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Abstract

Loss of the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) complex that 

resides in contact sites between the yeast ER and mitochondria leads to impaired respiration; 

however, the reason for that is not clear. We find that in ERMES null mutants, there is an increase 

in the level of mRNAs encoding for biosynthetic enzymes of coenzyme Q6 (CoQ6), an essential 

electron carrier of the mitochondrial respiratory chain. We show that the mega complexes involved 

in CoQ6 biosynthesis (CoQ synthomes) are destabilized in ERMES mutants. This, in turn, affects 

the level and distribution of CoQ6 within the cell, resulting in reduced mitochondrial CoQ6. We 

suggest that these outcomes contribute to the reduced respiration observed in ERMES mutants. 

Fluorescence microscopy experiments demonstrate close proximity between the CoQ synthome 

and ERMES, suggesting a spatial coordination. The involvement of the ER-mitochondria contact 

site in regulation of CoQ6 biogenesis highlights an additional level of communication between 

these two organelles.
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Introduction

Over the past two decades, our initial conception of eukaryotic cell architecture has been 

gradually altered. The original idea of solitary organelles scattered sparsely in the cytosol 

has been replaced by an appreciation of the close cooperation that exists between organelles. 

Indeed, organelles are tightly packed together and are anything but solitary. All organelles 

appear to have the capacity to be tethered to one another by designated structures termed 

membrane contact sites, and these contact sites are generated by use of tethering molecules 

(Kakimoto et al., 2018; Shai et al., 2018; Valm et al., 2017). Such areas of close membrane 

apposition allow for the transfer of metabolites, lipids, and other molecules between the two 

organelles (Eisenberg-Bord, Shai, Schuldiner, & Bohnert, 2016). One of the most studied 

contact sites is formed between the endoplasmic reticulum (ER) and mitochondria. In the 

budding yeast Saccharomyces cerevisiae (hereafter termed yeast), a prominent complex 

promoting association of the ER and mitochondria is the ER-mitochondria encounter 

structure (ERMES; Kornmann et al., 2009). ERMES is composed of four subunits: two 

mitochondrial subunits (Mdm10 and Mdm34), an ER localized subunit (Mmm1), and a 

soluble subunit (Mdm12).

One of the most closely examined roles of ERMES is the transfer of phospholipids. As 

mitochondria cannot synthesize most of the lipids that they require, phospholipids, sterols, 

and ceramide/sphingolipids must be imported from the ER. Hence, ER-mitochondria contact 

sites accommodate many lipid transfer factors and proteins that are involved in lipid 

metabolism (Dimmer & Rapaport, 2017). Recently, it was shown that the Mmm1-Mdm12 

complex can mediate phospholipid transfer in vitro and that mutations in MMM1 or 

MDM12 lead to impaired phospholipid transfer through the ERMES complex in vivo 
(Kawano et al., 2018). Surprisingly, ERMES mutants typically exhibit only a mild decrease 

in specific phospholipids at mitochondria due to the existence of compensatory mechanisms 

for phospholipid transfer (González Montoro et al., 2018; John Peter et al., 2017; Kojima, 

Endo, & Tamura, 2016; Lang, Peter, Walter, & Kornmann, 2015; Tan et al., 2013). Despite 

the moderate effects on lipid transfer between organelles, ERMES disruption leads to a wide 

array of cellular phenotypes, including loss of mitochondrial morphology, increased loss of 

mitochondrial DNA, and reduced respiratory capacity (Berger, Sogo, & Yaffe, 1997; Hobbs, 

Srinivasan, McCaffery, & Jensen, 2001; Kornmann et al., 2009; Youngman et al., 2004). 

Why loss of ERMES causes these adverse phenotypes, including respiratory deficiency, has 

not yet been fully elucidated. Hence, we have focused our attention on the role of ERMES in 

regulating respiration.

Here, we show that cells lacking ERMES components exhibit increased mRNA levels for 

proteins that participate in the coenzyme Q6 (CoQ6) biosynthetic pathway. CoQ6 is a 

polyisoprenylated benzoquinone lipid that functions within the electron transport chain of 
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the inner mitochondrial membrane of yeast. CoQ6 can also act as a lipophilic antioxidant 

(Awad et al., 2018; Tran & Clarke, 2007). All of the steps required for the assembly of the 

polyisoprenoid diphosphate tail of CoQ, its ligation to aromatic ring precursors, and 

modification of the ring precursor are catalyzed by Coq enzymes associated with the matrix 

side of the mitochondrial inner membrane (Awad et al., 2018; Bentinger, Tekle, & Dallner, 

2010). Many of the these Coq polypeptides (Coq3-Coq9 and Coq11) assemble within a 

mega complex termed the CoQ synthome (Allan et al., 2015; Belogrudov et al., 2001; He, 

Xie, Allan, Tran, & Clarke, 2014; Marbois et al., 2005; Marbois, Gin, Gulmezian, & Clarke, 

2009). Synthesis of the polyisoprenoid tail of CoQ6 originates from compounds that derive 

from the mevalonate pathway associated with the ER, suggesting that the ER-mitochondria 

contact site might promote movement of CoQ6, or its biochemical intermediates and 

precursors, between these two organelles.

Indeed, we show that the CoQ synthome is destabilized in ERMES mutants, and this results 

in transcriptionally upregulated, yet inefficient, de novo CoQ6 biosynthesis. Such 

compromised synthesis results in an increase of CoQ6-intermediates as well as accumulation 

of CoQ6 at non-mitochondrial cellular membranes. We further demonstrate that ERMES 

mutants harbor decreased steady-state levels of CoQ6 and CoQ6-intermediates within 

mitochondria. This reduced level may contribute to the respiratory deficiency. Furthermore, 

ERMES-mediated contacts seem to be located in proximity to specialized matrix niches 

where the CoQ synthome is enriched, suggesting a spatially regulated process. Our study 

provides new insights into the relevance of ER-mitochondria contacts to CoQ6 homeostasis 

and, more broadly, to cellular respiration.

Materials and Methods

Strains and Plasmids

Saccharomyces cerevisiae strains and plasmids used in this study are listed in Table S1 and 

Table S2, respectively. Yeast strains were based on strains S288C (BY4741; Brachmann et 

al., 1998) or W303 (Thomas & Rothstein, 1989). Transformations of polymerase chain 

reaction (PCR) products into yeast cells were performed using the Li-acetate method (Gietz 

& Woods, 2006; Janke et al., 2004; Longtine et al., 1998). Primers were designed using 

Primers-4-Yeast: http://www.weizmann.ac.il/Primers-4-Yeast/ (Yofe & Schuldiner, 2014).

RNA-Sequencing

S288C (BY4741) cells were cultured overnight in a synthetic medium SD (2% [wt/vol] 

glucose, 0.67% [wt/vol] yeast nitrogen base with ammonium sulfate and amino acid 

supplements) at 30°C. W303 cells were cultured overnight in a synthetic medium SGly (3% 

[wt/vol] glycerol, 0.67% [wt/vol] yeast nitrogen base with ammonium sulfate and amino 

acid supplements) at 30°C. In the morning, cells were back-diluted to OD600~ 0.01 and 

followed until reaching OD600~ 0.2. Cells were centrifuged (3,000 g, 3 min), and the pellet 

was frozen in liquid nitrogen and stored at −80°C until further analysis.

For all samples, RNA was purified as described (Voichek, Bar-Ziv, and Barkai, 2016). 

Briefly, RNA was extracted according to a protocol of Nucleospin® 96 RNA Kit (Machery-
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Nagel) with two modifications: Lysis was performed by adding 450 μl of lysis buffer 

containing 1 M sorbitol, 100 mM EDTA, and 0.45 μl lyticase (10 IU/μl) to cells in a 96 

deep-well plate. The plate was then incubated for 30 min at 30°C, centrifuged (3,000 g, 10 

min) and the supernatant was removed. In addition, dithiothreitol was used as a replacement 

for β-mercaptoethanol.

For S288C (BY4741) cells, RNA was fragmented, RNA molecules harboring a poly(A) 

were enriched, and this was followed by cDNA preparation, barcoding, and sequencing 

using Illumina HiSeq 2500, as described in Voichek et al. (2016). For W303 cells, RNA 

libraries were created by reverse transcription with a barcoded poly(T). DNA-RNA hybrids 

were pooled, followed by use of a hyperactive variant of the Tn5 transposase for 

fragmentation. SDS (0.2%) was used to strip Tn5 from DNA. Following SDS treatment, 

samples were purified using Solid Phase Reversible Immobilization (Beckman Coulter) 

Beads. cDNA was then amplified using PCR and sequenced using the Illumina NextSeq 

500.

Single end reads were mapped to S. cerevisiae genome (R64 in SGD; Cherry et al., 2012) 

using bowtie (parameters: –best –a –m 2 –strata –5 10; Liu et al., 2005). Following 

alignment, reads mapped to rRNA were excluded. For S288C samples, reads were down 

sampled to 400,000 reads and normalized for PCR bias using the unique molecular identifier 

(Kivioja et al., 2012). For all samples, expression of each gene was the summary of reads 

aligned between 400 bp upstream and 200 bp downstream of the predicted open reading 

frame. The gene expression summary was normalized to be 1,000,000 and a gene with an 

expression below 10 was excluded from further analysis (Voichek et al., 2016). Each sample 

was analyzed twice, and values shown are typically the average of the two. However, if only 

one sample had a value, that value was utilized.

Mitochondrial Purification

Yeast wild-type and ERMES mutant cultures were cultured in YPGly (3% [wt/vol] glycerol, 

1% [wt/vol] Bacto yeast extract, and 2% [wt/vol] Bacto peptone) at 30°C. Cells were 

harvested at OD600 < 4.0, and mitochondria were purified with discontinuous Nycodenz as 

described (Glick & Pon, 1995). Protease inhibitor mixture (Roche Complete EDTA-free), 

phosphatase inhibitor cocktail set II (EMD Millipore), and phosphatase inhibitor cocktail set 

3 (Sigma-Aldrich) were added to the solutions. Gradient-purified mitochondria were frozen 

in liquid nitrogen and stored at −80°C until further analysis. Mitochondria from yeast Δcoq 
mutants were purified in the same manner from cultures expanded in YPGal medium (2% 

[wt/vol] galactose, 0.1% [wt/vol] dextrose, 1% [wt/vol] Bacto yeast extract, and 2% [wt/vol] 

Bacto peptone).

SDS-PAGE Analysis of Steady-State Levels of Coq Polypeptides

Purified mitochondria were resuspended in SDS sample buffer consisting of 50 mM Tris, pH 

6.8, 10% glycerol, 2% SDS, 0.1% bromophenol blue, and 1.33% β-mercaptoethanol and 

proteins were separated by SDS-PAGE on 12% Tris-glycine polyacrylamide gels. An aliquot 

of 25 μg of purified mitochondria, as measured by the bicinchoninic acid assay standardized 

using bovine serum albumin, was loaded in each lane.
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Two-Dimensional Blue Native- and SDS-PAGE Analysis of CoQ Synthome

Analyses of protein complexes by blue native (BN) gel electrophoresis were performed as 

previously described (Schagger, Cramer, & Vonjagow, 1994; Wittig, Braun, & Schägger, 

2006). Briefly, an aliquot of 200 μg protein of purified mitochondria was pelleted by 

centrifugation (14,000 g, 10 min) and solubilized at a concentration of 4 mg protein/ml on 

ice for 1 h with BN solubilization buffer containing 11 mM HEPES, pH 7.4, 0.33 M 

sorbitol, 1× NativePAGE sample buffer (Thermo Fisher Scientific), 16 mg/ml digitonin 

(Biosynth), Roche Complete EDTA-free protease inhibitor mixture (Roche Complete 

EDTA-free), phosphatase inhibitor cocktail set II, and phosphatase inhibitor cocktail set 3. 

The soluble fraction was obtained by centrifugation (100,000 g, 10 min) and the protein 

concentration in the supernatant was determined by bicinchoninic acid assay. NativePAGE 

5% G-250 sample additive (Thermo Fisher Scientific) was added to the supernatant to a final 

concentration of 0.25%. The first-dimension BN gel electrophoresis was performed using 

NativePAGE 4-16% Bis-Tris gel 1.0 mm x 10 wells (Thermo Fisher Scientific). First-

dimension gel slices were soaked in hot SDS sample buffer for 15 min before loading them 

onto second dimension 12% Tris-glycine polyacrylamide gels. The high molecular weight 

standards for first-dimension BN gel electrophoresis were obtained from GE Healthcare 

(Sigma-Aldrich) and the molecular weight standards for the second dimension SDS-PAGE 

were obtained from Bio-Rad.

Immunoblot Analyses

Proteins were transferred onto 0.45 μm nitrocellulose membrane (Bio-Rad). Membranes 

were blocked in 0.5% bovine serum albumin, 0.1% Tween 20, 0.02% SDS in phosphate-

buffered saline. Membranes were probed with primary antibodies in the same blocking 

buffer at the dilutions listed in Table S3. IRDye 680LT goat anti-rabbit IgG secondary 

antibody or IRDye 800CW goat anti-mouse IgG secondary antibody (LiCOR) was used at 

1:10,000 dilutions. Blot images were recorded using LiCOR Odyssey Infrared Scanner 

(LiCOR).

BN-PAGE and Analysis of ATP Synthase

Wild type and Δmdm10 of the W303 background were grown in SLac (2% [wt/vol] lactate, 

0.67% [wt/vol] Bacto yeast nitrogen base without amino acids), harvested at OD600 < 2.0 

and isolated by differential centrifugation as described (Daum, Bohni, and Schatz (1982). 

BN-PAGE was performed as described earlier (Schägger, 2002). Briefly, 100 μg 

mitochondria were lysed in 40 μl buffer containing digitonin (1% digitonin, 20 mM Tris-

HCl, 0.1 mM EDTA, 50 mM NaCl, 10% [vol/vol] glycerol, 1 mM PMSF, pH 7.2). After 

incubation on ice for 15 min and a clarifying spin (30,000 g, 15 min, 2°C), 5 μl sample 

buffer (5% (w/v) Coomassie blue G, 500 mM 6-amino-N-caproic acid, 100 mM Bis-Tris, pH 

7.0) was added. The native complexes were analyzed by electrophoresis in a 6–14% gradient 

of acrylamide blue native gel. Proteins were transferred to polyvinylidene fluoride 

membranes and proteins were further analyzed by immunodecoration.
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Stable Isotope Labeling

Cells were shaken overnight at 30°C in 100 ml of YPGly and diluted the next morning to an 

OD600 ~0.1 with fresh YPGly. The cultures were incubated as before until they reached an 

OD600 of 0.6. Then ethanol (as vehicle control) or 8 μg/ml of the stable isotopes 13C6-pABA 

or 13C6-4HB were added, and the cultures were expanded for an additional 5 h. At each time 

point, triplicates of 10 ml culture were harvested by centrifugation (3,000 g, 5 min). Cell 

pellets were stored at −20°C.

Lipid Extractions and Analysis of CoQ6 and CoQ6 Intermediates

For lipid extractions, approximately 100 μg of purified mitochondria from each strain were 

prepared in triplicates. The same amount of internal standard CoQ4 was added to all samples 

and standards, followed by the addition of 2 ml methanol. Lipids were extracted twice, each 

time with 2 ml petroleum ether. Extracted lipids were dried down with N2 and stored at 

−20°C. Lipid extraction from isotopically labeled whole cell was performed in the same way 

from frozen cell pellets in triplicate.

For lipid analyses, dried lipids were reconstituted in 200 μl of 0.5 mg/ml benzoquinone in 

order to oxidize hydroquinones to quinones. An aliquot of 20 μl of each sample was injected 

into a 4000 QTRAP linear MS/MS spectrometer (Applied Biosystems). Applied Biosystems 

software, Analyst version 1.4.2, was used for data acquisition and processing. The 

chromatographic separation was carried out using a Luna 5 μm phenyl-hexyl column (100 × 

4.6 mm, 5 μm; Phenomenex) and a mobile phase consisted of 95:5 methanol/isopropanol 

solution with 2.5 mM ammonium formate as solution A and 100% isopropanol solution with 

2.5 mM ammonium formate as solution B. The percentage of solution B was increased 

linearly from 0 to 10% over 7 min, whereby the flow rate was increased from 650 to 800 μl/

min. Each sample was analyzed using multiple reaction monitoring mode. The precursor-to-

production transitions monitored for each sample are listed in Table S4. The area value of 

each peak, normalized with the correspondent standard curve and internal standard, was 

referred to the total mitochondrial protein present in the sample or total OD of cells in each 

cell pellet. Statistical analysis was performed with GraphPad Prism with one-way analysis of 

variance Bonferroni’s multiple comparisons test, with the Greenhouse-Geisser correction for 

mitochondrial lipid analyses, and with two-way analysis of variance Dunnett’s multiple 

comparisons test for whole cell lipid analyses.

Microscopy

Yeast were cultured overnight at 30°C in either SGly for W303 cells or SD for S288C strain. 

In the morning, cells were back-diluted to OD600~0.2 and cultured until reaching mid-

logarithmic phase. Cells were then moved to glass-bottom, 384-well microscope plates 

(Matrical Bioscience) coated with Concanavalin A. After 20 min incubation at room 

temperature to enable adherence of cells to the matrix, the wells were washed with medium. 

Cells were then imaged at room temperature using a 60× oil lens (NA 1.4) in the VisiScope 

Confocal Cell Explorer system, which is composed of a Zeiss Yokogawa spinning disk 

scanning unit (CSU-W1) coupled with an inverted IX83 microscope (Olympus). Single–

focalplane images were taken using a PCO-Edge sCMOS camera, controlled by VisiView 
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software (GFP-488 nm, RFP-561 nm, or BFP-405 nm). Images were reviewed using ImageJ, 

where brightness adjustment and cropping were performed.

Results

Yeast Lacking ERMES Have Higher Levels of Transcripts for Coenzyme Q Biosynthesis 
Enzymes

To investigate how ERMES contributes to the respiratory capacity of yeast cells, we 

measured the transcriptional response prompted by deletion of genes encoding ERMES 

subunits. We performed RNA sequencing on ERMES mutants from two different yeast 

genetic backgrounds: W303 yeast that were cultured on medium containing glycerol (a 

nonfermentable carbon source), to ensure preservation of their mitochondrial DNA (Hobbs 

et al., 2001), or S288C (BY4741) yeast, in which the ERMES mutants harbor reduced levels 

of mitochondrial DNA, and were therefore cultured on medium containing glucose to enable 

fermentation (the complete list of mRNA levels in ERMES mutants is in Table S5).

When surveying transcripts which are associated with mitochondrial respiration, we noticed 

that the mRNA levels of most COQ genes involved in the biosynthesis of CoQ6 were 

elevated relative to those in the respective control, in both genetic backgrounds and 

irrespective of the medium used (Figure 1(a) for W303 and Figure S1(a) for S288C). Of 

note, the mRNA levels of genes encoding for subunits of the respiration complexes did not 

show a consistent trend of either up- or downregulation (Figure S1(b).

We therefore tested whether the higher mRNA levels of the COQ genes resulted in higher 

protein levels of those polypeptides, in mitochondria purified from W303 cells (Figure 1(b)). 

We examined the steady-state levels of Coq proteins that have previously been identified as 

members of the CoQ synthome, as well as Coq10, which is not part of the CoQ synthome 

but is thought to chaperone CoQ6 from the synthome to sites of function (Allan et al., 2013; 

Barros et al., 2005). Surprisingly, we observed that the steady-state levels of all Coq proteins 

in the mutant cells were either similar, or even slightly reduced, relative to their amounts in 

control cells (Figure 1(b)).

The CoQ Synthome Is Destabilized in the Absence of ERMES Subunits

As the overall mRNA levels of the COQ transcripts were higher in ERMES deletions, yet 

there was no major difference in protein levels, it seems that Coq proteins might be less 

stable in cells lacking the ERMES complex. Since most of the Coq polypeptides assemble in 

the CoQ synthome (Belogrudov et al., 2001; He et al., 2014; Marbois et al., 2005; Marbois 

et al., 2009) and proteins may become unstable when not assembled properly into their 

natural complexes, we examined the CoQ synthome by two-dimensional BN-PAGE (Figures 

2 and S2(a)). Previously, the CoQ synthome was studied when galactose was used as a 

carbon source (He et al., 2014; Nguyen et al., 2014). However, to match the conditions we 

previously used for our assays, we followed Coq4, Coq5, and Coq9 in mitochondrial lysates 

from glycerol-cultured W303 cells. As expected, in control cells, the CoQ synthome was 

represented by high molecular weight signals, spanning a size range of 140 kDa to > 1 MDa 

for both Coq4 and Coq9 (Figures 2(a) and (b) and S2(a)) and between 440 kDa to >1 MDa 
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for Coq5 (Figure 2(b)). However, in the ERMES mutant strains, the majority of very large 

species (>MDa), representing the CoQ synthome, was replaced by subcomplexes with 

apparent migration equal to or less than ~440 kDa (Figures 2 and S2(a)), indicating that the 

CoQ synthome is indeed destabilized in the absence of the ERMES complex. This is not due 

to a general destabilization of mitochondrial complexes, as the ATP synthase (complex V) 

was not affected by the absence of the ERMES subunit Mdm10 (Figure S2(b)). Furthermore, 

previous work did not reveal any change in the migration behavior of porin oligomers and 

the Tim22 complex in Δmdm10 strains (Meisinger et al., 2004). Collectively, our current 

results, alongside previous observations, suggest that the effect of ERMES mutants on the 

CoQ synthome is specific.

ERMES Deletion Strains Show Elevated De Novo Synthesis of CoQ6 and Accumulate CoQ6 

and CoQ6-Intermediates in Whole Cells

To quantify how the biosynthesis of CoQ6 is affected by destabilization of the CoQ 

synthome in ERMES mutants, we measured de novo synthesis of CoQ6 in vivo. Yeast cells 

may utilize either para-aminobenzoic acid (pABA) or 4-hydroxybenzoic acid (4HB) as ring 

precursors of CoQ6 (Marbois et al., 2010; Pierrel et al., 2010). Early-stage intermediates, 

hexaprenyl-aminobenzoic acid (HAB) and hexaprenyl-hydroxybenzoic acid (HHB) are 

derived from prenylation of pABA or 4HB, respectively. Subsequent modifications of the 

aromatic ring produce late-stage intermediates such as demethyl-demethoxy-Q6H2 

(DDMQ6), and demethoxy-Q6H2 (DMQ6), which eventually lead to production of Q6H2 (for 

a schematic of the pathway, see Figure 3(a)). The amino substituent on the pABA ring is 

removed by a combination of Arh1, Yah1, Coq6, and Coq9 (He et al., 2015; Ozeir et al., 

2015) and 4-imino-demethyl-demethoxy-Q6H2 (IDDMQ6) and 4-imino-demethoxy-Q6H2 

(IDMQ6) likely represent dead-end products.

To determine whether CoQ6 production was altered in the ERMES deletion strains, we 

analyzed de novo biosynthesis of 13C6-CoQ6 with 13C ring-labeled precursors, namely, 
13C6-pABA and 13C6-4HB. Surprisingly, we saw that Δmdm10, Δmdm12, and Δmdm34 
cells showed enhanced de novo synthesis of 13C6-CoQ6 (Figure 3(b)). These mutants also 

accumulated CoQ6-intermediates emanating from 13C6-pABA and 13C6-4HB, whereas 

Δmmm1 cells only contained significantly higher amount of 13C6-labeled HAB and HHB, 

but not the other intermediates (Figure 3(c) to (g)). We also measured the levels of unlabeled 

CoQ6 (which correspond to the steady-state levels) in the same samples and observed an 

accumulation of unlabeled CoQ6 and CoQ6-intermediates in most of the ERMES deletion 

mutants, regardless of the presence or absence of 13C-labeled precursor (Figure S3). The 

results suggest that the destabilized CoQ synthome in ERMES mutants results in an aberrant 

accumulation of CoQ6 as well as CoQ6-intermediates.

ERMES Deletion Strains Show Decreased Steady-State Levels of CoQ6 and CoQ6-
Intermediates in Isolated Mitochondria

Although the biosynthesis of yeast CoQ6 occurs exclusively within mitochondria, CoQ6 is 

present in all cellular membranes (Bentinger et al., 2010). To focus on the status of CoQ6 in 

mitochondria, we compared the steady-state content of CoQ6 in mitochondria isolated from 

the ERMES deletion mutants to mitochondria obtained from a control strain. Although the 
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overall cellular levels of CoQ6 in these mutants were increased, the steady-state levels of 

CoQ6 per unit of mitochondrial protein were significantly reduced in mitochondria isolated 

from Δmmm1, Δmdm10, or Δmdm12 strains (Figure 4(a)). Only strains lacking Mdm34 

appeared to have nearly normal levels of CoQ6. Isolated mitochondria from all of the 

ERMES deletion strains also contained lower levels of the late-stage intermediates IDMQ6 

and DMQ6 (Figure 4(b) and (c), respectively). The levels of the late-stage intermediate 

DDMQ6 were reduced in all strains, though the reduction was not statistically significant 

(Figure 4(d)). Our finding of decreased steady-state levels of CoQ6 and its late intermediates 

in isolated mitochondria suggests that the accumulation of these molecules in whole cell 

lipid extracts (Figures 3 and S3) must reside in non-mitochondrial membranes. Moreover, 

reduced levels of pathway product in vicinity to the enzymes may reduce feedback inhibition 

(Berg, Tymoczko, & Stryer, 2002; Gehart & Pardee, 1962; Umbarger, 1961), providing an 

explanation for the increased rate of synthesis observed in ERMES mutants. However, 

feedback inhibition has not yet been reported for Coq enzymes.

In the complete absence of the CoQ synthome, strains fail to make CoQ6 and can only carry 

out the first two steps of the biosynthetic pathway, producing HAB or HHB from the 

prenylation reaction of pABA or 4HB, respectively, using precursors derived from the 

mevalonate pathway in the ER (He et al., 2014). Indeed, deletion of the COQ7 gene resulted 

in a dramatic accumulation of HHB and HAB (Figure 4(e) and (f)), as observed previously 

(Tran & Clarke, 2007). Interestingly, in the strains deleted for ERMES subunits, this 

accumulation of early CoQ6-intemediates did not occur (with the exception of HHB slightly 

accumulating in the Δmdm34 strain (Figure 4(e))). The difference in the accumulation 

phenotypes between the ERMES-deletion strains and Δcoq7 suggests that in addition to 

stabilizing the CoQ synthome, ERMES has a role at an earlier stage of the pathway.

The CoQ Synthome Resides in Specific Membrane Niches in Proximity to ERMES Contacts

Strains lacking ERMES subunits exhibit increased levels of cellular CoQ6 and CoQ6-

intermediates, yet mitochondrial CoQ6 and CoQ6-intermediates are decreased and the CoQ 

synthome is destabilized. In addition, early pathway intermediates do not accumulate, 

suggesting a reduced flux of precursors from the ER. We wondered whether the ERMES 

complex may play a role in organizing the CoQ synthome and the trafficking of CoQ6-

related metabolites near ER-mitochondria contacts. As tagging Coq polypeptides with green 

fluorescent protein (GFP) does not impair their function (Figure S4(a)), we tagged Coq3, 

Coq4, Coq6, Coq9, and Coq11 with GFP and performed fluorescence microscopy. We 

noticed that these proteins are not distributed evenly throughout the mitochondrial matrix, 

but rather manifest a more punctate distribution (data not shown), suggesting that there 

might be discrete areas inside the mitochondrial matrix that are dedicated to the synthesis of 

CoQ6. If the assembly of the CoQ synthome depends on ERMES, in a strain deleted for 

ERMES the punctate pattern of the GFP-tagged Coq polypeptide should disappear. Indeed, 

when we GFP-tagged CoQ6 and Coq9 in a strain harboring a deletion for MDM34, the Coq-

GFP punctate pattern was lost and the GFP signal was now spread throughout the entire 

mitochondrion (Figure S4(b)). However, as these mutants show dramatic alteration in 

mitochondrial morphology (Kornmann et al., 2009), it is hard to determine whether this 

effect is direct. To better understand the spatial relationship between ERMES and the CoQ 
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synthome, we tagged Coq6 and Coq9 with GFP in a strain expressing Mdm34 fused to 

mCherry. Analyses of these cells revealed that more than 70% of the Mdm34-mCherry-

marked contacts colocalized with Coq6-GFP or Coq9-GFP puncta (Figure 5(a) and 

quantification in Figure 5(b)). This colocalization was independent of genetic background 

and was also evident in a S288C background strain (Figure S4(c)). Our results strongly 

suggest that the localization of the CoQ synthome is coordinated with the position of the 

ER-mitochondria contact site.

Interestingly, in the yeast genome, the COQ10 and MDM12 genes are adjacent and likely to 

share a promoter (Cherry et al., 2012). Indeed, SPELL analysis of transcriptional co-

regulation (Hibbs et al., 2007) demonstrates that these two genes are co-expressed. We 

therefore tested whether Coq10 is involved in the positioning of the CoQ synthome next to 

ERMES. To this end, we removed COQ10, then assessed colocalization between Coq6-GFP 

and Mdm34-mCherry. The Coq6-GFP signal was dramatically reduced upon COQ10 
deletion, consistent with previous findings (Hsieh et al., 2007). Nevertheless, several Coq6-

GFP-containing puncta were observed. Quantification of the colocalization between these 

Coq6-GFP puncta and Mdm34-mCherry revealed that the positioning of the CoQ synthome 

next to the ERMES complex was reduced in the coq10 null mutant (Figure 5(c) and 

quantification in Figure 5(d)). Our results suggest that the positioning of the CoQ synthome 

within mitochondria is a regulated process which depends upon the presence of Coq10.

Discussion

Contact sites play a critical role in shaping cellular architecture, and their facilitation of 

small molecule transfer between organelles enables tight regulation of biochemical 

pathways. In this study, we show that ERMES, an ER-mitochondria contact site tether, plays 

a key role in regulating CoQ6 biosynthesis and distribution.

The ERMES complex appears to impact CoQ6 synthesis on two levels. First, absence of the 

ERMES complex leads to destabilization of the CoQ synthome, perturbed CoQ6 synthesis, 

and altered distribution of CoQ6 and its precursors. Second, there is a clear spatial 

coordination of the ERMES complex with the CoQ synthome (Figure 5(e)). It is possible 

that ERMES may directly impact the CoQ synthome; however, there is no evidence showing 

direct interaction of ERMES subunits with known members of the CoQ synthome. We also 

note that the effects of ERMES disruption on the synthome and CoQ6 biogenesis may be, at 

least in part, indirectly prompted by changes to phospholipid metabolism (Elbaz-Alon et al., 

2014; Hönscher et al., 2014; Kawano et al., 2018; Lahiri et al., 2014) or by alteration of the 

shape and size of mitochondria (Hanekamp et al., 2002; Tan et al., 2013; Youngman et al., 

2004).

We have shown that Coq10 is involved in the coordination of CoQ6 synthesis across the ER-

mitochondria interface (Figure 5(c) and (d)). COQ10 encodes a membrane-spanning protein 

harboring a putative steroidogenic acute regulatory-related lipid transfer (StART) domain 

and a lipid-binding pocket for CoQ6 and late-stage CoQ6-intermediates (Allan et al., 2013). 

Although Coq10 has not been shown to be part of the CoQ synthome, it is necessary for 

efficient de novo CoQ6 biosynthesis and respiration (Allan et al., 2013). The co-expression 
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of the COQ10 and MDM12 genes (Hibbs et al., 2007) might help coordinate the levels of 

Coq10 and ERMES to allow a better positioning of the CoQ synthome next to ER-

mitochondria contact sites as they fluctuate in amount with changing cellular needs. 

Intriguingly, when overexpressed, Mdm12 is capable of entering the nucleus (Weill et al., 

2018), raising the possibility of feedback control of the CoQ synthome-ERMES interaction. 

Moreover, the specific mechanism by which COQ genes are transcriptionally upregulated by 

ERMES disruption remains to be determined, but extensive communication exists between 

mitochondria and the nucleus (Eisenberg-Bord & Schuldiner, 2017), and at least one 

pathway by which CoQ biosynthesis can be upregulated by CoQ deficiency has been 

revealed in metazoans (Oks, Lewin, Goncalves, & Sapir, 2018).

How do CoQ6 and CoQ6-intermediates escape from mitochondria and accumulate in non-

mitochondrial membranes in the ERMES deletion mutants? This might be due to a direct or 

indirect effect. Given that many Coq proteins of the CoQ synthome can bind to CoQ6 or its 

biosynthetic intermediates, we propose that a destabilized CoQ synthome causes reduced 

sequestration of CoQ6 within mitochondria (Figure 5(f)). In an alternative, yet not mutually 

exclusive model, disruption of ERMES mutants leads to reduced degradation of CoQ6 

outside of mitochondria. Although CoQ6 degradation has not been studied extensively, it is 

believed that degradation of the polyisoprene tail of CoQ6 may be carried out in 

peroxisomes via both α- and β-oxidation (Wanders, 2014). Indeed, we have previously 

shown that peroxisome-mitochondria (PERMIT) contact sites reside in proximity to ER-

mitochondria contact sites (Cohen et al., 2014), raising the possibility that loss of ERMES 

may also affect the capacity to degrade escaped CoQ6.

Excitingly, our findings are likely to have relevance to human health and disease. In 

mammals, the mitofusin 2 (MFN2) protein acts as a tether between the ER and mitochondria 

(de Brito & Scorrano, 2008), and conditional MFN2 knock-out mice exhibit impaired 

respiration linked to a decrease in mitochondrial levels of the mammalian ubiquinones, 

CoQ9 and CoQ10 (Mourier et al., 2015). It is hypothesized that this phenotype is not directly 

related to the role of MFN2 in mitochondrial fusion as the CoQ deficiency was not linked to 

the morphology of the mitochondrial network. These findings further suggest that a 

reduction in ER-mitochondria tethering can perturb CoQ biosynthesis, suggesting parallels 

between the yeast and mammalian cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cells lacking ERMES show higher levels of COQ mRNAs without alterations to Coq 
proteins.
(a) Levels of mRNAs of the indicated COQ genes were measured in different W303-based 

strains deleted for ERMES subunits (Δmmm1, Δmdm10, Δmdm12 Δmdm34), and a control 

strain, during growth in medium containing glycerol. The majority of COQ biosynthetic 

genes show higher mRNA levels compared to the control. Values are averages of two 

biological repeats. (b) Immunoblotting for steady-state levels of Coq polypeptides in 

purified mitochondria isolated from the indicated W303-based strains. Shown are mutants of 

the ERMES complex (Δmmm1, Δmdm10, Δmdm12, and Δmdm34), Δcoq (Δcoq3-Δcoq10) 
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and a control, demonstrating that steady-state levels of the different Coq polypeptides were 

not dramatically altered in the ERMES deletion strains. Immunoblotting was performed with 

antisera against designated yeast Coq polypeptides (Coq3-Coq10), Mdh1 as a mitochondrial 

marker, and Sec62 as an ER marker. Arrows denote the corresponding protein in their 

respective blots. Images are representative gels from at least two biological replicates.
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Figure 2. The CoQ synthome is destabilized in the absence of ERMES subunits.
(a) Two-dimensional Blue Native-SDS-PAGE gel electrophoresis analysis of the CoQ 

synthome in mitochondria from ERMES mutants or from a wild-type (WT) control strain. 

Gels were immunoblotted against Coq4. In the control sample, the CoQ synthome appears 

as complexes ranging from 232 kDa to >1 MDa (the positions of the synthome is marked by 

the yellow arrow), while in the ΔERMES strains, the high molecular weight signal is 

replaced by a signal dispersed over a range of smaller molecular weights (indicated by 

brackets). The relevant band was identified by comparing the bands in the WT and Δcoq4 
lanes. The red asterisk (*) indicates a discrete nonspecific signal observed with the antisera 

to Coq4. (b) Two-dimensional Blue Native-SDS-PAGE gel electrophoresis was performed as 

described in (a). Mitochondria from Δcoq5 strain were used to identify specific bands (Coq9 

is also destabilized and undetectable in the Δcoq5 strain). Gels were immunoblotted against 

Coq5 and Coq9. The strong Coq5 and Coq9 bands in the higher molecular weight (>669 

kDa) in the control sample (indicated by yellow arrows) are weaker in the ΔERMES strains 

and are replaced by an additional diffuse signal in the lower molecular weights (indicated by 

brackets).
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Figure 3. Biosynthesis of CoQ6 and CoQ6-intermediates is increased in cells lacking the ERMES 
complex.
(a) Schematic representation of selected steps of the CoQ6 biosynthesis pathway. CoQ6-

intermediates that were analyzed using mass spectrometry (MS) are indicated in green text. 

(b-g) MS-MS analysis for CoQ6 and CoQ6-intermediates in whole cell lipid extracts from 

W303 control, Δmmm1, Δmdm10, Δmdm12, and Δmdm34 strains. 13C6-CoQ6 and 13C6-

CoQ6-intermediates derived from 13C6-pABA are depicted in red, while the 13C6-CoQ6 and 
13C6-CoQ6-intermediates derived from 13C6-4HB are depicted in blue. The biosynthesis of 
13C6-CoQ6 (b) is increased in Δmdm10, Δmdm12, and Δmdm34 strains labeled with 13C6-
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pABA or 13C6-4HB. The biosynthesis of 13C6-HHB (c) and 13C6-HAB (d) is significantly 

higher in all the ERMES deletion strains. The de novo levels of demethyl-demethoxy-Q6 

(13C6-DDMQ6) (e), 4-imino-DMQ6 (13C6-IDMQ6) (f), and demethoxy-Q6 (13C6-DMQ6) 

(g) are significantly increased in Δmdm10, Δmdm12, and Δmdm34 strains, with the 

exception of 13C6-DMQ6 in Δmdm34 that did not change after the labeling with 13C6-4HB. 

Values are the mean of three repeats. The error bar indicates ±SD. Statistically significant 

differences between control (WT) and each of the ERMES mutants are represented by *, p 
< .05; **, p < .01; ***, p < .001, and ****, p < .0005. HHB = hexaprenyl-hydroxybenzoic 

acid; HAB = hexaprenyl-aminobenzoic acid; CoQ = Coenzyme Q; DDMQ = demethyl-

demethoxy-Q; DMQ = demethoxy-Q; IDMQ = 4-imino-demethoxy-Q.
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Figure 4. Mitochondria from ERMES mutants show less CoQ6 and CoQ6-intermediates.
(a-f) Targeted MS-MS analyses for CoQ6 and CoQ6-intermediates from purified 

mitochondria from W303 wild-type (WT) control, ERMES mutants (Δmmm1, Δmdm10, 

Δmdm12, and Δmdm34) as well as Δcoq7, which was included as a negative control. Levels 

of (a) CoQ6 were significantly reduced in all ERMES deletion strains except for Δmdm34. 

Levels of (b) IDMQ6 and (c) DMQ6 were significantly reduced in all ERMES deletion 

strains. Levels of (d) DDMQ6 were not significantly changed. Levels of (e) HHB and (f) 

HAB were significantly higher in the Δcoq7 strain; however, ERMES deletion strains did 

not show an accumulation of either HHB or HAB (with the exception of Δmdm34 
accumulating HHB). Values are means of three biological repeats. The error bar indicates 

±SD. Statistically significant differences between the control and each of the ERMES 

mutants are represented by *, p < .05; **, p < .01; ***, p < .001; and ****, p < .0005. n.d. = 

not detected. HHB = hexaprenyl-hydroxybenzoic acid; HAB = hexaprenyl-aminobenzoic 

acid; CoQ = Coenzyme Q; DDMQ = demethyl-demethoxy-Q; DMQ = demethoxy-Q; 

IDMQ = 4-imino-demethoxy-Q.
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Figure 5. Members of the CoQ synthome reside in a matrix niche that underlies the ERMES 
complex.
(a) Yeast cells expressing the indicated GFP-tagged Coq protein, the ERMES component 

Mdm34 tagged with mCherry, and a marker for the mitochondrial matrix (blue fluorescent 

protein [BFP] fused to a mitochondrial targeting sequence [MTS]) were imaged using 

fluorescence microscopy. Mitochondrial Coq foci that underlie ERMES are indicated by 

arrows. Scale bar = 5 μM. (b) Quantification of (a), for each cell, the Coq-GFP foci were 

identified. Then the proximity between each Mdm34-mCherry puncta and Coq-GFP was 

assessed. n = 100 Mdm34-mCherry puncta. (c) Yeast cells expressing Coq6-GFP, Mdm34-
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mCherry, and a MTS-BFP were imaged using fluorescence microscopy on either control or 

Δcoq10 background. Scale bar = 5 μM. (d) Quantification of (c). The proximity between 

each Mdm34-mCherry puncta and the Coq6-GFP signal was examined. n = 100 Mdm34-

mCherry puncta. (e) Schematic representation of the colocalization of ERMES and the CoQ 

synthome. Coq6 and Coq9, which were visualized in (a), are highlighted in orange. (f) A 

suggested model for the retention of CoQ6 and CoQ6-intermediates inside mitochondria: 

Under normal conditions, the CoQ synthome is well assembled and CoQ6 biosynthesis 

(represented by the red arrow) occurs efficiently inside mitochondria. This catalytic 

efficiency ensures that early- and late-stage CoQ6-intermediates do not accumulate, and 

optimal funneling through the pathway reduces loss across the mitochondrial outer 

membrane and into the rest of the cell. When the ERMES complex is absent, the stability of 

the CoQ synthome is compromised. A partially destabilized CoQ synthome underlies 

inefficient CoQ biosynthesis, leading to leakage of early- and late-stage CoQ6-intermediates. 

OM = outer membrane, IM = inner membrane; GFP = green fluorescent protein; BFP = blue 

fluorescent protein; MTS = mitochondrial targeting sequence; ER = endoplasmic reticulum; 

ERMES = ER mitochondria encounter structure; HHB = hexaprenyl-hydroxybenzoic acid; 

HAB = hexaprenyl-aminobenzoic acid; CoQ = Coenzyme Q; DDMQ= demethyl-

demethoxy-Q; DMQ = demethoxy-Q; IDMQ = 4-imino-demethoxy-Q.

Eisenberg-Bord et al. Page 23

Contact (Thousand Oaks). Author manuscript; available in PMC 2019 March 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Materials and Methods
	Strains and Plasmids
	RNA-Sequencing
	Mitochondrial Purification
	SDS-PAGE Analysis of Steady-State Levels of Coq Polypeptides
	Two-Dimensional Blue Native- and SDS-PAGE Analysis of CoQ Synthome
	Immunoblot Analyses
	BN-PAGE and Analysis of ATP Synthase
	Stable Isotope Labeling
	Lipid Extractions and Analysis of CoQ6 and CoQ6 Intermediates
	Microscopy

	Results
	Yeast Lacking ERMES Have Higher Levels of Transcripts for Coenzyme Q Biosynthesis Enzymes
	The CoQ Synthome Is Destabilized in the Absence of ERMES Subunits
	ERMES Deletion Strains Show Elevated De Novo Synthesis of CoQ6 and Accumulate CoQ6 and CoQ6-Intermediates in Whole Cells
	ERMES Deletion Strains Show Decreased Steady-State Levels of CoQ6 and CoQ6-Intermediates in Isolated Mitochondria
	The CoQ Synthome Resides in Specific Membrane Niches in Proximity to ERMES Contacts

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

