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A fundamental issue related to the understanding of the molecular mechanisms, is the way in which
common pathways act across different biological experiments related to complex diseases. Using
network-based approaches, this work aims to provide a numeric characterization of pathways across dif-
ferent biological experiments, in the prospect to create unique footprints that may characterise a specific
disease under study at a pathway network level. In this line we propose PathExNET, a web service that
allows the creation of pathway-to-pathway expression networks that hold the over- and under expres-
sion information obtained from differential gene expression analyses. The unique numeric characteriza-
tion of pathway expression status related to a specific biological experiment (or disease), as well as the
creation of diverse combination of pathway networks generated by PathExNET, is expected to provide a
concrete contribution towards the individualization of disease, and further lead to a more precise person-
alised medicine and management of treatment.
PathExNET is available at: https://bioinformatics.cing.ac.cy/PathExNET and at https://pathexnet.cing-

big.hpcf.cyi.ac.cy/
� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
1. Introduction

Analysis of differential gene expression profiles often generates
top-scored gene-sets on which pathway-based enrichment analy-
sis is routinely performed, leading to a statistically significant list
of pathways, that may be related to the underlying biology of the
condition being studied [7,28,51]. The challenge through these
types of analyses is to find specific pathways affected by a group
of related genes, namely pathways perturbed by differentially
expressed genes. Although such tools may reveal significant
top-scored pathways, the pathway complexity and the varying
characteristics of genes do not easily allow to optimally relate
these pathways to a specific biological condition being studied
[18]. Despite the magnificent efforts of differential expression
analysis pipelines, generating unbiased results is still a challenge,
while common aetiologies of such failures usually vary between
issues related to the experimental setup and difficulties in
customization of the statistical analysis tools [9,26]. Scoring and
filtering of differentially expressed data results to a loss of a large
amount of important yet not statistically significant genes, where
despite their weak statistical significance, their contribution into
the biology of the condition being studied remains a relatively
unexplored scientific issue. Another crucial confusing issue scien-
tists usually face through enrichment analysis, is a quite significant
list of top-scored pathways that are common across a variety of
diverse diseases [42,46]. For example, the pathway of ‘‘apoptosis‘‘
is a very common pathway that appears very often in several
studies, while less generic pathways such as ‘‘N-glycosylation” or
‘‘N-glycan biosynthesis” have been also associated with a series
of congenital disorders [13]. However a pathway’s association
across different diseases, by no means suggests in biochemical
and/or biological terms, that a specific pathway contributes in
the same way to all types of diseases in which may be identified.
Indeed, biological pathways can be considered as topological net-
works formed by sets of genes or molecules that interact through
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chemical reactions, molecule modifications or signal transduction
[5,48]. Thus their significance should be a result that derives from
the integration of both gene-set analysis and topology information
[35,48]. In this line, network-based approaches have proved to be a
promising Systems Bioinformatics framework of analysis, both at
gene and pathway analysis level [22,38,53]. In the prospect to
develop of additional tools able to enrich the outcome of the
routinely performed pipelines used for this type of research, the
present work aims to explore whether the overall differential
expression information of the genes included in a specific pathway
is adequate to give a different characterization for the same path-
way across different diseases. Using network-based approaches, in
this work we present a methodology and a related web-service for
the numeric characterization of pathways across different differen-
tial expression datasets, able to provide unique pathway network
footprints, which in turn may represent a specific biological
condition (and/or disease) under study. In this line, we propose
PathExNET, a web service that allows the creation of pathway
expression networks that hold the over- and under-expression
information obtained from differential gene expression analyses.
PathExNET holds a large database of reference pathway-to-
pathway networks, which have been developed through the freely
available information included in the KEGG, Reactome and Wiki
Pathways database repositories. Users can upload their differential
gene expression statistical analysis, followed with pathways
and/or genes of interest, and further chose a scoring methodology
to create and explore the derived pathway-to-pathway expression
networks. In order to provide a concrete set of well-evaluated dif-
ferential gene expression statistical analyses and to further
increase the data-availability and easy data access of PathExNET,
an additional tool has been rooted in PathExNET framework that
allows to search and directly import pre-processed statistic files
from the Expression Atlas (EA) (https://www.ebi.ac.uk/gxa) data
resource of the European Bioinformatics Institute (EMBL-EBI)
(https://www.ebi.ac.uk).
2. Software description & methods

By definition, the term Pathway Expression Networks (PENs)
employed in this work refers to pathway-to-pathway networks,
where: (a) the nodes are pathways, the node size and the node col-
our represent a specific parameter that characterizes the level of
over- and under-expression statistical information of genes
included in a specific pathway, and (b) the edge-weight represents
the number of common genes between two pathways. PENs draw
from the log-fold-change (logFC) parameter obtained through the
Differential Expression Analysis (DEA) of genes. The pathway char-
acteristic parameter is obtained by means of four diverse method-
ologies employed in this work. In the following we describe in
detail the main components and methodologies used for the
implementation of the proposed tool.
2.1. Overall design and software availability

PathExNET comes with a frontend web interface that consists of
the mainframe and a help page, written in HTML, PHP and Java-
Script language environments. The mainframe provides 2 individ-
ual steps designed to guide the user until the end of the
workflow process. The backend of PathExNET has been written in
R environment, where several functionalities have been paral-
lelised to achieve fast performance. Evaluation, testing and under-
standing of PathExNET functionalities can be easily performed by
means of several available example datasets provided through
the web interface. The proposed tool is available online at the web-
page of the Bioinformatics Department, at the Cyprus Institute of
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Neurology and Genetics (CING) (http://bioinformatics.cing.ac.cy).
PathExNET is served by a Docker space at the CYTERA High Perfor-
mance Computer Facility of the Cyprus Institute (https://hpcf.cyi.
ac.cy). PathExNET further uses parallel processing scripts to handle
and pre-process large file sizes that make the use of the ‘‘doParal-
lel” R package [4].
2.2. The pathway reference network repository

The pathway-to-pathway network information draws from a
web-service that holds a large database of reference pathway net-
works, which have been developed through the freely available
information included in the KEGG [41], Reactome [11] and Wiki
Pathways [25] database repositories. Herein, the functional rela-
tion between two pathways that forms an edge in a network, is
considered when a specific pathway involves or is being involved
in to another pathway accordingly. In effect, this type of informa-
tion which is mainly obtained from the available XML maps of
the above mentioned repositories, can form an undirected-
unweighted pathway-to-pathway network. In this line of thought,
a large number of pathway XML maps were obtained for all the
organisms included in the three above mentioned repositories,
and all the available data related to the functional connections that
exist between all the available pathways were retrieved. Specifi-
cally, we obtained 177 organisms from KEGG, 16 from Reactome
and 38 from Wiki Pathways repositories, accordingly. The output
of this data mining process was further used to construct in total
231 undirected pathway reference networks, stored in a data
repository. Further information rooted in these reference
pathway-to-pathway networks, involves the number of common
genes between two pathways that forms the edge-weight of these
networks, and the number of total genes included in a pathway
that forms the node size. The underlying networks are regularly
updated, constructing the main pathway repository for the services
and methodologies that PathExNET draws from. It should be
noticed that an initial version of this reference network repository
supporting only 16 organisms from KEGG and Reactome reposito-
ries, has been recently used in PathwayConnector [34,35], with
noteworthy results to pathways related to Alzheimer’s Disease
(AD) [53], to Huntington’s disease (HD) and Spastic Ataxia (SA)
[23], as well as to a recent study on Breast Cancer [16].
2.3. The expression Atlas searching and importing tool

The Expression Atlas (EA) is a database repository that provides
information about gene and protein expression in different species
and contexts, namely: tissue, developmental stage, and disease or
cell type. The EA web service is hosted at the European Bioinfor-
matics Institute (EMBL-EBI) (https://www.ebi.ac.uk). EA holds a
large set of publicly available and controlled access datasets that
at the time of writing derive from over 4,000 studies across 65 dif-
ferent species, including over 900 studies from plants. These data-
sets have been curated and re-analysed using standardized, open
source pipelines and have been made available along with the
analyses data for queries, download and visualization [40]. EA
incorporates baseline expression profiles of tissues from Human
Protein Atlas, GTEx and FANTOM5, as well as of cancer cell lines
from ENCODE, CCLE and Genentech projects. Through the last
update EA incorporates data from large-scale RNA sequencing
studies including Blueprint, PCAWG, ENCODE, GTEx and HipSci.
In order to provide a concrete set of well-evaluated DEA data files,
a productive collaboration with EA team led to the development of
an additional search tool, rooted in PathExNET framework. The
underlying tool allows users to search and directly import into
PathExNET pre-processed DEA files. Users can search by means of
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specific EA experiment accession, organism, and experiment type,
or alternatively perform free text keyword search.

2.4. Creating pathway expression networks

There are three input combinations where users can provide to
create PENs: (a) DEA file accompanied with list of pathways of
interest, (b) DEA file accompanied with list of genes of interest,
and (c) DEA file accompanied with a list of pathways and a list of
genes of interest. A significant differentiation in this approach is
that PENs use all the genes included in the experiment, thus the
DEA files should be used unfiltered without performing any speci-
fic threshold for reducing their size. The DEA file should at least
include the gene-symbol and the log-fold-change value for each
gene included in the file, while the p-value field is optional. These
parameters should be strictly named as: ‘‘Gene.symbol”, ‘‘logFC”,
and ‘‘P.Value”, accordingly. Pathways and genes of interest may
derive from any type of omics data analysis that leads to significant
pathways and genes accordingly. The proposed methodology for
the creation of PENs reads as follows. For a specific pathway of
interest, our methodology first finds all the genes included in the
pathway. This type of information is obtained from the pathway
reference network repository described in the previous section,
which holds all the genes involved in each pathway. These genes
are further matched with those that derive from the DEA files,
where the logFC value is attached for each one of these genes.
Synonyms of gene symbols are also considered in this process in
the prospect to reduce the number genes that may be missed
through this type of matching. The next step of our method
involves the assignment of a specific numeric value to the pathway
of interest by means of the following equations:

The sumFC value is obtained by calculating the sum of all the
log-fold-change values included in the specific pathway, as
follows:

sumFC ¼
XN

i¼1

logðFCÞ ð1Þ

where Nrefers to the total number of genes included in the path-
way, and log FCð Þ is the logarithmic representation of the fold-
change (FC) value. When this overall score is above zero, the specific
pathway of interest is mostly considered as an over-expressed path-
way. On the contrary for negative values ofsumFC the pathway is
mostly considered as an under-expressed pathway. However this
approach may provide biased results since the underlying score
does not take into account the balance between the number of over
and under expressed genes in a sample. For example, four genes
with logFC values of �0.2, �0.3, �0.1 and 0.8, would give a
sumFC ¼ 0:2, suggesting an over-expressed network, against the
fact that the sample includes more under-expressed genes that
over-expressed ones. To handle with this limitation we proceed
with two additional equations that lead to a combined score. These
read as follows:

The rateFC value is the fraction of the number of over-expressed
genes divided by the number of total genes included in the path-
way, as follows:

rateFC ¼ #ofover � expressedgenes
#ofgenes

ð2Þ

ForrateFC � 0:5, the specific pathway of interest is mostly con-
sidered as an over-expressed pathway. On the contrary for
rateFC � 0:5the pathway is considered as an under-expressed
pathway.

The normMeanFC value is obtained by calculating the weighted
mean of the normalised histogram of the log-fold-change values.
Specifically, for a given vector of log-fold-change values
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VLFC ¼ v1;v2; � � �vn we first apply a normalisation function in order
to restrict the values within the range ofVLFC 2.
Vnorm ¼ ðVLFC �minðV LFCÞÞ=ðmax VLFCð Þ �minðV LFCÞÞ ð3Þ

Then the histogram of the normalised vectorVnorm, is calculated
using a bin of 0.01, which results to N ¼ 100 ranges
(x ¼ x1; x2; � � � x100), represented by their frequenciesFðxiÞ, which in
turn are used to calculate the weight vectorW xið Þ ¼ F xið Þ

N . The
weighted mean is then obtained by the following equation:

normMeanFC ¼
PN

i¼1W xið ÞxiPN
i¼1W xið Þ ð4Þ

Eq. (4) suggests that for a normal distribution of logFC values,
those with a larger weight contribute more to the weighted mean
than those with a smaller weight. In effect a numeric mean charac-
terisation of a pathway will be based on most frequent values that
exist in the vector. Herein, fornormMeanFC � 0:5, the specific
pathway of interest is mostly considered as an over-expressed
pathway. For normMeanFC < 0:5;the pathway is considered as an
under-expressed pathway. The underlying metric aims to slightly
fix the ambiguity in the sumFC balancing by estimating the nor-
malised weight of the distribution of the logFC values included in
the sample.

The combinedFC value is a combination of equations (2) and
(4) as follows:

combinedFC ¼ rateFC þ normMeanFC ð5Þ
Typically forcombinedFC � 1:0, the specific pathway of interest

is mostly considered as an over-expressed pathway. For
combinedFC < 1:0;the pathway is considered as an under-
expressed pathway.

In order to estimate a score for the overall pathway expression
network we calculate the overall expression ratio which is defined
as the fraction of:

RNET ¼ #ofover � expressedpathways
#ofpathways

ð6Þ

For values ofRNET � 0:5, the network is considered as an over-
expressed network, while for valuesRNET < 0:5, the network is con-
sidered as an under-expressed network, respectively.

Herein, we clarify that there is not an optimal theory that
clearly defines where is the transition line between over- and
under-expression of gene sets. The most widely used methods that
use the log-fold-change value, mainly examine how the logFCvalue
is different from zero, without suggesting any biologically objec-
tive truth [33]. Thus the transitions of 0:5 and 1:0 used in the above
equations have been arbitrary selected, assuming that the logFC
values included in a gene expression dataset, which has been
transformed and normalised successfully, follow a typical normal
Gaussian-like distribution around zero.

2.5. Performing enrichment analysis

In order to provide an indicative information that shows
whether the selected by the user pathways are also significant in
terms of enrichment analysis, we used the ‘‘gprofile2” R package
which has been also suggested as a main analysis tool by the
ELIXIR consortium [29]. Specifically, when users provide lists of
genes, the tool performs pathway enrichment analysis by using
these genes. The enrichment score (namely the p-value) obtained
for each selected pathway, is now provided on the visualised net-
works, especially when the user puts the mouse cursor over a
specific node. To further handle the large network problem we
rooted into the tool the possibility to select the maximum number
of top-scored pathways to be visualised in the network. The rank-
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ing is based on the p-value score obtained from enrichment analy-
sis of the given gene-set. Herein the limitation we find in this
approach is that insignificant lists of pathways provided by the
user may not be included in the enrichment result. In that case
the enrichment score is simply NA for those pathways.

2.6. Providing gene regulatory information

Another significant issue in studying the expressional behaviour
of pathways is the regulatory information in between the genes
included in a specific pathway. Thus in order to provide such infor-
mation through PathExNET framework, we further created a data-
base repository that includes regulatory information in between
genes, obtained from both the Transcriptional Regulatory Relation-
ships Unraveled by Sentence-based Text mining (TRRUST) [20], and
the SIGnaling Network Open Resource (SIGNOR) [31] repositories.
The underlying repository includes regulation information about
95,086 pairs of genes. However, the specific information, although
significant, remains limited since it is available for only three spe-
cies: Homo Sapiens, Mus Musculus, and Rattus Novergicus, accord-
ingly. Depending on the user’s input, PathExNET automatically
examines the genes of interest and further provides the regulatory
information to where is available, in a single table.

2.7. Exporting network statistics

The mathematical content of complex networks in biological
systems has become a benchmark approach towards identifying
biomarkers, understanding their dynamics, their biological status
and related biological mechanisms involved. In order to provide
more statistics related to the complex nature of the proposed path-
way expression networks, PathExNET further provides additional
statistics, for network manipulation [8]. These indicatively include
measures of median, mean and maximum values of: betweeness-
centrality, degree distribution, closeness, and clustering coefficient.
This attempt aims to create a concrete web-framework of analysis
adequate to provide a multilevel information content, sufficient for
further investigation and understanding of pathway networks.

3. Demonstration of PathExNET capabilities

It should be stressed that the concept of PathExNET is not to
serve as enrichment tool but as a post analysis tool that facilitates
an estimation and the subsequent visualization of the collective
over/under expression of the selected pathways’ gene members.
As opposed to traditional gene enrichment tools and methodolo-
gies [30,37,45], PathExNET allows users to create pathway expres-
sion networks in order to evaluate specific biological conditions
where pathways or genes of interest are not necessary significant,
namely a high-score result of a ranking methodology. Thus the
equations provided in PathExNET have been designed in a simpli-
fied manner in order to be independent of any gene or pathway
rankings. In the following subsections we present two different
case studies in order to support this argument and to show how
same clusters of pathways behave across different gene expression
datasets.

3.1. A case study on SARS-CoV-2 experimental data

A common biological perspective for an effective treatment
against COVID-19 and its causative virus, SARS-CoV-2, is the deci-
phering of the involved host pathways, as well as the related trans-
mission and replication mechanisms [6,19,44]. In this line of
thought, our approach here focuses on the examination of the
over-expressed and under-expressed gene content of specific
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categories of pathway networks related to COVID-19. On this
ground, we are using PathExNET to analyze a recently introduced
high throughput sequencing expression dataset, related to the
transcriptional response of human lung epithelial cells to SARS-
CoV-2 infection [3]. The dataset includes expression profiles of
two independent biological triplicates of: (i) normal human bron-
chial epithelial (NHBE) cells and (ii) transformed lung alveolar
(A549) cells, which were both mock treated or infected with
SARS-CoV-2 (USA-WA1/2020). The underlined subset has been
analysed by the team of EA, who performed differential expression
analysis, available on EA repository at https://www.ebi.ac.uk/
gxa/experiments/E-GEOD-147507. Herein, we used the PathExNET
EA tool to download the analysis performed by EA, namely the
unfiltered statistics required for the creation of the pathway
expression networks proposed in this work. Fig. 1a depicts the fre-
quency distribution of the logFC parameter included in these statis-
tics, showing that both samples are well-distributed around the
zero point. In addition, Fig. 1b depicts the over- and under-
expressed information estimated by means of the logFC parameter.
Both samples seem to exhibit the same behaviour between the
over- and under- expressed genes, with estimated ratios
RA549 ¼ 0:46, and RNHBE ¼ 0:49, accordingly, where the ratio R refers
to the fraction of the number of over-expressed genes, to the total
number of genes included in the sample.

Furthermore, Fig. 2 depicts the Venn diagrams that represent
the overlap between the two samples regarding (a) their over-
expressed genes, (b) their under-expressed genes, and (c) their
genes with zero logFC values, respectively. It is observed that
both samples share almost the same amount of common over-
expressed and under-expressed genes, which in effect secures
that the obtained pathway expression networks will be a result
of a well-balanced common genes included in these pathways.

It has been stated that for COVID-19, as well as for all infectious
diseases, the host immune system, is a major component [2,14],
towards understanding the host response on the infection. In this
line, 20 pathways related to the immune system, were obtained
from the KEGG pathway repository, in order to be analyzed by
means of the PathExNET methodology. The compiled pathway list,
was further used to create pathway-to-pathway expression net-
works, in combination with the differential expression statistics
obtained from EA, by means of the PathExNET methodology pro-
posed in this work. Specifically, Fig. 3a depicts a pathway expres-
sion network that includes the 20 candidate KEGG pathways,
where the node (pathway) values have been estimated by means
of the combinedFCscore (see Eq. (5)) described in previous section.
The logFC values have been obtained from the A549 analysed data-
set. The edge-weights refer to the number of common genes
between the two pathways that form the edge. Fig. 3b depicts
the same analysis for the NHBE differential expression dataset
accordingly. As opposed to the colour scale provided by the web
tool, here in order to show the expression difference in between
these two networks, an arbitrary transition threshold was selected
while the colour scale used includes only two colours. Specifically,
the red-coloured pathways refer to the over-expressed pathways
(combinedFC � 1:0), while the blue ones are the under-expressed
ones (combinedFC < 1:0). The overall network expression ratio
(see Eq. (6)) was foundRNET ¼ 0:40 for the A549 gene-set, and
RNET ¼ 0:05 for the NHBE gene-set, suggesting that the first is con-
sidered as an enriched network of pathways with higher content in
over-expressed genes in contrast to the second one. In conse-
quence, the latter methodology suggests that pathway networks
obtained from the given set of gene expressions, may have a
unique identity in terms of the proposed scores, which in effect
may contribute to a unique characterization of the specific biolog-
ical condition under study. It should be stressed that the specific
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Fig. 1. (a) Depicts the frequency distribution of logFC values obtained from the differential expression analysis of A549 and NHBE comparisons, (b) depicts the number of
over- and under-expressed genes per comparison, estimated by means of the logFC parameter.

Fig. 2. Venn diagrams representing the datasets overlapping for: (a) their over-expressed genes, (b) their under-expressed genes, (c) their genes with zero logFC values,
included in the two cell lines under study.
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analysis draws from a simple biological concept that aims to exam-
ine the expression status of all the immune system pathway net-
works, subjected to SARS-COV-2 infection.
4340
Expanding on this type of analysis, the latter analysis was per-
formed for all the proposed scores derived by the described in pre-
vious section, for each of the analysed datasets under study.



Fig. 3. (a, b) Pathway expression networks of 20 KEGG pathways related to immune system. The node values have been estimated by means of the combinedFC parameter.
The logFC values have been obtained from the A549 and NHBE datasets. The red nodes refer to the pathways with high content of over-expressed genes (combinedFC � 1:0),
while the blue nodes refer to the pathways with high content of under-expressed genes (combinedFC < 1:0). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Specifically, Fig. 4a depicts the estimated network expression
ratiosRNETof the two groups A549 and NHBE, for the different scores
used for the numeric characterization of the 20 KEGG pathways
related to immune system. It is observed that the network expres-
sion ratios that derive from normMeanFC, rateFC and combinedFC
equations, are higher in the case of A549 analysed dataset. On
the contrary the network expression ratios that derive from the
sumFC parameter, exhibit different behaviour, as expected, due to
the balancing issues mentioned in previous section. In effect, the
above results lead to the assumption that the immune system
pathway networks, are more likely to exhibit higher expression
ratio in the case of the transformed lung alveolar cells (A549) that
have been infected by SARS-COV-2, rather than in the case of
human bronchial epithelial cells. In order to further support the
latter assumption as well as the validity of this finding, we further
focus on a common biological factor that applies to the cell-line
context. Different cell-line experiments usually target on different
candidate genes that may trigger a specific biological condition. In
effect this leads to the suspicion that the over- and under-
expressed behaviour observed in the above pathway expression
networks may be a result of the pathways that involve these genes.
Commonly expressed pathways are more likely to involve genes
that do not significantly change the network expression ratio. In
this line of thought, we further performed analysis on pathway
commonalities across the two different biological conditions under
study. Specifically, based on the expression ratioRNET , estimated by
means of the combinedFC score, we further identified which path-
ways are commonly expressed across the two analysed datasets
Fig. 4. (a) Estimated network expression ratiosRNET obtained from A549 and NHBE
characterization of each pathway. (b) 13 of 20 commonly expressed pathways obtained
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under study. This process aims to identify whether the higher
over-expressed behaviour of the immune system pathways
observed in the case of A549 pathway network, is triggered (or-
not) from the common expressed pathways involved in-between
the two biological conditions under study. In this context, Fig. 4b
shows the commonly expressed pathways related to the immune
system, obtained from the analysis of A549 and NHBE compar-
isons. Here, we observe that the expression networks obtained
by means of the commonly expressed biological mechanisms
involved in between the A549 and NHBE experiments, exhibit rel-
ative low-expression ratio RNET ¼ 0:08.

In analogous manner, Fig. 5 depicts those pathways that are not
commonly expressed in-between the two cell-line experiments.
Here it is clearly observed that the pathways enumerated by
means of the logFC values included in the A549 analysed dataset,
are all over expressed in contrast to the NHBE dataset, where the
obtained expression ratios found RNET ¼ 1:00 for the A549 gene-
set, and RNET ¼ 0:00 for the NHBE gene-set, accordingly. The above
results clearly show that non-commonalities in between the two
experiments exhibit a highly expressed network in the case of
A549 gene-set, while a low-expressed one is observed in the case
of NHBE gene-set, accordingly.

To further support the validity of the above results, we indica-
tively performed a literature search for the 9 over expressed
immune system pathways depicted in Fig. 3. Specifically, the ‘‘fc
gamma r-mediated phagocytosis” and ‘‘fc epsilon ri signaling path-
way” pathways which were found to be over-expressed in both
A549 and NHBE expression networks, have been discussed in rele-
datasets. The different colors refer to different equations used for the numeric
from the analysis of A549 and NHBE datasets.



Fig. 5. Pathway expression networks of 7 non-common expressed KEGG pathways related to immune system, where the logFC values have been obtained from (a) the A549
and (b) the NHBE datasets, accordingly. The node values have been estimated by means of the combinedFCparameter. The red nodes refer to the over-expressed pathways
(combinedFC � 1:0), while the blue nodes refer to the under-expressed ones (combinedFC < 1:0). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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vant studies that relate its involvement with antiviral immune
responses to SARS-COV-2 infections [39,49,50]. Another pathway
which has been found to be over expressed in the A549 experiment
is the ‘‘chemokine signaling pathway” mentioned in [3], who per-
formed the experiments this work draws from. The authors
observed a consistent chemokine signature in the A549 dataset,
despite the reduced IFN-I and IFN-III response to SARS-CoV-2.
Two additional over-expressed signaling pathways, namely the
b-cell and t-cell receptors, have also been recently linked to
SARS-COV-2 in [1,17,52]. Additional studies highlight the necessity
of comprehensive studies on ‘‘natural killer cell mediated cytotoxic-
ity” in COVID-19 patients [21,32]. The ‘‘leukocyte transendothelial
migration” has been also associated with ACE2 expression [12],
and has also derived from gene enrichment analyses [47]. Finally,
the ‘‘platelet activation” mechanism has been found to be promoted
by the TLR9 receptor, through the ‘‘Interleukin-1 receptor-associated
kinase 1 (IRAK1)” and ‘‘protein kinase B (Akt/PKB)” pathways [15].
3.2. A case study on Colorectal Cancer experimental data

In this example we focus on a well-designed dataset that
includes RNA-seq data of 54 samples, obtained from 18 patients
with primary Colorectal Cancer and liver metastasis [27]. The data-
set is available at the EA repository (https://www.ebi.ac.uk/gxa/ex-
periments/E-GEOD-50760) while the experimental design involves
two comparisons, as follows: (1) Primary Tumor vs Normal (PTN),
and (2) CRC Metastatic in the Liver vs Normal (MLN). In order to
provide a concrete PathExNET example that involves a set of signif-
icant pathways under study, we further examine how the path-
ways related to the primary tumor behave in the case of liver
metastasis. Specifically, focusing on the pathways obtained from
PTN comparison, we used PathExNET to obtain their expression
status using as input the PTN andMLN expression datasets, accord-
ingly. Table 1 shows the results of this analysis by means of the
CombinedFC equation proposed in this work.

Herein a significant observation is that the first three pathways
have been found to be higher expressed in the case of primary
tumor (PTN dataset), while the rest of them have been found to
be higher expressed in the case of liver metastasis (MLN dataset).
On the contrary, the significant pathways obtained fromMLN com-
parison seem to remain highly expressed in liver metastasis com-
paring to the primary tumor. However in both lists of pathways
under study, the overall pathway-to-pathway network is higher
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expressed in the case of liver metastasis, where the percentage

increment rate R ¼ #ofincrements
totalpathways � 100

� �
was found R ¼ 70% in the

case of primary tumor pathways and R ¼ 100% in the liver metas-
tasis. We recall that the above results by no means suggest any
objective truth on candidate colorectal cancer pathways, but sim-
ply demonstrate a well-designed example for understanding the
significance of PathExNET tool on performing comparative analy-
ses of pathways across different experiments. Even more, the
above difference of the expression across experiments, clearly
shows that the statistical significance of a pathway related to a
specific disease is not necessary related to the expression status
of the genes included in the pathway. Fig. 6 indicatively depicts
the two identical pathway expression networks showing the differ-
ence between the expression values of primary tumor obtained
pathways, using as input the PTN and the MLN datasets,
accordingly.
4. Novelty and applications of PathExNET

Offering web-based services for pathway based analyses, is an
important forward technological step that aims to reduce the com-
plexity and expertise required for searching, obtaining and com-
bining information from large repositories with biological
content. At the same time such web-services help users to avoid
a significant amount of local resources required to perform such
analyses at a single computer level, as well as compatibility issues
and stringent installations in some cases. In this line, PathExNET
provides a freely available, well-designed and easy to use frame-
work of analysis, to perform post experimental pathway based
analysis in the context of the proposed mathematical framework.
To the authors’ knowledge, there is not any available web-tool able
to perform such entire workflow. PathExNET has been successfully
applied in a study that has been recently published by our group
[24]. Specifically two KEGG pathways were examined and evalu-
ated, across 16 ataxia-related and 6 spasticity-related human gene
expression microarray datasets, namely the ‘‘sphingolipid signaling
pathway” and the ‘‘Sphingolipid metabolism” accordingly. PathExNet
was used to calculate the combined fold change status for each of
the two pathways, based on the expression change of the genes
that participate in the respective pathways. The underlying
methodology was executed for each dataset separately isolating
the genes that participate in each of the selected pathways along

https://www.ebi.ac.uk/gxa/experiments/E-GEOD-50760
https://www.ebi.ac.uk/gxa/experiments/E-GEOD-50760


Table 1
Table shows how the expression status of pathways related to the primary tumor behave in the case of liver metastasis and vice-versa. The red colored values depicted with bold
font, indicate an increase on the expression value.

Pathway Names from PTN comparison PTN
dataset

MLN
dataset

Pathway Names from MLN comparison PTN
dataset

MLN
dataset

1 glycolysis 1.288 1.221 post-translational protein phosphorylation 0.982 1.228
2 glucose metabolism 1.353 1.104 phase i - functionalization of compounds 0.773 1.103
3 transcriptional regulation by runx3 1.056 0.853 transport of mature mrna derived from an intron-

containing transcript
1.404 1.434

4 regulation of plk1 activity at g2/m transition 1.126 1.188 transport of mature transcript to cytoplasm 1.427 1.454
5 loss of nlp from mitotic centrosomes 1.270 1.319 eukaryotic translation elongation 1.423 1.633
6 recruitment of mitotic centrosome proteins and complexes 1.233 1.295 peptide chain elongation 1.435 1.643
7 loss of proteins required for interphase microtubule

organization from the centrosome
1.270 1.319 viral mrna translation 1.435 1.630

8 centrosome maturation 1.233 1.295 eukaryotic translation termination 1.42 1.635
9 regulation of apc/c activators between g1/s and early

anaphase
1.101 1.370 nonsense mediated decay 1.448 1.649

10 cdc20:phospho-apc/c mediated degradation of cyclin a 1.095 1.368 role of lat2/ntal/lab on calcium mobilization 0.835 1.094

Fig. 6. Pathway expression network showing how the expression status of pathways related to the primary CC tumor (left network), behave in the case of liver metastasis
(right network). The color scale describes the color for different values of CombinedFC score.
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with thelogFC and p� valuemetrics, as provided by the differential
expression analysis. Using PathExNet, the authors concluded to a
list of genes that participate in the ‘‘sphingolipid signaling pathway”
and the ‘‘sphingolipid metabolism” for each dataset of each tissue.
The genes that were consistently differentially expressed (over-
or under-expression) across two or more datasets per tissue were
further investigated in that study.
5. Discussion

The powerful concept of the graph theory provides significant
information towards understanding the organization of entities
that sustain large and complex biological systems [10,36]. The lack
of tools for pathway characterization with algorithms that do not
use the typical statistical p-value estimations obtained from gene
expressions, opens a relevant scientific field and interest on soft-
ware development to this direction. Even more, casting biological
pathways as numeric networks and analysing their topology and
their properties, has become a promising and useful Systems Bioin-
formatics approach [35,38,53]. In this line, the creation of pathway
expression networks proposed through the PathExNET framework
seems a promising approach towards enhancing specific biological
processes that may be related to specific condition under study
[43]. The demonstration of the PathExNET capabilities has been
based on two SARS-COV-2 datasets, available in [3], as well as on
two Colorectal Cancer datasets available in [27]. Specifically, in
4343
the case of SARS-COV-2 datasets, the analysis performed by means
of PathExNET concept, revealed a significant diversity of the
expression status of the immune system pathways observed in-
between two diverse SARS-COV-2 infected cell-lines. Analogous
observation was found in the case of the two Colorectal Cancer
datasets, where 3 of 10 significant primary-tumor pathways have
been found to be higher expressed in the case of primary tumor,
while the rest of them have been found to be higher expressed in
the case of liver metastasis. Herein it should be stressed that the
underlying analysis by no means suggests any objective truth
related to either the SARS-COV-2 or Colorectal Cancer candidate
pathways, but demonstrates a simple biological scenario that aims
to show the performance and novelty of PathExNET, as a post-
experimental analysis tool on gene expression datasets. On these
grounds, PathExNET is expected to be a valuable tool for research
on post-transcriptomic data analysis, allowing the transition from
gene expression information to pathway level analysis and visual-
isation. PathExNET puts significant contribution to the numeric
characterisation and understanding of pathway relationships,
while at the same time offers a pipeline that fills a significant
gap between gene expressions and pathway perturbation.
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