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Abstract: Hypertension is the most frequent chronic and non-communicable disease all over the
world, with about 1.5 billion affected individuals worldwide. Its impact is currently growing, par-
ticularly in low-income countries. Even in high-income countries, hypertension remains largely
underdiagnosed and undertreated, with consequent low rates of blood pressure (BP) control. Notwith-
standing the large number of clinical observational studies and randomized trials over the past four
decades, it is sad to note that in the last few years there has been an impressive paucity of innovative
studies. Research focused on BP mechanisms and novel antihypertensive drugs is slowing dramat-
ically. The present review discusses some advances in the management of hypertensive patients,
and could play a clinical role in the years to come. First, digital/health technology is expected to be
increasingly used, although some crucial points remain (development of non-intrusive and clinically
validated devices for ambulatory BP measurement, robust storing systems enabling rapid analysis of
accrued data, physician-patient interactions, etc.). Second, several areas should be better outlined
with regard to BP diagnosis and treatment targets. Third, from a therapeutic standpoint, existing
antihypertensive drugs, which are generally effective and well tolerated, should be better used by
exploiting available and novel free and fixed combinations. In particular, spironolactone and other
mineral-corticoid receptor antagonists should be used more frequently to improve BP control. In
particular, some drugs initially developed for conditions different from hypertension including heart
failure and diabetes have demonstrated to lower BP significantly and should therefore be considered.
Finally, renal artery denervation is another procedure that has proven effective in the management
of hypertension.

Keywords: hypertension; antihypertensive therapy; renal denervation; diabetes; heart failure; chronic
disease

1. Introduction

Because of its high prevalence and important clinical impact, hypertension remains
a leading contributor to the risk of cardiovascular disease and death [1–4]. In 2015, about
1.5 billion adults worldwide had a measured office blood pressure (BP) higher than
140 mmHg systolic or 90 mmHg diastolic [5]. According to a recent study, the num-
ber of subjects aged 30–79 years with a prior diagnosis of hypertension doubled from
331 million women and 317 million men in 1990 to 626 million women and 652 million men
in 2019, despite a stable age-standardized prevalence worldwide [6]. It has been estimated
that a systolic BP ≥140 mmHg explains about 70% of the burden of morbidity and mortality
worldwide [7–9].

Despite such impressive growth, the proportion of treated hypertensive subjects with
normal BP (‘controlled hypertension’) remains very low worldwide. It has been estimated
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that such a proportion approaches 23% in women and 18% in men [6]. Notably, despite an
improvement in diagnosis, treatment, and control of hypertension in most developed and
high-income countries, important disparities around the world remain. About two-thirds
of patients with hypertension actually live in low-income countries [1,10]. Over the past
20 years, there have been no improvements in hypertension awareness, treatment, and
control in several countries in sub-Saharan Africa and Oceania [6,11–13].

Thus, a first basic consideration is that, although the prevalence and clinical impact of
arterial hypertension is consistently growing worldwide, its control remains disappointing,
particularly in low-income countries.

A second consideration is that, despite the huge number of observational studies and
randomized controlled trials completed over the past four decades, the last few years have
been characterized by an impressive paucity of innovative studies. In a comprehensive
review, Dzau noted that research on new antihypertensive drugs and therapeutic targets
is slowing dramatically [14]. In addition, there has been no recent attempt to develop
clinical applications based on the several genomic polymorphisms associated with hy-
pertension [14]. It should be considered that the time lag between initial discovery and
the marketing of a new antihypertensive drug may exceed 10 years, with a consequent
final cost greater than two billion US dollars [15,16]. Within this framework, industry is
directing most efforts to maximize the utilization of old and effective antihypertensive
drugs (e.g., development of new combinations, new dosages, etc.) and to redirect these
toward hypertension through the use of BP-lowering drugs, initially developed for different
diseases (e.g., gliflozines, drugs for heart failure, etc.) [16].

The current review aims to discuss the main trends and perspectives related to the
clinical diagnosis and treatment of hypertension over a foreseeable future. More specifi-
cally, our review describes the use of new blood-pressure lowering drugs and device-based
approaches to achieve better blood pressure control rates and improve cardiovascular out-
comes in patients with hypertension are also reviewed. In other words, we offer clinicians
some answers to the following question: “what will the management of hypertensive
patients be like in 2030?”

2. Digital/Health Technology for Diagnosis and Monitoring

Owing to the refinement of digital/health technology, the marketing of electronic
devices for remote BP measurement and transmission is growing. Theoretically, these
devices have the potential to improve the diagnosis of hypertension and the achievement
of an adequate BP control at the population level. Just to create a parallel with diabetes,
Dzau noted in his review that the number of apps for diabetes management was about 1800
in 2016, with an impressive increase in digital diabetes marketing [14]. There is no reason
why this growth should not apply to the hypertension field in the near future, although the
growth of devices and apps for hypertension seems to be much less explosive than that of
the management of diabetes [14].

Unfortunately, not all BP measurement devices on the market have been appropriately
validated according to existing guidelines [17,18] and some of those show some limitations
and shortcomings [14]. Particular attention is being devoted to cuff-less continuous BP
monitoring systems as alternative to current cuff-based systems, although their validity
and reliability are still under research [14,19–21]. We believe that some steps are critical to
make a new system reliable:

1. The system should be easily wearable, cheap, and non-intrusive. Systems included in
normal smartwatches would be ideal;

2. The system should be validated for accuracy at independent academic or hospital
centers. It should allow continuous or almost-continuous BP detection over prolonged
periods of time of months or even years;

3. The system should be connectable to an easy-to-use protected digital repository, with
software allowing easy BP retrieval over variable periods of time for calculation of
appropriate statistical measures (BP averages, variability, etc.) and attached graphics;
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4. The system should be easily accessible to doctors, thereby enabling rapid check
and response for patients and the suggestion of changes in drug treatment or other
measures;

5. Clinical research should urgently identify BP measures retrievable from the system
which are more appropriate for the prediction of organ damage and, hopefully, prog-
nosis. In other words, research should identify which BP measurements obtained by
the system are more important for clinical decisions.

It is hoped that the application of artificial intelligence to these databases, which are
expected to include many different types of biological data for each patient, may help
doctors and patients in identifying better strategies for hypertension control, possibly in
combination with strategies promoting a healthier diet, better physical activity, and a more
intelligent use of drugs. The growing use of ‘tele-medicine’ during the current COVID
pandemic should be extended to the management of hypertension. However, there still a
long way to go.

3. Definition of Hypertension and Establishment of Treatment Targets

Whereas the European Society of Cardiology and the European Society of Hyperten-
sion (ESC/ESH) define hypertension by office BP levels ≥140 mmHg systolic or 90 mmHg
diastolic, [22] the American Heart Association (AHA), the American College of Cardiology
(ACC) and other scientific societies have endorsed a more ‘aggressive’ definition based
on office BP values ≥130 mmHg systolic or 80 mmHg diastolic [23]. In addition, the
International Society of Hypertension (ISH) adopted the 140/90 mmHg definition [24].

Of note, the more aggressive diagnostic targets endorsed by the US guidelines [23] do
no imply that all subjects with office BP in the range of 130–139/80–89 mmHg require drug
treatment. Instead, the AHA/ACC guidelines suggest to apply more appropriate life-style
measures (weight control, smoking cessation, low-sodium diet, etc.) for these subjects, and
to reserve drug treatment for cases of inefficacy of non-pharmacologic measures.

Notably, all guidelines share the recommendation that drug treatment should be
started immediately for:

(a) Patients with office BP ≥ 160/100 mmHg regardless of other considerations [22–24];
(b) Patients with BP ≥ 140/90 mmHg in the presence of ischemic heart disease, cere-

brovascular disease, or heart failure [22–24].

All guidelines suggest that drug treatment should be initiated, regardless of other
considerations, in patients with BP persistently ≥ 140/90 mmHg in case of inefficacy of
life-style measures [22–24].

In the case of a BP between 130/80 and 140/90 mmHg, the AHA/AHA guidelines
recommend drug treatment in patients with overt cardiovascular disease (i.e., secondary
prevention), as well as in patients without overt cardiovascular disease (i.e., primary
prevention) if their 10-year risk of cardiovascular disease is ≥10% according to the ASCVD
calculator [23].

Available guidelines provide different recommendations in terms of BP targets and
definitions of BP control. The ISH and the ESC/ESH guidelines recommend a uniform
BP target (<140/90 mmHg), and individualized targets based on age, tolerability, and
comorbidities. Conversely, the AHA/ACC guidelines recommend an identical BP target
(<130/80 mmHg) in all patients, regardless of age and comorbidities. The potential advan-
tages and disadvantages of these different approaches have been discussed in detail [25–27].

Interestingly, the recent 2021 ESC Guidelines on Cardiovascular Prevention [28] in-
troduce the concept that BP targets lower that 130/80 mmHg are always acceptable when
a treatment is well tolerated. Such a statement contrasts with prior ESC/ESH guidelines
which state that, for safety reasons, systolic BP should not be targeted below 120 mmHg in
people younger than 65 years, or below 130 mmHg in older subjects [22].

In summary, hypertension guidelines seem to be oriented towards individualized BP
targets according to the general principle that the lowest well-tolerated BP target should
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be a reasonable target, with the main goal to prevent the most closely BP-related adverse
complication of hypertension, which include stroke and heart failure [29].

4. Life-Style Measures

Although frequently not utilized by many patients, life-style measures play a pivotal
role in BP control. These measures include weight reduction for overweight or obese
subjects, a low sodium diet, smoking cessation, alcohol and caffeine limitations, and regular
physical activity [22,23]. We should not neglect of dismiss the importance of these measures
in the future management of hypertensive patients.

5. Chronotherapy

Many studies conducted at independent centers have demonstrated beyond any
reasonable doubt the overwhelming prognostic impact of nighttime BP [30–32]. On this
basis, it has been thought that using antihypertensive drugs in the evening at bedtime,
instead of in the morning, could be preferable to control BP, prevent or regress organ
damage, and reduce cardiovascular risk. Indeed, some data from a Spanish research group
suggested that evening administration could reduce the incidence of major cardiovascular
events associated with hypertension [33,34]. However, these data have been harshly
criticized for supposed implausibility [35,36]. Other studies have failed to demonstrate
a difference between morning and evening administration of antihypertensive drugs in
terms of BP control [37,38]. A large randomized study, the TIME study, is underway to
provide a final answer to this question [39].

For the time being, it seems reasonable to advise combining morning and evening
administration of antihypertensive drugs in selected patients with severe or resistant hyper-
tension, as well as in those with particularly high nighttime BP. Preference should be given
to antihypertensive drugs with a long duration of action, capable of covering the entire 24-h
period. For example, when choosing among different diuretics, chlorthalidone appears to
be the agent of first choice in patients without severe renal failure [40,41]. In a recent study,
patients with renal failure (glomerular filtration rate between 15 and 29 mL/min/1.73 m2

of body surface area) and uncontrolled hypertension were randomized to chlorthalidone
or placebo, with the randomization stratified by prior use of loop diuretics. After 12 weeks
of treatment, average 24-h systolic BP was 10.5 mmHg lower in the chlorthalidone group
than in the placebo group (p < 0.001) [42].

6. More Frequent Use of Mineral-Corticoid Receptor Antagonists

In a double-blind, placebo-controlled, within-patient trial (PATHWAY-2) [43], 335 patients
with home systolic BP > 130 mmHg, despite maximal therapy, were randomly assigned to
receive, for 12 weeks, spironolactone (25–50 mg), bisoprolol (5–10 mg), doxazosin modified
release (4–8 mg), and placebo in addition to their baseline BP drugs [43]. Spironolactone
reduced home systolic BP more than placebo (–8.7 mm Hg), doxazosin (−4.03 mmHg),
and bisoprolol (−4.48 mmHg) [43]. Thus, spironolactone was the most effective anti-
hypertensive agent, regardless of the distribution of baseline plasma renin, although its
BP-lowering effect was predicted by plasma renin activity and the aldosterone-renin ra-
tio [44]. Spironolactone reduced thoracic fluid content, differently from the comparative
drugs [44].

In a run-out sub-study of PATWAY-2, amiloride, a distal tubular diuretic that inhibits
the epithelial sodium channel sensitive to spironolactone, exerted an antihypertensive
effect similar to that of spironolactone and was superior to placebo, doxazosin, and biso-
prolol [44]. Notably, amiloride lacks the antiandrogen effect of spironolactone, thereby
avoiding gynecomastia.

Eplerenone seems to possess a better safety profile than spironolactone and, thus, it
might be an alternative to the latter [45,46]. However, hyperkalemia is an adverse effect
of mineral-corticoid receptor antagonists that should be carefully considered in patients
treated with these drugs.
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Anti-aldosterone drugs are currently recommended in patients with resistant hyper-
tension [22,23,47]. It is reasonable to imagine that these drugs will be used more frequently
in the future.

7. Endothelin Receptor Antagonists

Endothelin regulates vascular tone and BP, producing a powerful vasoconstrictor effect
and contributing to the pathogenesis of hypertension [48,49]. It causes neurohormonal and
sympathetic activation, hypertensive end-organ damage, fibrosis, endothelial dysfunction,
and increased aldosterone synthesis and secretion [48,49].

Furthermore, endothelin-1 (ET-1, the biologically predominant member of the endothe-
lin peptide family) is an endothelial cell-derived peptide with a wide variety of develop-
mental and physiological functions, which include embryogenesis and nociception [50,51].
More specifically, the endothelin system plays a role in regulating the development of the
specific neural crest cell population and its derivatives [51].

Interestingly, aging affects the shift in balance of release and/or activity of endothelium-
derived substances, including increased expression, release, and activity of ET-1 [50,52]. The
finding that excessive production of ET-1 is present in patients and experimental models of
aging [50,52] supports the therapeutic benefits of targeting the endothelin system in elderly
hypertensive patients [49]. Finally, the possibility that endothelin receptor antagonists may
have a role in the treatment of pre-eclampsia (due to the large increase of endothelin in this
condition [53]) is still undetermined.

Based on evidence that endothelin is a very potent endogenous vasoconstrictor [54],
some trials have evaluated the antihypertensive efficacy and tolerability of drugs capable
to block the endothelin-A and endothelin-B receptors. However, results are quite disap-
pointing and the tolerability of endothelin receptor antagonists remains a concern. Indeed,
these drugs may cause some unwanted effects, including fluid retention, flushing, and
headache [16], which may limit their use in clinical practice.

Development of darusentan, and endothelin-A blocker, was stopped for safety concerns.
A trial with atrasentan in patients with diabetic nephropathy, was stopped for reasons

related to low recruitment, and apparently different from safety.
Aprocinentan, a blocker of both endothelin-A and endothelin-B receptors with a very

long pharmacological half-life (about 44 h), proved more effective than placebo and lisino-
pril [55]. Interestingly, this antihypertensive agent seems to exert additional mechanisms
beyond the expected beneficial effects of sustained BP-lowering action (including a decrease
in renal vascular resistance and left ventricular hypertrophy) supporting the hypothesis that
this new agent could expand our antihypertensive arsenal in resistant hypertension [49,56].
Indeed, aprocitentan in patients with resistant hypertension is currently under investigation
in the PRECISION phase III trial (ClinicalTrials identifier: NCT03541174).

8. Neprilysin Combined with Renin-Angiotensin System Inhibition

The heart produces different natriuretic peptides which include the atrial natriuretic
peptide, the B-type natriuretic peptide and the C-type natriuretic peptide [57]. These
peptides induce potent natriuresis and vasodilation by acting on different cellular receptors,
ultimately leading to enhanced intracellular production of cyclic guanil-cyclase [58].

Neprilysin, a zinc endopeptidase, inactivates, not only the cardiac natriuretic peptides,
but also bradykinin [59], thereby inducing vasodilatation and natriuresis resulting from a
more prolonged action by these agents [59]. Neprilysin was not developed as monotherapy for
clinical use, but combined with drugs that inhibit the renin-angiotensin-aldosterone system.

Omepatrilat was the first-in-class combination of naprilysin with an angiotensin-
converting-enzyme inhibitor, but its development was abandoned because of occurrence of
severe angioedema [60]. In contrast, LCZ696, a more recently developed combination of
neprilysin with the angiotensin II receptor blocker valsartan in the same molecule, proved
effective and well tolerated in heart failure [61,62] and hypertension [63].
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It is reasonable to foresee that LCZ696 will be increasingly used in the future not only
in heart failure, but also for improving BP control, particularly in patients with resistant
hypertension. Various reasons are currently favoring a preferential development of this
drug in patients with heart failure, but the stage is set for a growing role of this drug in the
treatment of hypertension [58,64].

9. Angiotensin II Receptor Agonists

Angiotensin II induces vasoconstriction by stimulating the angiotensin 1 receptors,
and vasodilatation by stimulating the angiotensin 2 receptors. In experimental and clinical
settings, stimulation of angiotensin 2 receptors inhibits fibrosis [65] and induces vasodi-
latation, natriuresis, and blood pressure reduction [66,67]. Consequently, angiotensin
II receptor agonists display an interesting antihypertensive potential and are currently
investigated for efficacy and safety [68,69].

10. Sodium-Glucose Cotrasporter-2 Inhibitors

About 97% of glucose secreted at glomerular level is reabsorbed in the proximal renal
tubule through the sodium-glucose cotrasporter-2 receptors (SGLT2) [70]. The remaining
3% is reabsorbed by the SGLT1 receptors, also located in the proximal tubule [70]. Inhibition
of SGLT2 and SGLT1 receptors results in an increased excretion of glucose with urines with
consequent reduction of hemoglobin A1C [70,71].

In pivotal phase III clinical trials, selective SGLT2 receptor inhibitors empagliflozin,
canagliflozin, dapagliflozin and ertugliflozin modestly reduced systolic and diastolic BP
through various mechanisms which may include natriuresis, osmotic diuresis and reduction
of the sympathetic tone [72]. These drugs induced a marked reduction in the risk of heart
failure [72]. In patients with heart failure and reduced ejection fraction (HFrEF), both with
and without diabetes, empagliflozin and dapagliflozin reduced cardiovascular mortality
and the need of re-hospitalizations for heart failure [73,74]. In patients with heart failure
with preserved ejection fraction (HFpEF), empagliflozin significantly reduced the risk of
cardiovascular death or hospitalization for heart failure by 21% [75].

In the EMPA-REG BP trial, empagliflozin 10 mg and 25 mg reduced 24-h ambulatory
BP by 3.44/4.16 mmHg more than placebo and the degree of antihypertensive effect was
comparable in the presence of none, one or more than one antihypertensive drug [76].

According to available meta-analyses (Figure 1), the degree of BP reduction induced
by SGLT2 receptor antagonists appears to be numerically modest [77–79]. However, these
drugs have the advantage of reducing glomerular hyperfiltration through vasoconstriction
of the afferent arterioles, thereby reducing proteinuria and progression of kidney disease,
with measurable nefroprotective effects in terms of major renal events [80].

Although these drugs are generally well tolerated, concerns have been raised about
volume depletion, acute kidney injury, and genital infections as potential adverse effects.
The SGLT2 receptor inhibitors have been recently suggested by guidelines as first-line
antidiabetic drugs in patients with diabetes at high or very high cardiovascular risk due
to organ damage or concomitant risk factors [72]. In the future, the use of these drugs is
expected to be more recommended for hypertensive patients with diabetes or heart failure,
although their place in subjects with uncomplicated hypertension is still under evaluation.
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11. Renal Denervation

Renal sympathetic overactivity contributes to the development and progression of
hypertension [81–83]. Renal denervation in experimental models of hypertension has
been shown to reduce BP and improve renal function, which laid the foundation for its
introduction to clinical practice [83,84].

Some clinical trials published over the past 15 years generated many expectations on
the clinical utility of renal denervation [85]. Unfortunately, the SIMPLICITY HTN-3 trials
failed to demonstrate the superiority of renal denervation over sham control in terms of BP
lowering effect [86]. However, the SIMPLICITY HTN-3 trials had several methodological
shortcomings. Just to mention some of these limitations, the study erroneously included
patients with secondary hypertension (hyperaldosteronism, etc.), 34% of operators had
executed only one denervation procedure in the past, drug treatment was much more
intense in the ‘sham’ control group than in the denervation group, denervation was not
‘complete’ (not all quadrants of renal artery were ablated) in 75% of cases. Thus, the entire
issue was reconsidered, with planning and execution of newer better-designed clinical
trials, which provided positive results [87–89].

Renal artery denervation has a strong pathophysiological rationale to justify a signifi-
cant BP lowering effect (Figure 2).

It is well known that sympathetic firing originating from the ganglia located in the
central nervous system induces a variety of effects at cardiac, renal, vascular, and muscular
levels that ultimately trigger BP elevation. Several mechanistic studies have demonstrated
that ablation of efferent and afferent renal nerves is followed by a reduction of the neural
‘bursts’ of sympathetic activity, detectable by neurography, with parallel reduction in
BP [90]. Furthermore, industry produced newer and more effective denervation catheters
over the past few years.

In the DENERHTN trial (Figure 3), 106 patients with resistant hypertension were
randomized to continue drug treatment with or without renal denervation using radiofre-
quency. The ‘no renal denervation’ group did not include a sham procedure. Average 24-h
systolic BP at 6 months after the procedure fell by 15.8 mmHg in the denervation group
and 9.9 mmHg in the no denervation group (p = 0.03) [91].
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Figure 3. Changes in 24-h systolic BP at 6 months in patients with renal denervation and in a control
group not receiving renal denervation. Adapted from Azizi and coworkers [91].

In the SPYRAL HTN-ON MED trial (Figure 4), 80 patients with resistant hypertension
were randomized to continue drug treatment with or without (sham procedure) renal
denervation using radiofrequency. Average 24-h systolic BP at 6 months after the procedure
fell by 9.0 mmHg with renal denervation and only 1.6 mmHg with the sham procedure
(p < 0.05) [87]. In the SPYRAL HTN-OFF MED Pivotal trial (Figure 4), 331 untreated patients
were randomized to a sham procedure or renal denervation using radiofrequency. Average
24-h systolic BP at 3 months after the procedure fell by 4.7 mmHg after renal denervation
and by 0.6 mmHg after the sham procedure (p < 0.05) [88]. Finally, in the RADIANCE-HTN
SOLO (Figure 4), 331 untreated patients were randomized to a Sham procedure or renal
denervation using high frequency ultrasounds. Average 24-h systolic BP at 3 months
after the procedure fell by 8.5 mmHg after renal denervation and by 2.2 mmHg after the
sham procedure (p < 0.05) [89]. Overall, these new trials convincingly demonstrated the
superiority of renal denervation over the sham procedure in terms of BP reduction at 3 to
6 months.
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Concerns remain about the persistence of the antihypertensive effect over the long
term. However, encouraging results came from the open and not comparative Global
SIMPLICITY Registry (Figure 5), which found no attenuation, or even a slight potentiation,
in the antihypertensive effect of renal denervation in the long term (up to three years after
the procedure) as compared with pre-procedural levels [92].
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A clinical trial compared different techniques of denervation and concluded that the
ultrasound technique targeted on both main renal artery and its bifurcations was superior
to the radiofrequency technique targeted on the main renal artery alone [93].

In conclusion, renal artery denervation has the potential to be furtherly adopted in
clinical practice over the next few years. The main contraindication remains renal artery
stenosis, which is rare in unselected patients, but relatively higher, up to 30%, in those with
more severe or resistant hypertension [94]. Procedural complications of renal denervation
(renal artery dissection, post-procedural stenosis) are extremely rare [95].

Ongoing studies should lead to identification of patients more likely to benefit from
renal denervation in terms of BP lowering effect. According to a position paper of the
Italian Society of Hypertension [95], some clinical conditions (Table 1) should dictate a
preferential indication to renal denervation.

Of note, patients with moderate to severe chronic kidney disease were excluded from
large international trials, and smaller studies suggest limited utility in this population [96].

Despite the evidence that renal denervation is associated with a low incidence, of
mostly, minor complications [94,95,97], an aspect to consider is the question of renal artery
stenosis after this procedure. Some anecdotal reports of renal artery stenosis after renal
denervation were published, occurring 5–6 months after a successful procedure and leading
to a re-elevation of previously depressed BP [98–103].

Thus, when considering renal nerve ablation, arteries with visible stenosis, with
calcification or atheromatous plaques, represent relative contraindications [77,78,80].

Finally, available data argue in favor of an incomplete and insufficient ablation of
renal sympathetic nerves as a major cause of inadequate BP responses to catheter-based
interventions. Indeed, it is not entirely clear whether catheter design and energy delivery
may influence the variability of the response to renal nerve ablation and the risk of the
development of renal artery stenosis [94,104].
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Table 1. Clinical features of patients who may be candidates to renal denervation. Adapted from a
position paper of the Italian Society of Hypertension [95].

(A) Hypertension not controlled by combinations of renin-angiotensin-aldosterone system
blockers, diuretics and calcium channel blockers at maximal tolerated dose

• Adverse reactions with spironolattone
• Low adherence to treatment
• Systo-diastolic hypertension
• Vascular damage not diffused
• High or very high cardiovascular risk
• Patient preference

(B) Essential hypertension stage 1 or 2, either untreated or not controlled with 1–2 drugs

• Adverse reaction to several antihypertensive drugs
• Low adherence to treatment
• High or very high cardiovascular risk
• Atrial fibrillation with planned ablation
• Patient preference

12. Conclusions

BP is a very potent risk factor. Unfortunately, at variance with other risk factors, such
as serum cholesterol, glucose or creatinine, or even body weight or cigarette smoking, BP
is extremely variable over time and this may leave uncertainty or even frustration on the
real value of what we are measuring. BP recording remains generally intrusive and the
precise rules for a correct BP measurement in the clinical practice are scarcely known. Many
patients still do not realize that is perfectly normal to find out BP values of 125/70 and
145/85 mmHg at distance of few minutes. Clearly, such imprecision in diagnosis does not
help to achieve BP control when needed.

It is hoped that the future will lead to development of accurate and non-intrusive
devices for BP measurement in the long-term. From a therapeutic standpoint, we currently
dispose of many effective and well tolerated antihypertensive drugs, but a long way is still
to do for an optimal use of these drugs, alone or in combination. Unfortunately, research on
new antihypertensive drugs dramatically slowed over the past few years. We agree with
Bhudia that the future in the management of hypertensive patients remains uncertain [105].
However, significant progress is likely to come over the next few years from a combination
of education and technology worldwide.
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