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Abstract

Background: Gene expression variation is a key underlying factor influencing phenotypic variation, and can occur
via cis- or trans-regulation. To understand the role of cis- and trans-regulatory variation on population divergence in
chicken, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibit
major differences in body size and reproductive traits, and used them to determine the degree of cis versus trans
variation in the brain, liver, and muscle tissue of male and female 1-day-old specimens.

Results: We provided an overview of how transcriptomes are regulated in hybrid progenies of two contrasting
breeds based on allele specific expression analysis. Compared with cis-regulatory divergence, trans-acting genes
were more extensive in the chicken genome. In addition, considerable compensatory cis- and trans-regulatory
changes exist in the chicken genome. Most importantly, stronger purifying selection was observed on genes
regulated by trans-variations than in genes regulated by the cis elements.

Conclusions: We present a pipeline to explore allele-specific expression in hybrid progenies of inbred lines without
a specific reference genome. Our research is the first study to describe the regulatory divergence between two
contrasting breeds. The results suggest that artificial selection associated with domestication in chicken could have
acted more on trans-regulatory divergence than on cis-regulatory divergence.
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Background
Numerous transcriptional regulatory factors, which can be
classified into cis-regulatory elements and trans-regulatory
factors, regulate gene expression [1]. Cis-regulatory ele-
ments, such as promoters, enhancers, and silencers, are
regions of non-coding DNA, which regulate the transcrip-
tion of nearby genes. In contrast, trans-regulatory factors
regulate (or modify) the expression of distant genes by
combining with their target sequences [1, 2]. In most

cases, complex interactions between cis-regulatory se-
quences and trans-acting factors control gene expres-
sion [3, 4].
Cis- and trans-regulatory elements are thought to vary

based on key genetic and evolutionary properties [5, 6].
In diploid individuals, cis-regulatory elements regulate
gene expression in an allele-specific manner. Cis-regulatory
variation heterozygotes express allelic imbalances at the tran-
scriptional and translational levels. By comparison, trans-
regulatory factors interact with target sequences to regulate
both alleles [1]. Trans-regulatory divergence is enriched for
dominant effect, while the effects of cis-regulatory variants
are additivity [6, 7]. Beneficial cis-regulatory variants are
more likely to be enriched to fixation in the course of
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evolution, because the additive effects expose rare alleles to
selection [5].
Both cis- and trans-regulatory variation are play key

roles in phenotypic variation [1, 8–10]. Previous work in a
wide range of species, including Drosophila [7], mouse
[11, 12] and Coffea [13], have used allele-specific expres-
sion (ASE) analysis [14] to distinguish between cis- and
trans-regulatory divergence (Table 1). However, gene
regulatory divergence in birds could be different from
gene regulatory divergence in mammals, insects, or plants,
considering some genetic mechanisms involved in ASE in
birds are unique. For instance, genomic imprinting has
been observed in mammals and some plants [15–17], but
seems largely absent in birds assessed to date [18–20].
Dosage compensation exists in some diploid species to
buffer the effect of copy number difference of genes on
the sex chromosome [21–23], but it has been reported to
be incomplete in birds [24–28]. Therefore, it is critical to
investigate gene regulatory divergence in birds.
Chicken is a model animal for studies on birds, and a re-

markable example of rapid phenotypic divergence, with
artificial selection resulting in major size, behavioral, and
reproductive differences among breeds [29]. Previous stud-
ies have identified frequent ASE among different chicken
breeds [19, 20]. The rapid change under domestication
offers a unique model for revealing the relative importance
of the cis- and trans-regulatory variation underlying
phenotypic change. We used reciprocal crosses of White
Leghorn (WL), a key layer breed selected for its high egg
output, and Cornish Game breeds (CG), a cornerstone
broiler breed selected for its rapid growth and muscle
development [30], to assess the role of different forms of
regulatory variation in the brain, liver, and muscle tissue of
1-day-old males and females.

Results
The profile of the parental genomes and gene expression
in different tissues, sexes of progenies
The two inbred chicken strains, CG and WL, which ex-
hibit major differences in growth rate, egg production,
and behavior, were used to generate purebreed and re-
ciprocal hybrid F1 progenies (Fig. 1). To identify breed-
specific variants, we sequenced the genes of four parents
of the two reciprocal crosses, recovering on average
100.73 million pair-end reads per sample after quality
control. We identified on average 4.74 million single-
nucleotide polymorphisms (SNPs) per parental genome,
which were used to generate simulated parental ge-
nomes. We picked SNPs that were homozygous in each
parental bird but different from each other in the same
cross (heterozygous in the hybrid progenies), resulting in
two heterozygous SNP lists with 1.4 million heterozy-
gous SNPs on average for the two reciprocal crosses, in-
dividually, to identify the allele-specific RNA-Seq reads
of the offspring in the following steps.
For each hybrid cross, we collected RNA-Seq data

from the brain, liver, and muscle tissue of three male
and three female F1 progenies 1 day post-hatching. On
average, we recovered 29.17 million mappable reads per
sample. To eliminate the effect of the sex chromosomes,
we removed all Z and W genes from our analysis and
focused entirely on autosomal loci. We observed signifi-
cant differences in gene expression among different
tissues, between sexes, and between parents-of-origin
(Fig. 2). Tissue was the most significant factor influen-
cing gene expression, sex played a leading role in the
brain, strain influenced gene expression of liver the
most, while in the muscle, the parent-of-origin seemed
the most powerful because samples were divided into

Table 1 Studies that have classified gene regulatory divergence in genomes

Species Tissue Sex Cis Trans Cis and
trans

Conserved and
ambiguous

Method Citation

Drosophila Whole
fly

Female 12.4% 30% 35% 22.6% Hierarchical statistical analyses McManus et al.,
2010

Mouse Liver Male 14% 0.6% 17.4% 68% Maximum likelihood based
approach

Goncalves et al.,
2012

Mouse Testis Male 24% 9% 44% 23% Hierarchical statistical analyses Crowley et al., 2015

Coffeaa Leaf 15.5% 18.5% 17.5% 48.0% Hierarchical statistical analyses Combes et al., 2015

14.5% 18.3% 16.6% 50.6%

Chickenb Brain Female 3.45% 3.70% 4.88% 87.99% Hierarchical statistical analyses This article

Male 3.75% 4.86% 4.37% 87.01%

Liver Female 7.41% 12.92% 16.15% 63.53%

Male 8.31% 13.93% 17.07% 60.70%

Muscle Female 5.60% 15.80% 10.79% 67.82%

Male 4.72% 16.73% 11.58% 66.99%
aThis article contains two crosses (cross C × E and cross E × C)
bThis study contains two crosses (cross 2 and cross 3), and we took the cross 2 as an example
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two parts based on mother origin. Consequently, we
retained all three variables in our subsequent analyses,
resulting in 12 treatment groups, comprised of three tis-
sues, two sexes, and two reciprocal crosses in the
present study.

An effective pipeline was applied for the allele-specific
expression analysis
To identify the parental origin of the mRNA of the off-
spring, we explored a novel pipeline using the ‘asSeq’
package in R [31]. Briefly, a set of R scripts was available
for genotype phasing based on the 1.4 million heterozy-
gous SNPs identified in the preceding step. Approxi-
mately 2% of the SNPs mentioned above were located in
the exon region. The high number of SNPs increased

the chances that an RNA-seq read could overlap with a
heterozygous genetic marker to enable its identification
as an allele-specific read.
To validate the accuracy of our ASE pipeline, we gener-

ated two artificial hybrid F1 libraries. Specifically, we
concatenated two male brain RNA-Seq fastq files from
cross 1 and cross 4, which had roughly equal read depths.
We also concatenated two female liver samples in the same
manner. The two simulated hybrid libraries and four ori-
ginal purebred libraries were handled similar to the other
hybrid libraries, using the heterozygous SNP lists of both
cross 2 and cross 3. We compared the expression ratio of
two simulated alleles (CG/WL) to the real expression ratio
of two samples (CG/WL) for each gene. A strong correl-
ation between the two measurements was observed

Fig. 1 Cross design. Cornish-Game (CG) and White-Leghorns (WL) were used to generate purebreed and hybrid progenies. There were four
crosses, Cross 1: CG × CG, cross 2: CG ×WL, cross 3: WL × CG, and cross 4: WL ×WL (the female parent is listed first)
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(Additional file 1: Figure S1), indicating that our ASE ana-
lysis pipeline was robust. Since our pipeline only counted
the local reads containing the heterozygous SNPs, we fur-
ther assessed the expression fold change (CG/WL) correl-
ation between the local reads method and the method of
counting total reads using edgeR [32–34]. The correlation
was also strong (Additional file 1: Figure S2). These results
demonstrated the feasibility of our pipeline.

Genes were classified into different categories based on
the type of regulatory divergence
A total of 24,881 genes from Ensembl v87 annotation were
analyzed. Approximately a fifth of the genes contained het-
erozygous SNPs and were expressed in our progeny samples
(Additional file 1: Table S1). For the genes containing hetero-
zygous SNPs, we observed significant expression differences
(p-value < 0.05, binomial test corrected for multiple compari-
sons by q-value method) between the purebred females
(cross 1 vs. cross 4), in 14.71% in the brain, 36.45% in the
liver, and 38.38% in muscle (consider the heterozygous SNP
list of cross 2, for example). In males, 17.64% of the genes in
the brain, 41.87% of the genes in the liver, and 37.84% of the
genes in muscle were expressed significantly differentially
(Additional file 1: Table S1).
Expressed genes were classified into different categories

based on the type of gene regulatory divergence [7, 35, 36]
(Fig. 3a, b, Table 1, Additional file 1: Figure S3-S5). Most
genes exhibited conserved or ambiguous expression, as

expected, considering the relatively recent divergence time
of the two breeds investigated. More than 70, 40%, and ap-
proximately 50% of the genes in the brain, liver, and
muscle, respectively, were classified as conserved. Nonethe-
less, we observed substantial cis- and trans-variation in the
hybrid crosses. There was a higher proportion of trans-
regulated gene expression variations than cis-regulated
gene expression in most tissues and across both sexes, par-
ticularly in muscle (Fig. 3c).
Genes regulated by both cis- and trans-regulatory varia-

tions were divided into four categories, including “cis +
trans (same)”, “cis + trans (opposite)”, “cis × trans”, and
“compensatory”. Genes classified as “cis + trans (same)”
show cis and trans-variations acting in a similar direction,
while genes classified into the other three categories show
cis and trans-variations acting in opposite directions, with
different expression trends on the two alleles. We ob-
served the latter pattern more frequently, and most genes
were classified as “compensatory” (Fig. 3c).
The gene proportions in each regulatory category were

similar among different tissues and between different
sexes, except for some variation between the muscle and
the other two tissues (Fisher’s exact test, Additional file 1:
Table S2). Unexpectedly, we observed only few loci with
consistent cis- or trans-regulatory divergence across dif-
ferent groups (Additional file 1: Figure S6). The stable cis-
or trans-regulatory divergence genes seem to play key
roles in phenotypic divergence. For example, IGFBP2,

Fig. 2 Principal Component Analysis of RNA-Seq data. Each point represents one sample, with shape indicating sex, color indicating tissue (All) or
cross (Brain, Liver, and Muscle). In this step, information on genes on the Z chromosome has been excluded
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TGFBI, PDGFRL, and IGF2R all showed significant ex-
pression bias between the two breeds investigated. The
genes are associated with chicken growth, which could ex-
plain the difference in growth rate between the two breeds
(Additional file 1: Table S3).

Genes regulated by trans-acting variation exhibit greater
sequence conservation
We counted the number of variants located 1 kb upstream
of transcription start sites of each gene using the genome
data of the four parents. The results showed greater varia-
tions upstream of cis-regulatory divergence genes than
upstream of trans-acted genes in all samples (Fig. 4a).
The ratio of the number of non-synonymous SNPs to

the number of synonymous SNPs (pN/pS) in the coding
sequences of each gene was calculated in the present study.
The pN/pS values in genes regulated by trans-variants
were lower than the pN/pS values of genes regulated by
cis-variants in all samples (Fig. 4b, Additional file 1:
Figure S7–S8).

Discussion
Previous studies on regulatory divergence genes did not
select identical time points from the embryo to adult

stages [7, 11, 12]. Genes are expressed differentially
across different developmental stages [37]; therefore,
different results would be obtained from the regulatory
divergence genes across different development stages.
We selected 1-day-old chicken because it is a critical
stage in their development when they transition from
embryo to chicks, and genes responsible for growth and
immunity begin to be expressed [38, 39].
Considering the relatively short divergence time, the

two inbred chicken strains are not similar to mouse
inbred lines, which exhibit high levels of consistency
within genomes. To enhance the reliability of our re-
sults, we have improved our analysis pipeline. First, the
SNP list we used to identify the parental origin was fil-
tered strictly from the re-sequencing data of the four
parents. The SNPs were statistically homozygous in each
parent; and therefore, heterozygous in each hybrid off-
spring. Secondly, we counted the total number of reads
covering at least one SNP marker across the whole tran-
script instead of counting the read number of each SNP.
Compared with the method using the existing strain-
specific reference genomes, our pipeline could improve
the accuracy of parental origin identification for hetero-
zygous SNPs in hybrid offspring because we sequenced

Fig. 3 Classification of genes according to the expression pattern of purebreed and hybrid data sets. Consider the male brain a and the female
brain b of cross 2, for example (for the other groups, see Additional file). Each point represents a single gene and is color-coded according to its
regulatory category. The coordinate position shows the average log2 expression fold-change between the alleles in the hybrids (y-axis) and
between the two purebreeds (x-axis). The proportion of each category is summarized in the bar graph c, where we removed the conserved and
ambiguous genes, and further subdivided the cis + trans category genes into two categories, based on whether the cis and trans variants acted
in the same direction or in opposite directions. The number above the bar represents the proportion of genes in the regulatory category, and the
number on the bar represents the gene count of the category
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their parents directly. The SNPs were used to mark the
parental origins of the alleles of each gene, which in-
creased the accuracy of classification. However, it also
resulted in a limited number of genes that could be
studied. Nevertheless, our study offers an example for

addressing similar situations where there is no specific
reference genome for different strains.
Although chicken domestication occurred several

thousand years ago, commercial populations were estab-
lished only over the last 200 years [29]. In our study,

Fig. 4 Sequence conservation analysis of the cis- and trans-regulatory divergence genes. a The probability density (y-axis) of variation count (x-
axis) 1-kb of DNA upstream of each gene’s transcription start site. The number following the regulatory category name in the legend refers to the
mean value of variation count of all genes in this category. The p-value above the legend was obtained using the Mann-Whitney U test. b The
pN/pS values in cis- and trans-regulatory divergence genes. The y-axis refers to the mean value of all genes in the category. Significance of the
difference between the two regulatory categories is labeled above the bar (* p < 0.05, t-test; ** p < 0.01, t-test)
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most genes exhibited conserved or ambiguous expression,
and more trans-regulatory variants compared to cis-
regulatory variants, which could be attributed to the rela-
tively short differentiation time between WL and CG. In
theory, the pleiotropic effects of trans-regulatory mutations
would result in selection to eliminate the most deleterious
trans-acting mutations [40]. In contrast, we could expect a
large proportion of cis-regulatory mutations to be largely
neutral, and therefore, to accumulate over time [9, 41]. The
large proportion of trans-regulatory mutations observed in
the present study suggest that artificial selection has pri-
marily acted on trans-regulatory mutations, but the neutral
cis-regulatory mutations have not accumulated substan-
tially over the relatively short period since the breeds were
established.
Genes regulated by both cis- and trans-variations act

in opposite directions more often than not, and most
genes were classified as “compensatory” in the present
study. This finding is consistent with the results of a pre-
vious study on house mice [36], in which the cis- and
trans-variants tended to act convergently to maintain
the stability of gene expression [11, 42]. Despite the lack
of a complete dosage compensation mechanism on the
sex chromosome [24–28], an extensive compensatory
trend persists in the chicken genome.
There were few loci with consistent cis- or trans-

regulatory variation among different tissues and between
different sexes. The result is consistent with the findings
of some previous ASE analyses, which suggested that
rare ASE genes are expressed consistently across tissues
[43, 44]. However, the cis- and trans-regulatory diver-
gence classification is much more complex than the ASE
analysis. Gene expression is characterized by spatiotem-
poral specificity. It is always controlled by the interaction
of cis-regulatory DNA sequences and trans-regulatory
factors, which could complicate the identification of
regulatory divergence. Statistical methods would not ac-
curately classify them based on limited expression infor-
mation. However, statistical result would still be reliable
and valuable for subsequent analyses.
Cis-regulatory elements are primarily located upstream

of coding sequences. Our results are consistent with the
findings of a recent study in Drosophila [7], which de-
tected greater variants 1 kb upstream of transcription start
sites of cis-regulatory divergence genes than upstream of
transcription start sites trans-acted genes, suggesting that
our classification results were reliable. In addition, genes
regulated by trans-variants showed a lower pN/pS value
than cis-acting genes. The pN/pS value has been used to
assess the degree of selective constraint. Genes under high
selective constraint are expected to have lower pN/pS
values [45, 46]. Our results suggest that trans-regulatory
divergence genes were subjected to high selective con-
straint in the course of chicken domestication and could

have been under stronger artificial selection, which is con-
sistent with the findings of similar studies in mice [11]
that reported that trans-regulated genes exhibited greater
sequence conservation based on the computed Genomic
Evolutionary Profiling scores for each exon.

Conclusions
In the present study, we present a pipeline for exploring
ASE in the hybrid progenies of inbred lines without a spe-
cific reference genome. Using the genome sequences of par-
ents and RNA-seq data of offspring, we classified the genes
expressed in the chicken genome into different categories
based on the type of regulatory divergence involved. More
instances of trans-regulatory divergence than instances of
cis-regulatory divergence were observed due to the relatively
short history of divergence in the two parental breeds. Con-
siderable compensatory cis- and trans-regulatory changes
exist in the chicken genome. The sequence conservation
analysis results suggested that artificial selection associated
with domestication could have potentially acted on genes
regulated by trans-variations in the course of the establish-
ment of commercial chicken breeds.

Methods
Samples
The inbred chickens used in our study were obtained from
the National Engineering Laboratory for Animal Breeding
of the China Agricultural University. We collected bra-
chial vein blood from 4 parents of two reciprocal crosses
and extracted DNA using the phenol-chloroform method
according to standard protocols. Three tissues, including
brain tissue, liver tissue, and breast muscle tissue were col-
lected from 23 1-day-old chickens. All the tools and
equipment used for sampling were sterilized by heat or
ultraviolet rays.
Our animal experiments were approved by the Animal

Care and Use Committee of China Agricultural University.
All the animals were fed and handled according to the reg-
ulations and guidelines established by this committee, and
all efforts were made to minimize suffering. The 4 parental
chickens of the two reciprocal crosses were released after
collected brachial vein blood, and the 23 1-day-old chickens
were beheaded before we collected tissues.
The tissues were deposited in RNAlater (Invitrogen,

Carlsbad, CA, USA), an RNA stabilization solution, at 4 de-
grees Celsius for one night and then moved to − 20 degrees
Celsius refrigerator. Total RNA was extracted from the
tissue samples using Trizol reagent (Invitrogen, Carlsbad,
CA, USA) according to manufacturer’s instructions. The
DNA and RNA quality was assessed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific Inc.,
USA) and agarose gel electrophoresis.
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DNA & RNA sequencing and data alignment
Whole-genome sequencing of parent genomes and RNA-
seq of offspring were performed on the Illumina HiSeq
2500 platform (Illumina Inc., San Diego, CA, USA). Library
construction and sequencing were performed according to
manufacturers’ instructions (TruSeq DNA Sample Prep Kit,
TruSeq RNA Sample Prep Kit, TruSeq PE Cluster Kit v3-
cBot, and TruSeq SBS Kit v3, Illumina). Both DNA and
RNA were sequenced with paired-end 100-bp reads with a
300-bp insert. All sequencing data were filtered using an
NGS QC Toolkit v2.3 [47] according to default parameters.
To ensure the accuracy of RNA-seq data alignment,

we simulated four parental genomes. The re-sequencing
data of the four parents were mapped to the chicken
reference genome (Gallus_gallus-5.0, http://hgdownload.
soe.ucsc.edu/downloads.html#chicken) using the Burrows-
Wheeler Aligner v0.7.15 [48]. The BAM files were sorted
and duplicate reads removed using Picard toolkit
(https://github.com/broadinstitute/picard). The Genome
Analysis Toolkit v3.6 [49] was used for SNP calling.
Nucleotides from the reference genome were substituted
if the mutant base was supported by more reads than
the original reference base, which was performed using
VCFtools v0.1.13 [50]. The four simulated parental ge-
nomes were used to replace the reference genome in the
RNA-Seq data alignment of the hybrid crosses. For each
hybrid cross, we identified SNPs between two parents
that were homozygous in each parent with > 10 support-
ing reads from the re-sequencing data. The SNP list di-
vided each hybrid offspring genome into two parts based
on the parent-of-origin.
The RNA-Seq data alignment was performed using

STAR v2.5.3a [51]. Based on the SNP list between
every two parents, we counted the allele-specific reads
from the two parts of each hybrid offspring at exon set
level, using the ‘asSeq’ package in R [31]. Specifically,
we counted the total number of reads covering at least
one SNP across the whole exon set. In the case of one
read containing more than one SNPs, we set the par-
ameter of prop.cut to 0.9, that is, we assigned a read
to one of the two parental alleles if the proportion of
those heterozygous SNPs suggested the read that was
from that allele was greater than 0.9. In practice, this
ensures all the SNPs on one read are consistent. If
not, they would be discarded. We then collapsed
counts at the exon level to the gene level according to
the Ensembl gene annotation file (ftp://ftp.ensembl.
org/pub/release-91/gtf/gallus_gallus). We filtered the
expressed genes using the following criterion: for each
sex and each tissue, the total reads of the three pure-
bred offspring and the three hybrid offspring have to
be between 6 and 1000. The read counts of each sam-
ple were further normalized based on the sum of reads
that could be mapped to the whole genome.

One male muscle sample of cross 3 was removed
because its expression pattern was abnormal. We
speculated that it could have been mixed with another
cross by error.

Classification of different regulatory categories
To categorize regulatory variations, we referenced the
methods applied in the study of regulatory divergence in
Drosophila [7] and house mouse [36]. The binomial test
was used to identify differential expression both between
the two purebred progenies (P) and between the two
alleles of the hybrid progenies (H). Fisher’s exact test
was used to evaluate the breed-specific RNA abundance
ratio differences between the P and H data sets to detect
any trans effects (T). False discovery rate was controlled
by adopting a method of q-value estimation [52] to
correct the p-values of both the binomial test and the
Fisher’s exact test. A difference was considered signifi-
cantly different when q < 0.05. The expressed genes were
classified into eight categories according to the following
criteria:

(1) Cis: Significant difference in P and H, no significant
difference in T.

(2) Trans: Significant difference in P, but not H,
significant difference in T.

(3) Cis + trans (same): significant difference in P, H.
and T, the log2-transformed strain-specific ratios
in P and H have the same sign, and the
difference in P is higher than the difference in H.

(4) Cis + trans (opposite): significant difference in P,
H and T, the log2-transformed strain-specific
ratios in P and H have the same sign, and the
difference in H is higher than the difference in P.

(5) Cis × trans: significant difference in P, H and T, and
the log2-transformed strain-specific ratios in P and
H have the opposite sign.

(6) Compensatory: Significant difference in H, but not
in P, and significant difference in T.

(7) Conserved: No significant difference in H, P, and T.
(8) Ambiguous: All other patterns.

Sequence conservation analysis
Re-sequencing data from four parents were used to
study the sequence conservation of cis- and trans-
regulatory divergence genes. The pN/pS ratio of the
coding sequence and the number of variants in 1 kb up-
stream from the transcription start site were calculated
using the results of SNP annotation performed using
SnpEff [53]. Non-synonymous mutation contains a mis-
sense variant, start codon lost, start codon gained, stop
codon lost, and stop codon gained. Synonymous muta-
tion refers to the variant in the coding region causing a
codon that produces the same amino acid.

Wang et al. BMC Genomics          (2019) 20:933 Page 8 of 10

http://hgdownload.soe.ucsc.edu/downloads.html#chicken
http://hgdownload.soe.ucsc.edu/downloads.html#chicken
https://github.com/broadinstitute/picard
ftp://ftp.ensembl.org/pub/release-91/gtf/gallus_gallus
ftp://ftp.ensembl.org/pub/release-91/gtf/gallus_gallus


Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6342-5.

Additional file 1: Figure S1. Assessment of our analysis pipeline for
estimating allele specific expression. Figure S2. Assessment of our local
reads method for estimating allele specific expression. Figure S3.
Classification of genes in brain. Figure S4. Classification of genes in liver.
Figure S5. Classification of genes in muscle. Figure S6. Intersection of
different groups of cis- and trans- regulatory genes. Figure S7. The ratio
of the numbers of non-synonymous SNPs to the numbers of
synonymous SNPs (pN/pS) in different groups of cross 2. Figure S8. The
ratio of the numbers of non-synonymous SNPs to the numbers of
synonymous SNPs (pN/pS) in different groups of cross 3. Table S1. The
summary of differential expression genes in hybrid and purebred
progenies Table S2. The difference of gene proportion of each categor-
ies between different groups Table S3. The gene list of intersection of
each group

Abbreviations
ASE: Allele specific expression; CG: Cornish Game; WL: White Leghorn

Acknowledgments
We would like to thank our colleagues at the China Agricultural University
for their assistance in sample collection, and Professor Judith Mank for
helpful comments on the manuscript. We also thank Editage (www.editage.
cn) for the English language editing.

Authors’ contributions
QW analyzed and interpreted the sequencing data and drafted the
manuscript. YJ participated in the reciprocal cross experiment, the collection
of samples, and revised the manuscript. YW performed DNA & RNA
extraction and preparation for sequencing, and revised the manuscript. ZJ
and XZ provided some suggestions for the improvement of the study and
substantively revised the manuscript. ZZ and CN participated in sample
collection and part of data analysis. JL provided experimental animals and
assisted in the carrying out of the reciprocal cross experiment. NY
participated in the design of the study. LQ conceived the study, and
participated in its design and coordination. All the authors have read and
approved the final manuscript.

Funding
This work was supported by the Beijing Innovation Team of the Modern
Agro-industry Technology Research System (BAIC04–2016, BAIC04–2017). The
funding body did not exert influence on the design of the study, on data
collection, analysis, and interpretation, or on the writing of the manuscript.

Availability of data and materials
The datasets generated and/or analyzed during the current study are
available in the NCBI BioProject (https://submit.ncbi.nlm.nih.gov/subs/
bioproject/) with accession number PRJNA591354.

Ethics approval
Our animal experiments were approved by the Animal Care and Use
Committee of China Agricultural University (Approval ID: XXCB-20090209). All
the animals were fed and handled according to the regulations and
guidelines established by this committee, and all efforts were made to
minimize suffering.

Consent for publication
Not applicable

Competing interests
The author NY is a member of the editorial board (Associate Editor) of this
journal.

Author details
1State Key Laboratory of Animal Nutrition, Department of Animal Genetics
and Breeding, National Engineering Laboratory for Animal Breeding, College
of Animal Science and Technology, China Agricultural University, Beijing,

China. 2Key Laboratory for Sustainable Utilization of Marine Fisheries
Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research
Institute, Chinese Academy of Fishery Sciences, Qingdao, China. 3Institute of
Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
4Department of Animal Science and Technology, Qingdao Agricultural
University, Qingdao, China. 5Department of Animal Sciences, Center for
Reproductive Biology, Veterinary and Biomedical Research Building,
Washington State University, Pullman, USA. 6College of Animal Sciences and
Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.

Received: 11 June 2019 Accepted: 27 November 2019

References
1. Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans

gene regulation. Nat. 2004;430(6995):85–8.
2. Cowles CR, Hirschhorn JN, Altshuler D, Lander ES. Detection of regulatory

variation in mouse genes. Nat Genet. 2002;32(3):432–7.
3. Gibson G, Weir B. The quantitative genetics of transcription. Trends Genet.

2005;21(11):616–23.
4. Wittkopp PJ. Genomic sources of regulatory variation in cis and in trans. Cell

Mol Life Sci. 2005;62(16):1779–83.
5. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev

Genet. 2007;8(3):206–16.
6. Meiklejohn CD, Coolon JD, Hartl DL, Wittkopp PJ. The roles of cis- and trans-

regulation in the evolution of regulatory incompatibilities and sexually
dimorphic gene expression. Genome Res. 2014;24(1):84–95.

7. McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ.
Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res.
2010;20(6):816–25.

8. Gompel N, Prud'homme B, Wittkopp PJ, Kassner VA, Carroll SB. Chance
caught on the wing: cis-regulatory evolution and the origin of pigment
patterns in Drosophila. Nat. 2005;433(7025):481–7.

9. Wittkopp PJ, Haerum BK, Clark AG. Regulatory changes underlying
expression differences within and between Drosophila species. Nat Genet.
2008;40(3):346–50.

10. Tian L, Khan A, Ning Z, Yuan K, Zhang C, Lou H, Yuan Y, Xu S. Genome-wide
comparison of allele-specific gene expression between African and
European populations. Hum Mol Genet. 2018;27(6):1067–77.

11. Goncalves A, Leigh-Brown S, Thybert D, Stefflova K, Turro E, Flicek P, Brazma
A, Odom DT, Marioni JC. Extensive compensatory cis-trans regulation in the
evolution of mouse gene expression. Genome Res. 2012;22(12):2376–84.

12. Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, Wang JR,
Morgan AP, Calaway JD, Aylor DL, et al. Analyses of allele-specific gene
expression in highly divergent mouse crosses identifies pervasive allelic
imbalance. Nat Genet. 2015;47(4):353–60.

13. Combes MC, Hueber Y, Dereeper A, Rialle S, Herrera JC, Lashermes P.
Regulatory divergence between parental alleles determines gene expression
patterns in hybrids. Genome Biol Evol. 2015;7(4):1110–21.

14. Pirinen M, Lappalainen T, Zaitlen NA, Consortium GT, Dermitzakis ET,
Donnelly P, McCarthy MI, Rivas MA. Assessing allele-specific expression
across multiple tissues from RNA-seq read data. Bioinform. 2015;31(15):
2497–504.

15. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse
H19 gene. Nat. 1991;351(6322):153–5.

16. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse
insulin-like growth factor II gene. Cell. 1991;64(4):849–59.

17. Zhang M, Zhao H, Xie S, Chen J, Xu Y, Wang K, Zhao H, Guan H, Hu X, Jiao
Y, et al. Extensive, clustered parental imprinting of protein-coding and
noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci U S A.
2011;108(50):20042–7.

18. Fresard L, Leroux S, Servin B, Gourichon D, Dehais P, Cristobal MS, Marsaud
N, Vignoles F, Bed'hom B, Coville JL, et al. Transcriptome-wide investigation
of genomic imprinting in chicken. Nucleic Acids Res. 2014.

19. Wang Q, Li K, Zhang D, Li J, Xu G, Zheng J, Yang N, Qu L. Next-generation
sequencing techniques reveal that genomic imprinting is absent in day-old
Gallus gallus domesticus brains. PLoS One. 2015;10(7):e0132345.

20. Zhuo Z, Lamont SJ, Abasht B. RNA-Seq analyses identify frequent allele
specific expression and no evidence of genomic imprinting in specific
embryonic tissues of chicken. Sci Rep. 2017;7(1):11944.

21. Lyon MF. X-chromosome inactivation. Curr Biol. 1999;9(7):R235–7.

Wang et al. BMC Genomics          (2019) 20:933 Page 9 of 10

https://doi.org/10.1186/s12864-019-6342-5
https://doi.org/10.1186/s12864-019-6342-5
http://www.editage.cn
http://www.editage.cn
https://submit.ncbi.nlm.nih.gov/subs/bioproject/
https://submit.ncbi.nlm.nih.gov/subs/bioproject/


22. Nguyen DK, Disteche CM. Dosage compensation of the active X
chromosome in mammals. Nat Genet. 2006;38(1):47–53.

23. Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schutz F, Daish T,
Grutzner F, Kaessmann H. Mechanisms and evolutionary patterns of
mammalian and avian dosage compensation. PLoS Biol. 2012;10(5):
e1001328.

24. Ellegren H, Hultin-Rosenberg L, Brunstrom B, Dencker L, Kultima K, Scholz B.
Faced with inequality: chicken do not have a general dosage compensation
of sex-linked genes. BMC Biol. 2007;5:40.

25. Mank JE, Ellegren H. All dosage compensation is local: gene-by-gene
regulation of sex-biased expression on the chicken Z chromosome. Hered
(Edinb). 2009;102(3):312–20.

26. Zimmer F, Harrison PW, Dessimoz C, Mank JE. Compensation of dosage-
sensitive genes on the chicken Z chromosome. Genome Biol Evol. 2016.

27. Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-
like growth factor type-2 receptor is imprinted and closely linked to the
Tme locus. Nat. 1991;349(6304):84–7.

28. Wang Q, Mank JE, Li J, Yang N, Qu L. Allele-specific expression analysis does
not support sex chromosome inactivation on the chicken Z chromosome.
Genome Biol Evol. 2017;9(3):619–26.

29. Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, Jiang
L, Ingman M, Sharpe T, Ka S, et al. Whole-genome resequencing reveals loci
under selection during chicken domestication. Nat. 2010;464(7288):587–91.

30. Association AP. The American standard of perfection, illustrated. American
Poultry Association: A complete description of all recognized breeds and
varieties of domestic poultry; 2001.

31. Sun W. A statistical framework for eQTL mapping using RNA-seq data.
Biometrics. 2012;68(1):1–11.

32. Robinson MD, Smyth GK. Small-sample estimation of negative binomial
dispersion, with applications to SAGE data. Biostatistics. 2008;9(2):321–32.

33. Robinson MD, Smyth GK. Moderated statistical tests for assessing differences
in tag abundance. Bioinform. 2007;23(21):2881–7.

34. Lun AT, Chen Y, Smyth GK. It's DE-licious: a recipe for differential expression
analyses of RNA-seq experiments using quasi-likelihood methods in edgeR.
Methods Mol Biol. 2016;1418:391–416.

35. Landry CR, Wittkopp PJ, Taubes CH, Ranz JM, Clark AG, Hartl DL.
Compensatory cis-trans evolution and the dysregulation of gene expression
in interspecific hybrids of Drosophila. Genet. 2005;171(4):1813–22.

36. Mack KL, Campbell P, Nachman MW. Gene regulation and speciation in
house mice. Genome Res. 2016;26(4):451–61.

37. Xu Z, Che T, Li F, Tian K, Zhu Q, Mishra SK, Dai Y, Li M, Li D. The temporal
expression patterns of brain transcriptome during chicken development
and ageing. BMC Genomics. 2018;19(1):917.

38. Dushyanth K, Bhattacharya TK, Shukla R, Chatterjee RN, Sitaramamma T,
Paswan C, Guru Vishnu P. Gene expression and polymorphism of Myostatin
gene and its association with growth traits in chicken. Anim Biotechnol.
2016;27(4):269–77.

39. Schokker D, Hoekman AJ, Smits MA, Rebel JM. Gene expression patterns
associated with chicken jejunal development. Dev Comp Immunol. 2009;
33(11):1156–64.

40. Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, Thomas WK. The
transcriptional consequences of mutation and natural selection in
Caenorhabditis elegans. Nat Genet. 2005;37(5):544–8.

41. Lemos B, Araripe LO, Fontanillas P, Hartl DL. Dominance and the
evolutionary accumulation of cis- and trans-effects on gene expression. Proc
Natl Acad Sci U S A. 2008;105(38):14471–6.

42. Coolon JD, McManus CJ, Stevenson KR, Graveley BR, Wittkopp PJ.
Tempo and mode of regulatory evolution in Drosophila. Genome Res.
2014;24(5):797–808.

43. Chamberlain AJ, Vander Jagt CJ, Hayes BJ, Khansefid M, Marett LC, Millen
CA, Nguyen TT, Goddard ME. Extensive variation between tissues in allele
specific expression in an outbred mammal. BMC Genomics. 2015;16:993.

44. Kukurba KR, Zhang R, Li X, Smith KS, Knowles DA, How Tan M, Piskol
R, Lek M, Snyder M, Macarthur DG, et al. Allelic expression of
deleterious protein-coding variants across human tissues. PLoS Genet.
2014;10(5):e1004304.

45. Bjornerfeldt S, Webster MT, Vila C. Relaxation of selective constraint on dog
mitochondrial DNA following domestication. Genome Res. 2006;16(8):990–4.

46. Wang Z, Yonezawa T, Liu B, Ma T, Shen X, Su J, Guo S, Hasegawa M, Liu J.
Domestication relaxed selective constraints on the yak mitochondrial
genome. Mol Biol Evol. 2011;28(5):1553–6.

47. Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next
generation sequencing data. PLoS One. 2012;7(2):e30619.

48. Li H, Durbin R. Fast and accurate long-read alignment with burrows-
wheeler transform. Bioinformatics. 2010;26(5):589–95.

49. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis
toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 2010;20(9):1297–303.

50. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format
and VCFtools. Bioinform. 2011;27(15):2156–8.

51. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
Bioinform. 2013;29(1):15–21.

52. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc
Natl Acad Sci U S A. 2003;100(16):9440–5.

53. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
Ruden DM. A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wang et al. BMC Genomics          (2019) 20:933 Page 10 of 10


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	The profile of the parental genomes and gene expression in different tissues, sexes of progenies
	An effective pipeline was applied for the allele-specific expression analysis
	Genes were classified into different categories based on the type of regulatory divergence
	Genes regulated by trans-acting variation exhibit greater sequence conservation

	Discussion
	Conclusions
	Methods
	Samples
	DNA & RNA sequencing and data alignment
	Classification of different regulatory categories
	Sequence conservation analysis

	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

