysis of a large
adult population using drug claims data. Our objectives were to (1) describe and quantify
the use of opioids and concomitant drugs known to interfere with opioid metabolism,
(2) estimate healthcare costs associated with DDIs among patients using opioids (compared
to non-opioid users or opioid users without CYP2D6 DDIs), and (3) investigate the impact
on the MRS. We hypothesized that prescribing CYP2D6 opioids with the potential for
DDIs is associated with higher healthcare costs compared to prescribing non-opioids or
CYP2D6 opioids without DDIs and, concurrent increased MRS values. The results of our
study quantify prescribing practices for CYP2D6 opioids and highlight both their economic
impact and public health implications.

2. Materials and Methods

This study utilized Class 4 data consisting of de-identified pharmacy prescription drug
claims data (1 October 2016 to 31 December 2016) and one year of de-identified medical
expenditure data (1 January 2016 to 31 December 2016) obtained from a private healthcare
benefits consultant. Subjects were excluded from the analyses if there were no pharmacy
claims in the period analyzed. Data elements analyzed were prescribed drugs, doses, age,
and gender for all included drug claims. For data protection, date of birth was represented
as a year value, with ages over 89 fixed at 89. All individual-level data were anonymized
before being made available for analysis in this study. This research protocol was reviewed
and approved by Biomedical Research Alliance of New York Institutional Review Board
(BRANY IRB), an independent review board, prior to study initiation and a waiver of
authorization to use protected health information was granted (protocol #19-12-132-427,
sponsor ID BSG-OPIOID-001). Permission for publication was obtained from the healthcare
benefits consultant.
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2.1. Medication Risk Score

A medication risk stratification was performed. Tabula Rasa HealthCare (TRHC,
Moorestown, NJ, USA)) has developed a proprietary medication risk score (MRS, the
MedWise® Risk Score) using algorithms that consider five medication characteristics to
compute risk of ADEs [28,31]. Briefly, it includes (1) computation of a drug regimen
relative odds ratio for adverse drug events using the U.S. Food and Drug Administration
pharmacovigilance database (FAERS), (2) anticholinergic cognitive burden, (3) sedative
burden (4), drug–induced Long QT Syndrome (LQTS) burden, and (5) CYP450 drug
interaction burden risk scores. The total MRS was divided into Minimal, Low, Intermediate,
High, and Severe risk sub-categories. The methodology has been recently published and is
extensively described in Patents #WO2019089725 and #WO2017213825 [31].

2.2. Opioid Identification

Classification of the population into different subgroups based on opioid drug claims
has been determined as follows: (1) subjects using drugs other than opioids vs. all opioid
using subjects, and (2) CYP2D6 opioid users with no DDIs vs. CYP2D6 opioid users with
interacting drugs. Opioid users were defined as individuals who filled a prescription for
an opioid in the last three months of 2016. FDA-approved opioid medications included
buprenorphine, codeine, fentanyl, hydrocodone, hydromorphone, meperidine, methadone,
morphine, oxycodone, oxymorphone, pentazocine, propoxyphene, dextropropoxyphene,
tramadol, and tapentadol. Drugs administered by the intravenous or epidural routes
were excluded. The prescribed opioids identified among the study cohort are listed on
the Figure 1. CYP2D6 metabolized opioids included codeine, hydrocodone, oxycodone,
and tramadol. CYP2D6 opioid users with interacting drugs were defined as CYP2D6
opioid users exposed to at least one potential pharmacokinetic drug interaction (includ-
ing CYP2D6 drug inhibitors or CYP2D6 higher affinity substrates). The identification of
CYP2D6 inhibitors and CYP2D6 substrates was based on their drug metabolism pharma-
cokinetic parameters including their affinity for CYP2D6 isoenzyme and the percentage of
their elimination pathway via CYP2D6 (e.g., Km, IC50, intrinsic clearance, clinical drug
interaction studies, in vitro and in vivo drug metabolism studies). CYP2D6 substrates
were classified into 3 categories based on their affinity towards the CYP2D6 isoenzyme,
which determined the relative risk of competitive inhibition between substrates of the same
isoenzyme. CYP2D6 metabolized opioids exhibit a weak affinity for CYP2D6, so potential
drug-drug interactions were considered clinically significant if concomitant CYP2D6 sub-
strates exhibit higher affinity (i.e., strong and intermediate affinity). CYP2D6 substrates
with high and intermediate affinities observed in this study are listed in Supplementary
Table S1. It should be noted that some members of the population were prescribed more
than one opioid, which can be observed in discrepancies between the drug count and
population data.

2.3. Data Processing and Statistical Analyses

Descriptive population characteristics including comorbidities, age, gender, MRS, and
individual risk factors were measured, including means, medians, standard deviations,
range, confidence intervals, and proportions as appropriate. The average total daily
dosages of opioids per patient were calculated (with consideration of reversed claims)
using the USA Centers for Medicare and Medicaid Services (CMS) guidelines and limitation
of double maximum FDA approved daily dosage [28,32–34].
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Figure 1. Identification of the study cohort and the subgroups based on drug claims.

Comorbidities were derived using National Drug Codes (NDC) obtained from drug
claims and converted to substance level RxNorm Concept Unique Identifier (RxCUI) and
Anatomical Therapeutic Chemical (ATC) codes sequentially. The resultant ATC codes
were used as a proxy to generate 27 potential comorbidity categories based on ATC codes
as described by Pratt et al. (pain category being excluded) [35]. Inclusive and exclusive
combinations of ATC codes were used to derive certain comorbidities (e.g., hypertension,
congestive heart failure) [35]. In addition, administration route and dosage of drugs were
considered to derive the following comorbidities: antiplatelets, arrythmia, chronic airway
disease, epilepsy, glaucoma, malignancies, transplant.

To perform the medication risk stratification, a webservice interface and customized
scripts were used. Medication risk scores were generated by processing prescribed drug
claims using NDCs as drug identifiers. Medication data were extracted from the claims
and cleaned of errors and inconsistencies through quality and integrity analyses. Since
NDCs can also denote non-medications (e.g., medical devices), active medication data was
further filtered to exclude these NDCs. Active medication data for each subject was filtered
based on prescription dates and days of supply, including any possible refills.

Data are reported as mean ± standard deviation (SD) or median and interquartile
range (IQR) for continuous variables. Comparisons among groups were performed using
the unpaired Student’s t-test. A continuous propensity score (PS) analysis was performed
to adjust for inter-group clinical differences. The explanatory variables in the logistic
regression analysis performed to generate a PS for each patient (representing the likelihood
of being in the interest group) included age, gender, and all comorbidities, excluding
inflammatory and pain syndromes. The continuous variable age was checked for the
assumption of linearity in the logit. Graphical representations suggested a node at age 45
to split the variable into two linear relationships: one equal to age for values up to age
of 45 and 0 after and the second equal to age for values above 45 and zero before. The
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variables were selected only if they maximized the within-sample correct prediction rates.
Interactions between variables were allowed only if they were supported clinically and
statistically (p < 0.20).

The goodness-of-fit of the model was evaluated using the Hosmer–Lemeshow test.
Patients in the interest group were matched 1:1 with patients of the other group based
on PS using the greedy matching algorithm with replacement. This approach matches
patients on decreasing levels of precision on their PS, beginning with a precision at 6 digits
and repeating the process until matches were completed on the 1 digit of the propensity
score (13). Given disparities in the number of patients in each group, many patients in the
interest group could be suitably matched to more than 1 candidate from the other group.
Rather than report results from only 1 random sample of matched pairs of subjects, which
may introduce bias, a bootstrap method was performed for each comparison in order
to reflect the many possible matched pairs. The estimate generated represents a ‘mean’
with its 95% confidence interval (CI) based on percentiles at 2.5% and 97.5% from the
bootstrap distribution obtained from a series of 1000 iterations of Monte-Carlo simulations
with replacement. For all variables, according to the central limit theorem, the shape of
the sampling distribution from the bootstraps was nearly normal. Statistical significance
was considered present when the 95% CI around the bootstrap mean difference did not
include zero. Standardized mean difference (SMD) was provided to examine the balance
of covariate distributions between groups after the propensity score matching. The SMDs
below 0.10 were achieved for almost all covariates.

Analyses were performed using the statistical software SAS version 9.4 (SAS Insti-
tute Inc., Cary, NC, USA); Python 3.8.5 using the NumPy (v. 1.19.2), pandas (v. 1.2.1),
statsmodels (v. 0.12.1), scikit-learn (v. 0.23.2), Matplotlib (v. 3.3.2), and seaborn (v. 0.11.1)
packages; and in R, (v. 1.2.5019) with the dplyr, data.table, sqldf, scales, and ggplot2
packages. Microsoft SQL Server (v. 15) was used to manipulate and analyze large datasets.

3. Results
3.1. Overall Opioid Usage

In our study, a total of 307,266 drug claims from 50,843 patients were available for the
period of 1 October 2016 to 31 December 2016. Characteristics for non-opioid users were
compared with characteristics for non-opioid users in Table 1. According to pharmacy
claims data, 4088 individuals (8.0%) were opioid users, including 355 subjects (8.7%) who
were prescribed more than one opioid concurrently. Opioid users were older and received
a higher number of prescribed medications compared to non-opioid users. The 25 most
commonly prescribed medications are provided in Supplementary Table S2. Drug claims
were used to derive drug classes and comorbidities as previously described [35]. Using
drugs as a proxy, a substantial difference was observed among opioid vs. non-opioid
users in the prevalence of individuals having anxiety (8.00 vs. 3.53%), having depressive
disorders (18.03 vs. 16.80%), having gastroesophageal reflux disease (GERD; 12.4 vs. 9.09%),
in need of co-prescribed anti-epileptic drugs (12.62 vs. 4.86%), and co-prescribed non-
steroidal anti-inflammatory drugs (NSAIDs; 17.44 vs. 4.91%), respectively (p = 0.04–0.001).
Several of these medications could be considered as part of the pain management strategy
or could be related to poor pain management. As listed in Table 2, the most prevalent
opioid medications prescribed in our study population were hydrocodone, oxycodone,
tramadol, codeine, morphine, and buprenorphine (from 43.5% to 3.2%, respectively).

The total MRS was significantly higher in subjects with a prescribed opioid compared
to the non-opioid medication users, with a difference of 4.5 MRS units (95% CI 4.4–4.6)
(Table 1). Figure 2a illustrates the adjusted MRS distribution observed in subjects without
an opioid medication and in subjects treated with an opioid drug (median MRS of 2 and 7
respectively). The opioid user group was also associated with an increase in the CYP450
drug interaction burden (Table 1). Among the opioid user group, fewer individuals have a
Minimal MRS category level compared to non-opioid users (p < 0.05). In contrast, higher
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frequencies of individuals having an MRS categorized as Low, Intermediate, High, and
Severe were observed in the opioid user group (Figure 3a,b; all p < 0.05).

Table 1. Characteristics of the overall population and individuals receiving at least one opioid medication.

n Total 50,843 No-Opioid Group Opioid Group p-Value or Difference

n (%) 46,755 (92%) 4088 (8%)
Age: y ± SD * 40.4 ± 18.5 44.9 ± 14.5 <0.001
Gender:

Male (%) 19,473 (41.6) 1879 (46.0)
Female (%) 27,282 (58.4) 2209 (54.0) <0.001

Number of prescribed drugs per patient: mean ± SD 2.6 ± 2.0 4.8 ±3.0 <0.001
Drug class/co-morbidity (using drug as a proxy): n (%)

Anticoagulants 615 (1.32) 115 (2.81) <0.001
Antiplatelet drugs 601 (1.29) 76 (1.86) 0.003
Anxiety 1652 (3.53) 327 (8.00) <0.001
Arrythmia 357 (0.76) 63 (1.54) <0.001
BPH 628 (1.34) 101 (2.47) <0.001
Chronic airway disease 5735 (12.27) 421 (10.30) <0.001
Cardiac heart failure 1836 (3.93) 152 (3.72) 0.53
Dementia 21 (0.04) 1 (0.02) 1.0
Depression 7853 (16.80) 737 (18.03) 0.04
Diabetes 3477 (7.44) 281 (6.87) 0.19
Epilepsy 2271 (4.86) 516 (12.62) <0.001
GERD 4251 (9.09) 507 (12.4) <0.001
Glaucoma 666 (1.42) 47 (1.15) 0.16
Gout 587 (1.26) 50 (1.22) 0.94
HIV 103 (0.22) 7 (0.17) 0.72
Hyperlipidemia 7965 (17.04) 618 (15.12) 0.002
Hypertension 7500 (16.04) 685 (16.76) 0.23
Hyperthyroidism 59 (0.13) 2 (0.05) 0.24
Incontinence 304 (0.65) 56 (1.37) <0.001
NSAIDs 2296 (4.91) 713 (17.44) <0.001
Malignancies 111 (0.24) 8 (0.20) 0.74
Migraine 626 (1.34) 68 (1.66) 0.09
Parkinson 0 0
Psoriasis 119 (0.25) 9 (0.22) 0.87
Psychotic illness 544 (1.15) 77 (1.88) <0.001
Transplant 191 (0.41) 11 (0.27) 0.19
Tuberculosis 3 (0.01) 0 1.0

Total MRS: mean (95% CI) 3.5 (3.4–3.6) 8.0 (7.9–8.1) 4.5 (4.4–4.6)
CYP450 drug interaction burden score: mean (95% CI) ,** 3.4 (3.3–3.5) 4.5 (4.4–4.5) 1.1 (0.9–1.2)

* missing data for 340 and 4 subjects in the non-opioid and opioid groups, respectively. patient-matched analyses. ** zero-inflated
model was used. Abbreviation: BPH, benign prostate hyperplasia; GERD, gastroesophageal reflux disease; NSAIDs, nonsteroidal
anti-inflammatory drug.

Table 2. Most prevalent prescribed opioid medications, and CYP2D6 activated opioids in individuals
with and without CYP2D6 interacting medications.

Group Opioids n (%) *

Overall opioid users
(n = 4088)

Hydrocodone
Oxycodone
Tramadol
Codeine

Morphine
Buprenorphine

Fentanyl
Methadone

Hydromorphone
Tapentadol

1777 (43.5)
958 (23.4)
670 (16.4)
631 (15.4)
133 (3.3)
132 (3.2)
48 (1.2)
35 (0.9)
24 (0.6)
15 (0.4)
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Table 2. Cont.

Group Opioids n (%) *

CYP2D6 activated opioid_No
interaction (n = 3299)

Hydrocodone
Oxycodone

Codeine
Tramadol

1533 (46.5)
786 (23.8)
564 (17.1)
542 (16.4)

CYP2D6 activated
opioid_With interacting

drug(s) (n = 577)

Hydrocodone
Oxycodone
Tramadol
Codeine

244 (42.3)
172 (29.8)
128 (22.2)
67 (11.6)

* Individuals can receive more than one opioid medication.
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Figure 2. Violin plots of the medication risk score (MRS). Panel (a) shows the adjusted MRS distribution in non-opioid
and opioid users (with a 1:1 matching as described in the Data Processing and Statistical Analyses section) in the overall
population (green and gray, respectively). Panel (b) shows the adjusted MRS distribution among CYP2D6 activated opioid
users without and with CYP2D6 interacting co-prescribed drugs (blue and red, respectively, and again with a 1:1 matching).
A matched non-opioid user group is illustrated in green. The white dots are the medians, and the colored areas are
probability density estimates. The number of patients in each violin is the number where matching was possible among the
specified groups.
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Figure 3. Histogram showing frequency of individuals in Minimal, Low, Intermediate, High, and Severe MRS categories in
(a) non-opioid user and opioid user groups (unmatched); (b) non-opioid user and opioid user groups (matched); (c) CYP2D6
activated opioid users without and with CYP2D6 concomitant interacting drugs (unmatched); and (d) CYP2D6 activated
opioid users without and with CYP2D6 concomitant interacting drugs (matched). The blue, green, yellow, orange, and red
represent the Minimal (MRS < 0–9), Low (MRS 10–14), Intermediate (MRS 15–19), High (MRS 20–29) and Severe (MRS ≥ 30)
risk categories, respectively.

The impact of opioid medications on yearly medical expenditures is presented in
Table 3. Medical expenditures were 2.19-fold higher among individuals receiving opioid
medications than non-opioid users: the adjusted mean of total medical expenditures
was $2457 vs. $1120 for the opioid vs. non-opioid user groups, respectively. Consistent
estimation of the zero-inflated count model indicated that annual medical expenditures
for individuals receiving opioid medications were 2.39-fold higher than those who did not
take opioid medication ($3912 vs. $1635, respectively).
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Table 3. Yearly total medical expenditure in the overall insured population without prescribed opioid
compared to individuals receiving at least one opioid medication.

n = 4082 No-Opioid Opioid Fold-Difference

Total medical
expenditure: median

(95%CI)

$1370
(1293–1447)

$4043
(3907–4178)

Total medical
expenditure: mean
(P2.5th- P97.5th) *

$1120
(1061–1184)

$2457
(2369–2548)

2.19
(2.05–2.34)

Zero-inflated model
Total medical

expenditure: mean
(P2.5th-P97.5th) *

$1635
(1562–1711)

$3912
(3805–4023)

2.39
(2.26–2.52)

Patient-matched analysis. * Log2 transformed data.

3.2. CYP2D6 Opioids with and without Interacting Drugs

Among all opioid users, 3876 (94.8%) were identified as CYP2D6 opioid users. Char-
acteristics of individuals receiving CYP2D6 activated opioid without and with interacting
CYP2D6 medications are reported in Table 4. Of the CYP2D6 opioid users, 577 (15%) were
identified as CYP2D6 opioid users with potential DDIs; of these, 100 (17%) had more than
one interacting drug. Overall, subjects identified as CYP2D6 opioid users with interacting
drugs were approximately 10 years older and were more likely to be female than subjects
in the other study group. The average number of prescribed drugs per subject was higher
in the group with CYP2D6 interacting drugs (8.0 vs. 4.3 drugs/patient/day). The 25 most
prescribed medications in patients receiving CYP2D6 opioids are listed in the Supplemen-
tary Table S3. Among CYP2D6 opioid users, the presence of CYP2D6 interacting drugs
was associated with substantial differences in the prevalence of individuals having anxiety
(14.21 vs. 6.49%), depressive disorders (56.85 vs. 10.28%), anti-epileptic drugs (27.38 vs.
9.40%), and GERD (27.90 vs. 9.85%) (p < 0.001).

Table 4. Characteristics of individuals receiving CYP2D6 activated opioid medication without and with CYP2D6 interacting
co-prescribed drugs.

n Total 3876
CYP2D6 Activated

Opioid_No
Interaction

CYP2D6 Activated
Opioid_with

Interacting Drugs

p-Value or
Difference

n (%) 3299 (85%) 577 (15%)
Age: y ± SD 43.7 ± 14.8 52.8 ± 10.4 <0.001
Gender

Male: n (%) 1517 (46.0) 239 (41.4)
Female: n (%) 1782 (54.0) 338 (58.6) 0.046

Number of prescribed drugs per patient: mean ± SD 4.3 ± 2.5 8.0 ± 3.4 <0.001
Drug class/co-morbidity (using drug as a proxy): n (%)

Anticoagulants 68 (2.06) 39 (6.76) <0.001
Antiplatelet drugs 39 (1.18) 32 (5.55) <0.001
Anxiety 214 (6.49) 82 (14.21) <0.001
Arrythmia 35 (1.06) 23 (3.99) <0.001
BPH 71 (2.15) 26 (4.51) 0.002
Chronic airway disease 314 (9.52) 94 (16.29) <0.001
Cardiac heart failure 16 (0.48) 126 (21.84) <0.001
Dementia 0 (0) 1 (0.17) 0.15
Depression 339 (10.28) 328 (56.85) <0.001
Diabetes 171 (5.18) 92 (15.94) <0.001
Epilepsy 310 (9.40) 158 (27.38) <0.001
GERD 325 (9.85) 161 (27.90) <0.001
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Table 4. Cont.

n Total 3876
CYP2D6 Activated

Opioid_No
Interaction

CYP2D6 Activated
Opioid_with

Interacting Drugs

p-Value or
Difference

Glaucoma 26 (0.79) 13 (2.25) 0.005
Gout 35 (1.06) 13 (2.25) 0.024
HIV 6 (0.18) 1 (0.17) 1.0
Hyperlipidemia 379 (11.49) 212 (36.74) <0.001
Hypertension 432 (13.09) 213 (36.92) <0.001
Hyperthyroidism 1 (0.03) 0 (0.0) 1.0
Incontinence 35 (1.06) 18 (3.12) 0.001
NSAIDs 583 (17.67) 111 (19.24) 0.38
Malignancies 5 (0.15) 2 (0.35) 0.28
Migraine 43 (1.30) 20 (3.47) 0.0005
Parkinson 0 0
Psoriasis 4 (0.12) 5 (0.87) 0.005
Psychotic illness 27 (0.82) 35 (6.07) <0.001
Transplant 5 (0.15) 4 (0.69) 0.033
Tuberculosis 0 0

Total MRS: mean (95% CI) * 12.4 (12.1–12.8) 15.7 (15.4–15.9) 3.2 (6.9–12.3)

CYP450 drug interaction burden score: mean (95% CI)* 4.5 (4.3–4.6) 6.6 (6.4–6.7) 2.1 (1.9–2.3)

* patient-matched analyses. Abbreviation: BPH, benign prostate hyperplasia; GERD, gastroesophageal reflux disease; NSAIDs, nonsteroidal
anti-inflammatory drug.

The drug regimen of individuals receiving CYP2D6 opioids with interacting co-
medications was associated with a 3.2 unit increase in total MRS when compared to
CYP2D6 opioid users without interacting co-medications. (Table 2 and Figure 2b) The med-
ication risk stratification showed that a greater proportion of CYP2D6 opioid users with
interacting drugs were ranked in the Low, Intermediate, and High MRS levels compared
with those without CYP2D6 DDIs. (Figure 3c,d), p < 0.05).

Hydrocodone and oxycodone were the most prescribed CYP2D6 opioids in both
groups (with or without DDIs) and accounted for >70% of opioid prescriptions, followed
by codeine and tramadol. (Table 2) The five most frequent concomitantly prescribed drugs
involved with CYP2D6 DDIs were, in rank order, duloxetine (21.5%, n = 124), bupropion
(18.7%, n = 108), fluoxetine (15.4%, n = 89), carvedilol (6.2%, n = 36), and paroxetine (6.2%,
n = 36), as shown in Supplementary Table S1. Total percentage exceeds 100% as some
individuals were prescribed more than one CYP2D6 interacting drug.

Table 5 reports on the economic analysis performed for annual medical expenditures
in subjects receiving CYP2D6 opioids and the impact on these costs if subjects were also
receiving a CYP2D6 interacting medication(s). On average, total median expenditures were
2.7- (without DDIs) and 3.1-times (with CYP2D6 DDIs) higher in CYP2D6 opioid users
compared to non-opioid users, respectively. Among CYP2D6 opioid users, the presence of
interacting co-medications was associated with a 1.4-fold increase (95% CI 1.20–1.62) in
medical costs as compared to opioid users without a CYP2D6 interacting co-medication.
The analysis using the zero-inflated model confirmed that yearly medical expenditures per
patient were significantly higher in the presence of CYP2D6 interacting co-medications
among CYP2D6 opioid users ($8030 vs. $6994).
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Table 5. Yearly total medical expenditure in individuals receiving CYP2D6 activated opioid medication without and with
CYP2D6 interacting co-prescribed drug(s).

n = 452 No-Opioid
CYP2D6 Activated

Opioid_No
Interaction

CYP2D6 Activated
Opioid_with

Interacting Drugs

Fold-Difference
(CYP2D6 Opioid
Users No vs. with

Interactions)

Total medical
expenditure: median

(95%CI)
$2938 $7832

(6972–8684)
$9158

(8394–10,011)

Total medical
expenditure: mean
(P2.5th- P97.5th) *

$2368
(1977–2833)

$5625
(4961–6421)

$7841
(7247–8459)

1.40
(1.20–1.62)

Zero-inflated model
Total medical

expenditure: mean
(P2.5th-P97.5th) *

$3060
(2643–3539)

$6994
(6270–7742)

$8030
(7462–8615)

1.15
(1.01–1.32)

Patient-matched analysis. * Log2 transformed data.

The impact of CYP2D6 DDIs on the CYP2D6 opioid prescribing was assessed using the
morphine milligram equivalent (MME) dose (patient-matched analyses). As shown in Table 6,
the mean MME daily doses observed for all CYP2D6 opioids were higher among opioid users
with CYP2D6 DDIs. On average, the presence of CYP2D6 DDIs was associated with a total
MME daily dose of 7.4 ± 48 mg vs. 5.6 ± 32 mg in the group without CYP2D6 DDI.

Table 6. The mean total daily dosage of CYP2D6 opioids per patient and the corresponding morphine milligram equivalent dose.

CYP2D6 Opioid CYP2D6 Activated Opioid_No Interaction
(n = 452)

CYP2D6 Activated Opioid_with CYP2D6
Interacting Drugs (n = 452)

Total daily dose (mg) Total daily MME Total daily dose (mg) Total daily MME
Codeine 14 ± 191 (6 to 720) 2.1 ± 28.7 (0.9–108) 31 ± 343 (6 to 720) 4.7 ± 51.5 (0.9–108)

Hydrocodone 4 ± 15 (0.5 to 80) 4 ± 15 (0.5–80) 5 ± 34 (0.5 to 80) 5 ± 34 (0.5–80)
Oxycodone 7 ± 28 (0.5 to 180) 10.5 ± 42.0 (0.8–270) 9 ± 48 (2 to 180) 13.5 ± 72.0 (3–270)
Tramadol 21 ± 99 (2 to 409) 2.1 ± 9.9 (0.2–41) 32 ± 96 (5 to 600) 3.2 ± 9.6 (0.5–60)

Total MME * 5.6 ± 32 (0.2–270) 7.4 ± 48 (0.5–270) **
Patient-matched analysis. * MME morphine milligram equivalent. ** p-value < 0.001.

Our study results estimate the potential for drug-drug interactions and their economic
burden to further quantify prescribing practices of opioids in an adult population. In this
study, several important findings regarding opioid prescriptions are underscored. First,
prescription opioid use is associated with higher MRS, higher healthcare costs, and higher
prevalence of comorbidities which could be related to pain syndromes or pain management.
Second, the presence of CYP2D6 interacting drugs contributes to additional increases in
MRS, higher medical expenditures, and higher total MME daily dose when compared to
CYP2D6 opioid users with no DDIs.

The MRS has been previously investigated as a medication risk prediction tool for
ADEs and medical outcomes. The MRS was significantly associated with an increase of
ADEs, emergency visits and medical expenditures [28]. Recently, a longitudinal study
including 427,103 patients showed that the MRS was also independently associated with
premature death [29]. Overall, opioid users and CYP2D6 opioid users were associated with
higher MRS, indicating that they are at increased risk for ADEs. Based on the MRS, higher
healthcare costs observed among opioid users was expected. One of the contributing
factors to the MRS is the CYP450 drug interaction burden. Our results demonstrated that
opioid users had higher CYP450 drug interaction burden score than the non-opioid group,
and the difference was even more pronounced among CYP2D6 opioid users with DDIs vs.
those with no DDIs.
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Our study results showed that prescription opioid use was prevalent in 8% of this
total population. These results show a greater prevalence of opioid use compared to
2011–2012 data from the National Health and Nutrition Examination Survey, where opioid
analgesic use was 6.9% in patients aged 20 years and older, an increase from 4.2% in
1999–2002 [16]. In addition, more than 94.8% of patients taking opioids were prescribed
opioids metabolized by CYP2D6. Our results are similar to Pergolizzi et al., where the more
frequently prescribed opioids were hydrocodone (43%), tramadol, (27%), and oxycodone
(15%), as these frequencies compared well with data observed in our study, at 44%, 23%,
and 16% respectively [36].

The impact of CYP2D6 activated opioids is important to explore in this population, as
CYP2D6 metabolizes these opioids into potent metabolites, which are primarily responsible
for their analgesic response [21,37,38]. Among the CYP2D6 opioids users, a substantial
proportion (15%) were identified as being exposed to potential DDIs involving their opioids.
As stated in the results section, the most concomitantly prescribed drugs that interact with
CYP2D6 opioids are duloxetine, bupropion, fluoxetine, carvedilol, and paroxetine. Though
some of these drugs (e.g., paroxetine, fluoxetine, bupropion and duloxetine) could be
utilized in the treatment of depressive disorders, it is possible that these drugs are being
prescribed to aid in pain-related conditions in conjunction with opioid use [39,40]. However,
the concomitant use of such drugs exhibiting a stronger affinity for the CYP2D6 enzyme
may interfere with the active metabolite formation from the CYP2D6 opioids, which may
impede the analgesic efficacy. In fact, multiple studies have shown treatment failure when
paroxetine or fluoxetine drugs were used in conjunction [41–45].

In this study, it was observed that 15% of CYP2D6 opioid users were exposed to
significant CYP2D6 DDIs. Consistent with this finding, a study reported that the presence
of CYP450 drug–drug exposure was common among chronic back pain patients on long
term CYP450-metabolized opioids [36]. The overall prevalence of CYP450 drug–drug
exposure was 27% and women were more likely to have CYP450 drug–drug exposure
compared to males [36]. Similar observations were reported in patients with osteoarthritis
taking CYP450-metabolized opioids [46]. In agreement with these findings, we observed
a higher percentage of females vs. males taking CYP2D6 opioids and exposed to DDI in
our population (58.6 vs. 41.1%, respectively). The studies from Pergolizzi et al. included
opioids metabolized by CYP450 (CYP2D6 and CYP3A4), whereas our study focused on
opioids activated by CYP2D6. CYP3A4-metabolized drugs were also considered in their
analyses; this can explain the higher prevalence of potential DDI observed among long-term
opioid users. In our study population, 31% of CYP2D6 opioid users received concomitant
CYP3A4 interacting drugs (including CYP3A4 inhibitors, and drugs exhibiting strong or
intermediate affinity). We observed that 15% of CYP2D6 opioid users were exposed to
significant DDI while specifically looking at CYP2D6. Consistent with this finding, a study
reported that the presence of CYP450 drug–drug exposure was common among chronic
back pain patients on long term CYP450-metabolized opioids [36]. In that study, the overall
prevalence of CYP450 drug–drug exposure was 27% as they included opioids metabolized
by CYP450 (CYP2D6 and CYP3A4). Similar observations were reported in patients with
osteoarthritis taking CYP450-metabolized opioids [46]. In our study population, 31% of
CYP2D6 opioid users received concomitant CYP3A4 interacting drugs (including CYP3A4
inhibitors, and drugs exhibiting strong or intermediate affinity). Pergolizzi et al. also
observed that woman were more likely exposed to CYP450 drug-drug interactions com-
pared to male [36]. In agreement with these findings, we observed a higher percentage
of females taking CYP2D6 opioids and exposed to DDI in our population (58.6 vs. 41.1%,
respectively).

The relationship between patient outcomes and drug-drug interactions in patients
taking CYP2D6-metabolized opioids needs further investigation, as it suggests that pa-
tients could be experiencing poor pain control or insufficient management of pain related
comorbidities. Our study showed that patients with DDIs received higher MME daily
doses than CYP2D6 opioid users without DDIs. This finding suggests that the presence of
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DDI may increase risk of treatment failure by decreasing conversion of CYP2D6-activated
opioids to active metabolites leading to increasing the dose of opioids unnecessarily. This
could then foster the opioid cascade and co-analgesic requirements.

It was estimated that the economic cost of pain in the U.S. ranges from $560 to $635
billion annually in medical cost and productivity [47]. Our study demonstrated that the
use of prescribed opioids is associated with significant increases in medical expenditure,
estimated to be a 2.2-fold extra cost. In this population, the yearly average total medical
expenditure in individuals receiving CYP2D6 opioid with and without CYP2D6 interacting
co-prescribed drugs was estimated at $7841 and $5625 compared to $2368 for matched-
non-opioid users; these cost estimates correspond to an annual extra-cost of $5473 and
$3257, respectively. Further, in adults prescribed a CYP2D6-metabolized opioid medication,
the presence of CYP2D6 DDIs was associated with an increased cost of 1.4-fold annually,
equivalent to $2216. Pergolozzi et al. assessed the economic impact of CYP450 DDIs in
patients with low chronic back pain taking opioids [25]. They reported similar trends
in both younger and older patients with DDIs with significant higher total payments
(including medical and prescription) than no-DDI patients [25]. The presence of DDIs
resulted in a total payment differential of $733 for younger and $763 for older patients
for a six month period [25]. Similar to our study, their results correspond to a 1.11-fold
difference in total cost due to DDIs in chronic low back pain patients taking CYP450-
metabolized opioids.

This study has potential limitations. First, the results of this study do not necessarily
represent a causal relationship, and therefore are considered a statistical association only.
Adherence, prescription cost, and disease codes were not available, and thus were not
accounted for in this study. Data were obtained from an employee benefit health plan
providing services in several states nationwide in the US. Coverage can differ from state to
state, however members included in this study were from various states and covered by the
same health insurer; this condition should minimize bias. Although some patients can be
also enrolled in Medicare and/or Medicaid programs, our findings are mainly applicable
to commercially insured patients. Further investigations are required to extrapolate our
results to Medicare/Medicaid insured patients. Many previous drug interaction studies
on opioids involved small, specific populations taking certain drugs with opioids. This
study demonstrated, through observation, that even in a relatively large patient population
using a wide variety of drugs, DDIs result in greater associated healthcare costs. Health-
care utilization costs in response to opioid prescription and use is expensive for patients,
providers, and insurance companies. Therefore, any reasonable efforts to reduce costs with-
out compromising patient care should be considered, including the use of clinical decision
support systems. Though this study is limited in understanding the costs associated with
healthcare utilization and CYP2D6 opioids, the quantification of prescribed opioids and
of prescribed of opioids with a concomitant interacting drug is important to consider. By
using the MRS to inform medication optimization, costs can be reduced. In many cases,
we foresee that changing the time of administration of competing drugs or prescribing
alternate drugs, such as non-CYP2D6 opioid or non-opioid analgesics (that do not interact
at the CYP2D6 enzyme), could reduce drug interaction burden, improve health outcomes,
and reduce costs.

4. Conclusions

In conclusion, this study reveals the prevalence of DDIs in a large population of patients
treated with CYP2D6-activated opioids. Our results demonstrated that opioid use is associated
with economic burden and that higher costs are observed when CYP2D6-activated opioids are
used concomitantly with other CYP2D6 interacting drugs. These observations are indicative
of inadequate CYP2D6 opioid prescribing practices in a real-world population. These findings
also suggest avoiding the use of chronic opioids with interacting drug combinations, especially
among patients using CYP2D6 metabolized opioids.
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