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Breast cancer (BC) is the most common malignancy among females. Chemotherapy
drugs remain the cornerstone of treatment of BC and undergo significant shifts over the
past 100 years. The advent of immunotherapy presents promising opportunities and
constitutes a significant complementary to existing therapeutic strategies for BC.
Chemotherapy as a cytotoxic treatment that targets proliferation malignant cells has
recently been shown as an effective immune-stimulus in multiple ways. Chemotherapeutic
drugs can cause the release of damage-associated molecular patterns (DAMPs) from
dying tumor cells, which result in long-lasting antitumor immunity by the key process of
immunogenic cell death (ICD). Furthermore, Off-target effects of chemotherapy on
immune cell subsets mainly involve activation of immune effector cells including natural
killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of
immunosuppressive cells including Treg cells, M2 macrophages and myeloid-derived
suppressor cells (MDSCs). Current mini-review summarized recent large clinical trials
regarding the combination of chemotherapy and immunotherapy in BC and addressed
the molecular mechanisms of immunostimulatory properties of chemotherapy in BC. The
purpose of our work was to explore the immune-stimulating effects of chemotherapy at
the molecular level based on the evidence from clinical trials, which might be a rationale for
combinations of chemotherapy and immunotherapy in BC.

Keywords: breast cancer, chemotherapy, immunotherapy, immunogenic modulation, clinic trial
INTRODUCTION

Breast cancer (BC), a highly heterogeneous disease, is the most common cancer among women (1).
The 2021 global cancer statistics showed about 2.3 million newly diagnosed BC and approximately
0.69 million BC deaths, with a higher incidence than lung cancer (2, 3). The survival rates of BC vary
widely worldwide, with an estimated five-year survival rate of 80% in developed countries while less
than 40% in developing countries (1, 4). BC is generally comprised of luminal A, luminal B, HER2
overexpression, basal-like triple negative breast cancer (TNBC), and other special subtypes
org January 2022 | Volume 12 | Article 8194051
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proposed by St. Gallen International Breast Cancer Conference
in 2013 (5). Subtype identification provides a fundamental basis
for decision making in the therapeutic management of BC (6).
Thus, to select the most appropriate systemic therapy for BC,
subtype classification is quite necessary (7). Modern therapy of
BC involves a combination of surgery of operable tumors,
chemotherapy (neoadjuvant/adjuvant), endocrine therapy,
targeted therapy, radiotherapy and immunotherapy (8). The
initial approach for BC was aggressive surgery in the early 20th
century (6). And the types of chemotherapy and their indications
have experienced rapid growth since radical mastectomy evolved
from more aggressive to less aggressive (9). In 2001, a National
Institute of Health consensus panel concluded that owing to a
clear survival benefit by adjuvant polychemotherapy, it should be
recommended to the majority of women with localized BC
regardless of lymph node, menopausal, or hormone receptor
status (10). Since then, the status of chemotherapy in the
treatment of BC has been established.

It is traditionally recognized that BC is characterized by low
tumor mutation burden (TMB) and poorly immunogenic.
However, recent evidence revealed that infiltrating lymphocytes
(TILs) and programmed cell death-ligand 1 (PD-L1) were
expressed in a considerable proportion of HER2+ BC and TNBC
patients (11). Cancer immunotherapy aims to provoke an immune
response by either enhancing the cytotoxic potential of immune
cells or blocking the immunosuppressive tumormicroenvironment
(12). Immunotherapy has a rich content including immune
checkpoint blockade, adoptive cell therapies, adoptive cell
therapies vaccines and oncolytic viruses (13). Among these
therapy strategies, the United States Food and Drug
Administration (FDA) has approved immune checkpoint
inhibitors (ICIs) targeting PD-1 (programmed cell death receptor
1), PD-L1 (programmed cell death 1 ligand 1), and CTLA-4
(cytotoxic T-lymphocyte-associated antigen-4) for treatment of
solid tumors such as BC (14, 15). Among all subtype of BC,
TNBC, the most invasive BC, was regarded as the most
immunogenic type due to the presence of tumor neoantigens, and
high levels of lymphocytic infiltration, mutation (16). The results of
the IMpassion130 trial demonstrated a substantial overall survival
(OS) benefit and brought BC into immunotherapy era (17). Thus,
considerable effort has been dedicated to combination of standard-
of-care chemotherapies with immunotherapy in BC.

Chemotherapy was previously thought to be solely
immunosuppressive, but recent data showed that it might also
possess immunostimulatory properties. In this mini review, we
summarized the updated clinical trials on immunotherapy and
chemotherapy combinations in BC. More importantly, we
discussed recent literature on the immunomodulatory effects of
chemotherapy with a focus on immunostimulatory function.
IMMUNE CHECKPOINT INHIBITORS
COMBINED WITH CHEMOTHERAPY IN BC

First, the IMpassion130 (NCT02425891) trial funded by F.
Hoffmann–La Roche/Genentech comparing chemotherapy plus
Frontiers in Immunology | www.frontiersin.org 2
placebo versus chemotherapy plus atezolizumab brought BC into
the immunotherapy era. In this phase 3 trial, 902 patients with
untreated metastatic TNBC were randomly assigned (in a 1:1
ratio) to receive atezolizumab plus nab-paclitaxel or placebo plus
nab-paclitaxel. Patients received atezolizumab 840mg or placebo
intravenously on days 1 and 15 and received nab-paclitaxel at a
dose of 100 mg/m2 that administered intravenously on days 1, 8,
and 15 of every 28-day cycle. This trial displayed a substantial
progression-free survival (PFS) benefit in patients with
metastatic TNBC either the intention-to-treat population or
the PD-L1–positive subgroup. With a median follow-up of
12.9 months, among the ITT population, the median PFS was
significantly prolonged after the addition of atezolizumab as
compared to chemotherapy alone (7.2 vs 5.5 months); further, in
the PD-L1 positive population, the respective PFS benefit was
more improved (7.5 vs 5.0 months). Regarding the intention-to-
treat analysis, the median OS was 21.3 months (atezolizumab
plus nab-paclitaxel) and 17.6 months (placebo plus nab-
paclitaxel), while in the PD-L1 positive population, the OS was
increased 9.5 months with the addition of atezolizumab (25.0 vs.
15.5 months) (18). The above data has attracted significant
interest in clinical scientist, and then a series of ongoing trials
that were design for chemotherapy combined with
immunotherapy begun to emerge. Subsequent randomized
Phase III trial IMpassion131 (NCT03125902) evaluated first-
line paclitaxel with or without atezolizumab for unresectable
locally advanced/metastatic TNBC. 651 eligible patients were
randomized 2:1 to atezolizumab plus paclitaxel or placebo plus
paclitaxel. At the primary analysis, no significant improvement
of PFS or OS was observed while adding atezolizumab to
paclitaxel and the reasons for this remain unclear. At a median
follow-up of 9.0 months (atezolizumab-paclitaxel arm) and 8.6
months (placebo-paclitaxel arm), in the PD-L1-positive
population, median PFS was 6.0 months and 5.7 months,
respectively. Final OS results also showed no difference
between arms (atezolizumab-paclitaxel arm 22.1 months versus
placebo-paclitaxel arm 28.3 months). Results in the ITT
population were in accord with the PD-L1-positive population.
Conclusions from IMpassion131 also contrasted with results
from the KEYNOTE-355 trial (we will further elaborate below)
that evaluated a more extensively chemotherapy backbones
(including both paclitaxel and nab-paclitaxel, as well as
gemcitabine/carboplatin) with a different immunotherapy
agent, pembrolizumab (15). Both IMpassion130 and
IMpassion131 excluded patients with early relapse (disease
progression within 12 months of chemotherapy for early breast
cancer), however IMpassion132 (NCT03371017) is one of the
first trials prospectively focusing on the early relapsing TNBC
population. The IMpassion132 trial combined atezolizumab with
two commonly used non-taxane chemotherapy regimens
(gemcitabine plus carboplatin, or single-agent capecitabine),
which aimed to determine whether similar improvement
observed in the IMpassion130 could be achieved with an
alternative chemotherapy backbone in the case of early relapse.
This phase III trial is ongoing and the primary end point is OS in
the ITT population (19).
January 2022 | Volume 12 | Article 819405
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KEYNOTE-355 (NCT02819518), compared pembrolizumab
plus chemotherapy (nab-paclitaxel; paclitaxel; or gemcitabine
plus carboplatin) with placebo plus chemotherapy, showed a
significant and clinically meaningful improvement in PFS among
patients with locally recurrent inoperable or metastatic TNBC
with combined posit ive score(CPS)of 10 or more.
Pembrolizumab combined chemotherapy showed a positive
result both in patients CPS≥10 and CPS≥1. Median PFS was
9·7 months and 5·6 months (pembrolizumab–chemotherapy and
placebo–chemotherapy, respective) among patients with
CPS≥10. Among patients with CPS≥1, median PFS was 7·6
and 5·6 months. Results in the ITT population were 7·5 and
5·6 months. These findings suggested a role for the combination
of pembrolizumab and chemotherapy for the first-line treatment
of metastatic TNBC (20). Compared to KEYNOTE-355, another
ongoing phase III clinical trial KEYNOTE-522 (NCT03036488)
mainly focused on patients with early TNBC. A pathological
complete response (pCR) at the time of definitive surgery and
event-free survival (EFS) in the ITT population were the two
primary end points. A total of 1174 patients with previously
untreated stage II or stage III TNBC were randomly assigned (in
a 2:1 ratio) to the pembrolizumab–chemotherapy group (784
patients) or the placebo–chemotherapy group (390 patients).
Patients in pembrolizumab–chemotherapy group received
therapy with pembrolizumab plus paclitaxel and carboplatin.
Placebo–chemotherapy group received placebo plus paclitaxel
and carboplatin, and both groups received doxorubicin–
cyclophosphamide or epirubicin–cyclophosphamide. At the
first interim analysis of 602 patients, the percentage of patients
with a pCR was 64.8% (pembrolizumab–chemotherapy group)
and 51.2% (placebo–chemotherapy group). In the PD-L1–
positive population, the percentage of patients with a pCR was
68.9% versus 54.9% (pembrolizumab–chemotherapy group
versus placebo–chemotherapy group), while the percentage of
patients with a pCR was 45.3% versus 30.3% (pembrolizumab–
chemotherapy group versus placebo–chemotherapy group) in
the PD-L1–negative population. The patients who received
pembrolizumab showed a significantly higher pathological
complete response percentage than those who received
placebo. Across all treatment phases, the incidence of
treatment-related adverse events of grade 3 or higher was
78.0% and 73.0%, including death in 0.4% (3 patients) and
0.3% (1 patient), in the pembrolizumab–chemotherapy group
and placebo–chemotherapy group, respectively (21).

The above clinical trials including chemotherapy plus
atezolizumab or pembrolizumab not only provide powerful
evidence for the benefits of chemotherapy combined
with immunotherapy, but also provide us new treatment
alternatives, which enable more BC patients to benefit
from immunotherapy. Several clinical trials have been designed
to explore the potentiality of chemotherapy combined
with immunotherapy with a variety of patterns. I-SPY2
trial which focus on the BC patients with a high-risk and
stage II/III evaluated pCR rates of pembrolizumab combined
with neoadjuvant chemotherapy. Both NCT02513472
and NCT03051659 paid attention to the combination of
Frontiers in Immunology | www.frontiersin.org 3
pembrolizumab and eribulin. A summary of completed and
ongoing Phase Ib/II and Phase III clinical trials in BC is
presented in Tables 1, 2.
ENHANCING THE ANTIGENICITY OR
ADJUVANTICITY OF BC CELLS

Impact of Chemotherapy on Tumor
Antigenicity
In recent years, in the absence of infection, a novel type of cell
death has been shown to be capable of triggering CD8+ T cells-
mediated responses against “dying cell” neoantigens through cell
stress-related processes, which has become an emerging research
interest and has been referred to as “immunogenic cell death”
(ICD) (33, 34). Chemotherapy-mediated ICD is also governed by
cell stress, where the involved fundamental processes are
regulated by cytoprotective pathways such as autophagy and
endoplasmic reticulum stress (35, 36). Evidence available
indicated that obviously enhanced tumor antigenicity induced
by chemotherapeutic drugs might be caused by elevated major
histocompatibility complex (MHC) expression and presentation
of tumor neoantigens (TNA) or tumor-associated antigens
(TAA) (37). Many existing chemotherapeutic agents and
ionizing radiation can enhance the tumor antigenicity and the
adjuvanticity effects of malignant cells when they elicit ICD and
anticancer immunity (38). Anthracyclines, the cornerstone of
chemotherapy regimens for BC, have been proven to one
initiator or potentiator of ICD process through activation of
the NLRP3 inflammasome (39). Previous preclinical studies
demonstrated that 5-fluorouracil (5-FU) directly induced the
upregulation of membrane-associated carcinoembryonic antigen
(CEA) and MHC molecules in BC cell lines (40). Docetaxel and
doxorubicin were also shown to promote the expression of
antigen-processing machinery components, resulting in
increased loading of MHC-I molecules in BC cells (41).
Topotecan characterized as topoisomerase I-targeting drug
showed immunogenic potential in TNBC cells by stimulating
MHC I expression, inducing the secretion of interferon-b and
activation of type I IFN signaling (42). Furthermore, an
increasing expression of antigen-presenting molecules (MHC-I,
MHC-II, and CD1d) was observed after gemcitabine and
cyclophosphamide treatment in 4T1 mammary carcinoma
cells, and thus promoting the antigen presenting behavior of
dendritic cells (DCs) (43–45). The elevated expression of MHC-
II and CD86 mediated by novel chemotherapeutic compound
was also reported in TNBC cell line MDA-MB-231 (46). There
are clear associations between the presence of MHC molecules
and clinical outcomes in BC (47). Higher expression of MHC
class II (MHC II) pathway genes expressions might predict
longer disease-free survival (DFS) and low risk of recurrence
for TNBC patients (48). Collectively, the upregulation of MHC-
related molecules could remodel the immunopeptidome of
cancer cells after chemotherapy, and thus enhancing
their antigenicity.
January 2022 | Volume 12 | Article 819405
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Chemotherapy-Induced Alterations of
Damage-Associated Molecular Patterns
(DAMPs)
At late time point of cell death, tumor cells can transfer “eat me
signals” to facilitate immune cells phagocytosis and tumor
antigen presentation, resulting in the conversion of dying
tumor cells to adjuvanted-endogenous tumor vaccines (49).
The nature of DAMPs is the fundamentally dynamic
responding to chemotherapy-elicited cell stress that involve in
multi faceted influences on extra- and intracel lular
microenvironments (50). The release of DAMPs often reflects
the re-expression of novel membrane-bound, secreted proteins
and increased intracellular components, such as type I interferon
and adenosine triphosphate (ATP) (51). Among them, high
mobility group box 1 (HMGB1), calreticulin (CRT) and
surface heat shock protein 90 (HSP90) have been recognized as
key ICD-related DAMPs, which were reported to improve
antigen uptake and presentation of DC cells, and assist the
Frontiers in Immunology | www.frontiersin.org 4
CD8+ T cells to exert antitumor activity (52–54). These
DAMPs induced by chemotherapeutic drugs could promote a
state of anti-tumor immunity. However, other studies showed
that DAMPs such as HMGB1, CRT, and ATP were also involved
in BC progression, metastasis, and drug resistance (55–57). So,
DAMPs represent a double-edged sword in BC.

The interactions between HMGB1 and TLR-2, TLR-4, and
TLR-9 could also participate in cross-presentation of anti-tumor
T lymphocytes in vivo, which lead to the activation of DCs and
trigger antitumor immune responses (58, 59). In BC patients, the
expression of HMGB1 was able to effectively measure the
immunogenicity and effectiveness of chemotherapeutic drugs
(60). In vitro, the level of extracellular HMGB1 was increased
in conditioned media after doxorubicin treatment in MB-231
cells (61). Moreover, a significant increase of HMGB1 release was
also determined in HCC1143 cells with epirubicin/docetaxel
intervention (62). After neoadjuvant chemotherapy (NCT),
plasma HMGB1 dramatically increased for BC patients who
TABLE 1 | Summary of primary phase III clinical trials adding immunotherapy to chemotherapy in breast cancer.

Trial (National
Clinical Trial
Identifier)

Phase Interventions Patients enrolled Number of
patients

Primary endpoint Key Results Ref

IMpassion130
(NCT02425891)

III Nab-paclitaxel ± atezolizumab Untreated
metastatic TNBC

902 (451 treated
with
atezolizumab)

PFS Median PFS 7.2 months VS
5.5 months(PD-L1+ 7.5
months)

(18)

unselected for PD-
L1

OS Median OS 21.3 months VS
17.6 months (PD-L1+
25.0months)

IMpassion131
(NCT03125902)

III Paclitaxel ± atezolizumab Inoperable locally
advanced/
metastatic

651 (293 PD-L1
+)

PFS Median PFS 6.0 months VS
5.7 months(PD-L1+ 7.5
months)

(15)

TNBC
IMpassion132
(NCT03371017)

III First-line chemotherapy (capecitabine
[mandatory in platinum-pretreated
patients] or gemcitabine+ carboplatin)
± atezolizumab

Early relapsing
metastatic TNBC

approximately
350

OS Ongoing
(19)

Impassion031
(NCT03197935)

III chemotherapy (nab-paclitaxel
+doxorubicin + cyclophosphamide) ±
atezolizumab

Early-stage TNBC
(untreated stage II–
III)

333 (165 treated
with
Chemotherapy+
atezolizumab)

pCR Ongoing at data cutoff (April
3, 2020) (22)
pCR 58% VS 41%
pCR 69% VS 49% (PD-L1+)

KEYNOTE-119
(NCT02555657)

III pembrolizumab arms VS chemotherapy
arms

mTNBC (treatment
with anthracycline
or taxane before)

622 (312
pembrolizumab)

OS(PD-L1 CPS>=1
or CPS>=10)

Median OS 10·7 months VS
10·2 months (PD-L1
CPS>=1)

(23)

12.7months VS 11.6
months (PD-L1 CPS>=10)
9·9 months VS11.8 months
(overall population)

KEYNOTE-355
(NCT02819518)

III chemotherapy (nab-paclitaxel; paclitaxel;
or gemcitabine plus carboplatin) ±
Pembrolizumab

Previously
untreated locally
recurrent
inoperable or
mTNBC

847 (566
pembrolizumab)

OS、PFS(PD-L1
CPS>=1 or
CPS>=10 and ITT
populations)

Median PFS 9·7 months VS
5·6 months(PD-L1
CPS>=10)

(20)

7.6 months VS 5·6 months
(PD-L1 CPS>=1)
7.5 months VS 5·6 months
(ITT population)

KEYNOTE-522
NCT03036488

III Chemotherapy(paclitaxel +carboplatin) ±
pembrolizumab

Early-stage TNBC
(untreated stage II–
III)

1174 pCR first interim analysis
(21)EFS (ITT

population)
pCR 64.8% VS 51.2%
the incidence of treatment-
related adverse events of
grade 3 or higher 78.0%VS
73.0%
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apparently obtain complete pathological complete response or
partial remission (62). Another report also demonstrated that
upregulated expression levels of HMGB1 and CRT were found
after NCT in both BC patients and cell lines. And increase levels
of HMGB1 have been shown to predict an improved therapeutic
outcome in BC patieants receiving NCT (63, 64). CRT is an
essential initiator of ICD signaling that is exposed at the surface
of membrane and surrounded by immature and mature DCs
(54). In a BC model, docetaxel did not alter the secretion of
HMGB1 or ATP. However, exposure to CRT was observed in BC
cell lines after docetaxel intervention, and antitumor immunity
was reinforced mainly by the increased antigen presenting
capacity and translocation of CRT (41). In vitro studies
indicated that paclitaxel, gemcitabine and doxorubicin-
mediated chemotherapy could efficiently kill cancer cells and
lead to a high level of DAMP (CRT and HMGB1) (65–67). It has
been shown that cyclophosphamide analogues improved tumor
immunogenicity by facilitating the release of ICD markers (CRT,
HMGB1, and ATP) (43). Altogether, these observations
underscore the importance of adjuvanticity for chemotherapy
to support the initiation of clinically anti-tumor immunotherapy.
Frontiers in Immunology | www.frontiersin.org 5
ACTIVATION OF IMMUNE
EFFECTOR CELLS

Impact of Chemotherapy on the
Innate Immunity
Innate immune cells including DCs, natural killer (NK) cells and
macrophages may at least represent as adjuvants to immune
checkpoint inhibitors (68). Some chemotherapies drugs have
direct implications for DCs and NK cells. In vitro studies showed
NK cells-mediated cytotoxicity against BC cells was significantly
enhanced following epirubicin-based pretreatment indicating the
combination of anthracycline-based chemotherapy and NK cells-
based immunotherapy was potentially an efficient strategy for BC
treatment (69). Initially, cytotoxic chemotherapeutics were
demonstrated to induce an overall dysfunction of NK cells
responses in localized and metastatic BC patients (70, 71), while
the NK cells (CD56) numbers and macrophages (CD14) rapidly
returned to normal after adjuvant chemotherapy (72). Another
study reported that both epirubicin-based and doxorubicin-based
regimen could result in an increased percentage of monocytes and
NKcells, but amarkeddecreasewas observed inB-cell numbers (73).
TABLE 2 | Summary of phase Ib/II clinical trials adding immunotherapy to chemotherapy in breast cancer.

Trial (National
Clinical Trial
Identifier)

Phase Interventions Patients enrolled Number
of

patients

Primary
endpoint

Key Results Ref

NCT01633970 Ib Nab-paclitaxel ± atezolizumab Stage IV or locally recurrent TNBC
(all patients experienced at least 1
treatment-related adverse event)

33 safety 73% grade 3/4 adverse events,
(24)tolerability 21% grade 3/4 adverse events of special

interest and no deaths
KEYNOTE-173
(NCT02622074)

Ib Pembrolizumab+
chemotherapy

Early-stage TNBC (high-risk) 60 safety neutropenia adverse event 73%
(25)RP2D Immune-mediated adverse events and

infusion reactions 30%(grade>=3 10%)
two cohorts meet the RP2D threshold

NCT02513472 Ib/II Eribulin +pembrolizumab mTNBC(≤2prior systemic anticancer
therapies in the metastatic setting.)

167 safety,
tolerability

ORRs
(26)

ORR 25.8% (stratum1 n=66)
21.8% (stratum2 n=101)
ORR PDL-1+ VS ORR PDL-1-:
34.5% VS16.1% (stratum 1)
24.4% VS 18.2% (stratum2)

ALICE
(NCT03164993)

II Chemotherapy (pegylated
liposomal doxorubicin+
cyclophosphamide) ±
atezolizumab

mTNBC 75 Safety Ongoing
(27)PFS

KEYNOTE-086
(NCT02447003)

II Pembrolizumab Previously treated mTNBC (prior
treatment with anthracycline and
taxane)

170 (105
PD-L1+)

ORR ORR 5.3%
(28)safety (PD-L1+ 5.7%)

NCT03051659 II Eribulin ± pembrolizumab HR+/ERBB2-metastatic breast
cancer

88 PFS median PFS 4.1 vs 4.2 months
(29)

I-SPY2 Trial
(NCT01042379)

II NACT (taxane and
anthracycline) ±
pembrolizumab

Early-stage breast cancer (high risk) 300 pCR ongoing, estimated pCR rates
(30)pCR 44% vs 17% (ERBB2- cohort)

pCR 30% vs 13% (HR+/ERBB2- cohort)
pCR 60% vs22% (TNBC cohort)

GeparNuevo
(NCT02685059)

II NACT (nab-paclitaxel + EC) ±
pembrolizumab

Early-stage TNBC 174 pCR pCR 53.4% VS 44.2%
(31)

ICON
(NCT03409198)

IIb Chemotherapy ± ipilimumab
and nivolumab

Metastatic HR+ breast cancer 75 Safety Ongoing
(32)PFS
January 2022 | Volume 12 | Article 819
CPS, combined positive score; EFS, event-free survival; EC, E=epirubicin, C= cyclophosphamide; ERBB2-, ERBB2-Negative; HR+, Hormone Receptor Positive; ITT, intention-to-treat;
ORR, objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; pCR, pathological complete response; PFS, progression-free survival; RP2D, recommended
phase II dose; stratum 1, number of prior systemic anticancer therapies is 0; stratum 2, number of prior systemic anticancer therapies is 1–2; TNBC, triple negative breast cancer; mTNBC,
metastatic triple-negative breast cancer; NACT, neoadjuvant chemotherapy.
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Similarly, advanced BC patients using single-agent paclitaxel or
docetaxel led to an enhancement of NK and LAK cytotoxic
activity and increase of IFN-g, IL-2, IL-6, GM-CSF cytokine levels
in serum (74, 75). For clinical practice, a reduction in the infiltration
of NK cells into tumor tissue has been proposed to be a predictor of
chemotherapeutic treatment failure in BC (76, 77). During follow-up
after adjuvant therapy, a previous study reported that NK cells
cytotoxicity showed significantly elevated at all time-points and did
not correlate with the mode of adjuvant radiotherapy or
chemotherapy after a one-year follow-up (78). In addition, other
studies suggested that the absolute number of activated NK cells was
higher in BC patients who achieved pathological complete responses
(PCR) after neoadjuvant chemotherapy, which implied that
the improvement of NK cell activities was essential requirement
for pCR especially in HER2-positive BC patients (79, 80). NCT
could induce immune activation and a release from local
immunosuppression in the tumor microenvironment, and thus
activation of peripheral NK cells might promote the elimination of
metastatic tumors in BC (81).

The impacts of chemotherapy onDCs have also been studied in
BC. The antitumor efficacy of chemotherapies drugs is essentially
determined by DCs that present antigens to tumor-specific T
lymphocytes (39). Paclitaxel and doxorubicin were shown to
improve the antigen presentation ability of DCs through
stimulating the expression of costimulatory molecules and IL-
12p70 (82). A study found that DCs in tumor lysate could
consistently activate CD8+ CTLs for killing cancer cells in locally
advanced BC, indicating DC-based vaccinations might be well
suited to treat chemotherapy-resistant BC patients (83). A
combination of doxorubicin and cyclophosphamide with
autologous DCs was favorable to prolong the survival of T cells
and recover immune functions capacity (84). One mechanism
might be that this combination enhanced tumor immunogenicity
as cryptic vaccines and promoted the adjuvant effects of ICD.
Additionally, a recent multi-omics analysis revealed that BC
patients with higher level plasmacytoid DCs tended to exhibit a
more sensitive immune response and chemotherapies response,
which highlighted that the potential benefit from combination of
chemotherapy and immunotherapy might be achieved in BC
patients with high immune infiltration of plasmacytoid DCs (85).
Regarding the associations between DCs and chemotherapy in the
clinic, significant efforts have been made. Prior to NAC, a marked
unresponsiveness to in vitro stimulus was observed for DCs, while
NAC could induce a remarkable responsiveness of APC
compartments (86). A previous study also described a correlation
between circulating DCs level and pCR in BC and their findings
suggested that patients with a poor pCR after NAC were
characterized by low expression of myeloid-derived DCs and
plasmacytoid DCs (87). Altogether, these observations pave the
way to translate innate antitumor immunity into innovative
immunotherapies for fighting refractory BC.

Impact of Chemotherapy on the
Adaptive Immunity
B cells displayed dramatic depletion after chemotherapy and
remained persistent low level even 9 months following systemic
Frontiers in Immunology | www.frontiersin.org 6
chemotherapy (88, 89). It has been reported that the percentage
of peripheral blood B cells was substantial decreased by FEC (5-
fluorouracil, epirubicin, cyclophosphamide) or FDC (5-
fluorouracil, doxorubicin, cyclophosphamide) regimens in BC
(73). Likewise, vinorelbine, cyclophosphamide and 5-FU were
also reported to decrease the number of circulating B cells in
which cyclophosphamide had the largest influence over levels of
B cells (90). The reason for cytotoxic chemotherapy effect on B
cells was partly due to an increased sensitivity of B cells to
chemotherapeutic agent in vitro compared to T-cells (91).
Tumor infiltration of B cells in the tumor microenvironment
could serve as a promising biomarker to select BC patients who
might benefit from NAC (92). Memory B cells was correlated
with pCR to NAT in ER-negative BC tumors, which indicated
humoral immunity was essential for mediating response to
cytotoxic therapy (93). Also, higher B cells infiltration could
potentiate the local cytotoxic immune response and were
correlated with better outcomes in hormone receptor-negative
BC patients (94).

Substantial evidence suggested that chemotherapy contributed
to T-cells independent immune responses. In vivo treatment of
tumor-bearing mice demonstrated that doxorubicin led to a
significant increase in the number of CD4 + T cells, CD8+ T
cells and NK cells and promoted expression of interferon g (IFN-g)
and granzyme B (95). In another pre-clinical experiments, the
administration of anthracycline also facilitated the infiltration of
CD4+ and CD8+ T cells in TNBC mouse model (96). Several
possible mechanisms have been proposed to explain these
phenomena. Treatment of doxorubicin promoted cytotoxic T
lymphocytes accumulation by a potent production of IFN-g and
IL-17 in a BCmouse model, which suggested that gd T cells indeed
played a sizable role in doxorubicin-induced anti-tumor immune
response (97). Low doses of cyclophosphamide were shown to
reverse the immunosuppression and strongly enhanced the
abundance of tumor infiltrating T cells via the secretion of
various cytokines and activation antigen-presenting cells (98).
Furthermore, high dose of cyclophosphamide could completely
eradicate tumor cells, while cyclophosphamide at low doses was
able to reduce the number of circulating Tregs but increase the
production of tumor-specific T cells (99). In clinical contexts, the
percentages of CD3+, CD4+ T cells and Treg cells in blood
samples of BC were significantly decreased after 6 cycles of
chemotherapy (100). To assess the effect of combination
chemotherapy on subsets of immune cells, a study revealed that
anthracycline-based regimen could induce an increase of cytotoxic
T and NK cells, but a dramatic decrease of B cells in blood (73). A
better clinical response during chemotherapy has been linked to
higher level of circulating CD8+ T-cell (101). Some studies have
addressed the effects and correlations of NAC on effector T cells.
After NAC, BC patients with beneficial therapeutic effects often
correlated with an increased level CD4+ and CD8+ T-cells, and
decreased CTLA-4+ T cells and VEGF (102, 103). It has been
previously documented that the expression of CD8/Foxp3 was
upregulated in cancer tissues of pCR cases, which implied that
activation of antitumor T cell responses was occurred in these
tumors (104). Tumor microenvironment characteristics analysis
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further revealed that higher level of stromal tumor infiltrating CD8+
T cells and B cells significantly correlated with pCR in NAC
(105–107). However, existing studies have focused on the
prognostic value of infiltrating of immune effector cells on
chemotherapy. Understanding how to maximize the therapeutic
potential of chemotherapy-induced immunomodulatory effects
remains an open question.
HAMPERING THE FUNCTIONS OF
IMMUNOSUPPRESSIVE CELLS

Treg Cells
Treg cells mainly function in preventing excessive immune
activation. Blocking or depleting Tregs is therefore a viable
therapeutic strategy to enhance antitumor immunity (108).
Studies have revealed that the depletion of Treg cells in immune
cell infiltrate was associated with a protective anticancer immunity.
This also meant that anticancer immunity switched from a silent
immune response to anactive immune response (109, 110).A study
showed that BC patients had more Treg cells than normal
individuals. Meanwhile, an increasing level of Treg cells and
lower ratio of Th/Tr cells were found in Stage IV BC patients
compared to stage I, II, or IIIBCpatients (111). Ithasbeendescribed
that the percentage of Treg cells was reduced after 6 chemotherapy
cycles among stage II/III BCpatients (100). Paclitaxelwas shown to
not only reduce CD4+Foxp3+ Tregs cells but hinder cytokine
production of Tregs (112). The weakening effect of
cyclophosphamide on Tregs cells was often observed at low dose
(99). Additionally, metronomic cyclophosphamide regimens also
led to a profound and effective Treg inhibition in metastatic BC
patients (99). Low Treg abundance was determined in TNBC but
not in ER-positive or Her2-negative subtype, especially for patients
with pCR after NAC, which indicated that Treg abundance might
serve as a predictive biomarker for evaluating their NAC
effectiveness in TNBC (113).

M2 Macrophages and MDSCs
Tumor-associated M2 macrophages (M2-TAMs) was proposed to
promote immune escape and limit the efficacy of immunotherapy.
TargetingM2-TAMs synergizeswith immune checkpoint blockade
has emerged as promising strategies for cancer treatment (114).
Docetaxel administration could induce a switch from M2-like
phenotype to M1-like phenotype in mammary tumor-bearing
mice (115). In another 4T1 BC lung metastasis mice model,
nanosystem-based co-delivering doxorubicin was also able to
modulate the polarization from M2 macrophages to antitumor
M1 macrophages (116). BC patients who fail to respond to
anthracycline-containing NAC were predominantly associated
with the presence of M2+ macrophage phenotype (117).

Myeloid-derived suppressor cells, a heterogenic population of
immature myeloid cells, were characterized by their
immunosuppressive effects. Cytotoxic agents against MDSCs
represent therefore an appealing therapeutic strategy for cancer
therapy but its underlying molecular mechanism remains obscure
(118, 119). So far,manycytotoxic chemotherapeuticswere shownto
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have excellent repression onMDSCs in BC (120). In mouse model
of BC, an inhibitory effect on MDSC of doxorubicin has been
demonstrated in the spleen, blood, and tumor tissues (95).
Furthermore, the treatment of doxorubicin could increase the
frequency of the effector lymphocytes or NK cells that effectively
reducedMDSCratios (95).The above studiesnotonly suggested the
direct cytotoxic effect on cancer cells, but also highlighted the
immunomodulatory role of doxorubicin on MDSC. In another
animal models, downregulation of splenic CD44+, IL-17A+
MDSCs effect of cisplatin was revealed by single cell mass
cytometry in 4T1 metastatic BC model (121). Docetaxel, one
chemotherapeutic agent for treating anthracycline-refractory BC,
have been reported to suppress the level of MDSCs and stimulate
the CTL response in spleens of mice (115). Gemcitabine and
cyclophosphamide were also found to be capable of inhibiting the
accumulation of MDSCs (43). Beyond that, capecitabine depleted
MDSCsand relieved their inhibitory effects onTandNKcells (122).
A single arm, pilot study observed that levels of circulatingMDSCs
increased after doxorubicin and cyclophosphamide treatment but
decreased after paclitaxel treatment for BC patients with NAC
(123). Compared to patients with Non-pCR following NAC,
circulating MDSCs seemed to lower for complete or near pCR BC
patients (123). Additional studies have also demonstrated that BC
patients with a lower level of circulating MDSCs before treatment
preferred to achieve a higher probability of a pCR after the last cycle
of chemotherapy (124). However, it is a well‐recognized challenge
to determine the target against MDSCs owing to its multiface of
MDSCs and the complexity of tumor microenvironment. Besides,
considerable research efforts are focusing on the total MDSCs
populations in BC. Thus, the immunomodulatory effects of
chemotherapy on different MDSC subtypes remain to be explored.
Effects of Anticancer Agents on the
Immune Checkpoints
In the past, BC was thought to be a “cold” tumor with low
immunogenicity and mutation burden. However, studies in recent
years have identified high PD-L1 and tumor infiltrating
lymphocytes in TNBC and HER-2-positive breast cancers (125,
126). At the preclinical level, doxorubicin was shown to inhibit
tumor immunosuppression through down-regulating the
expression of immune checkpoints PD-1 and TIM-3 in the
tumor tissue (127). In a TNBC murine model, doxorubicin/
cyclophosphamide regimen was able to effectively inhibit tumor
growth, increase the survival benefit, promote infiltrating of CD8+
T cells and suppress the suppressor molecules PD-L1 expression
(128). With regard to PD-L1 expression changes in BC after
chemotherapy, a panel of six anti-cancer compounds were
experimentally found to induce PD-L1 expression in four BC
cell lines through a cellular stress response pathway (129). Study
by Samanta et al. demonstrated that doxorubicin, gemcitabine, or
paclitaxel induced HIF-dependent, transcriptional activation of
CD47, CD73, and PDL1 expression that imparted TNBC cells the
ability to evade the immune systems (130). Similar findings have
been reported that paclitaxel, etoposide and 5-fluorouracil could
induce PD-L1 expression in BC cells and up-regulated PD-L1
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promoted PD-L1-specific T cell apoptosis (97). After treating with
metronomic cyclophosphamide, BC patients exhibited a higher
expression PD-L1 in tumor cells; however, no obvious benefit was
observed for CTX regimens combined with concomitant PD-L1
antibody therapy (131). A case report described that level of CD8
and PD-L1 expression on immune cells were increased after
capecitabine and gemcitabine-carboplatin-iniparib therapy (132).
A clinical trial aimed to identify molecular alterations of immune
gene signatures following neoadjuvant chemotherapy of TNBC
and they found several immune checkpoints including IDO1, PD-
L1 and CTLA4 were upregulated in pre-treatment samples who
Frontiers in Immunology | www.frontiersin.org 8
achieved pCR (133). Collectively, the absence of unifying PD-L1
protocols makes it hard to draw a convincing conclusions from
these studies. Besides, PD-L1 levels are generally evaluated in
tissues prior to chemotherapy, which might not reflect the real
status of the tumor microenvironment after chemotherapy.
CONCLUSION

For many decades, cytotoxic chemotherapeutics are still the
cornerstone of BC treatment (134). However, encouraging
FIGURE 1 | Overview of the immunostimulatory properties of chemotherapy in breast cancer. On-target effects: When tumor cells are exposed to chemotherapeutic
drugs, TAA, TSA and DAMPs release by dying tumor cells are engulfed by immature DCs, which promotes APCs maturation. Archived antigen-bearing APCs then
migrate to the tumor-draining lymph node, where APCs cross-prime to T cells. Thereafter, antigen-specific T cells undergo clonal expansion, and at least some of
them differentiate into memory T cells. Activated T cells then recognize tumor cells and mediate cytotoxic killing of tumor cells. Off-target effects: Chemotherapeutic
drugs can activate immune effector cells including natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of immunosuppressive cells
including Treg cells, M2 macrophages and (myeloid-derived suppressor cells) MDSCs. Red arrows indicate an increased effect and red flat ended lines represent an
inhibitory effect. The text boxes near the arrows list the chemotherapy agents that elicit immunomodulatory effects in BC.
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advancements in cancer immunotherapy have provided more
options for certain subtypes of BC (11, 135). Single
chemotherapeutics agents or single immuno-oncological therapy
cannot obtain ideal therapeutic effect for advanced BC (136). Thus,
combining immunotherapy with the currently-available therapies
has shown great promise. Current mini-review summarizes the
updated clinical trials on immunotherapy and chemotherapy
combinations in BC (Tables 1, 2) and provides an overview of
immune-stimulating properties of cytotoxic chemotherapy
(Figure 1). There remains large room for improvement of
synergistic effects of these two combined modalities, so
identifying prerequisites for designed immunotherapy
combination strategies are of special importance.

ICD is a specific type of cancer cell death characterized by
antigen-specific immune responses against the antigens of dying
cancer cells (137). Anthracycline and taxanes-containing
chemotherapy can promote immunostimulatory activity by
increasing the antigenicity or adjuvanticity of cancer cells (138).
The ICD effects mediated by chemotherapy have largely centered
on chemotherapy-induced alterations of DAMPs (50, 139).
Notably, through DAMPs mechanisms, chemotherapy stimulates
immune system to recruit DCs and activate the immune responses
specific for tumor-relevant antigens. Conversely, fewer studies have
looked at the effects of chemotherapeutic drugs on tumor cell
antigenicity. Future studies are required to elucidate the
molecular mechanism of DAMPs in ICD and provide specific
interventions targeting them to facilitate development of
chemoimmunotherapeutic regimens. In BC, numerous studies
have demonstrated that chemotherapeutic agents can act directly
on immune cell subsets to elicit antitumor immunity. Off-target
effects of chemotherapy on immune cell subsets mainly involve
activation of immune effector cells including NK cells, DCs, and
CTLs, and depletion of immunosuppressive cells including Treg
cells, M2 macrophages and MDSCs. However, the dynamic
alterations of effector immune cells in full course of adjuvant
chemotherapy remain unknown.

Cytotoxic chemotherapies may act as upfront measures that
are capable of converting “cold” BC tumors into “hot” lesions,
which may be successful clearance with ICIs. In the present
Frontiers in Immunology | www.frontiersin.org 9
review we have focused on the immunomodulatory effects of
chemotherapy in BC. In addition to chemotherapy, endocrine
therapy, targeted therapeutic agents and radiation have also been
demonstrated to have analogous immunoregulatory function for
BC, in particular for radiotherapy (140, 141). Thus, these
therapeutic options should also be suggested for combined
immunotherapy based on different intrinsic subtypes of BC.
The immunotherapy era provides additional selections for
clinicians in BC treatment, but at the same time, many
unanswered questions exist regarding combinations with
chemotherapy and immunotherapy. How to identify
prerequisites of combination treatment given patient’s immune
status and intrinsic characteristics. Limited information is
available on the impact of cytotoxic chemotherapy on immune
checkpoints pathways not confined only PD-L1, PD-1 or
CTLA4. Lastly, it should be noted that single-agent
chemotherapy can act on multiple steps of antitumor immune
response, and one chemotherapy regimen may also play two
opposite roles in different immune targets.

Therefore, when considering potential applications in clinic,
drug dose, timing of administration and appropriate population
would need to be carefully considered.
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51. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic Cell
Death in Cancer and Infectious Disease. Nat Rev Immunol (2017) 17(2):97–
111. doi: 10.1038/nri.2016.107

52. Kang R, Zhang Q, Zeh HJ3rd, Lotze MT, Tang D. HMGB1 in Cancer: Good,
Bad, or Both? Clin Cancer Res Off J Am Assoc Cancer Res (2013) 19
(15):4046–57. doi: 10.1158/1078-0432.ccr-13-0495

53. Proia DA, Kaufmann GF. Targeting Heat-Shock Protein 90 (HSP90) as a
Complementary Strategy to Immune Checkpoint Blockade for Cancer
Therapy. Cancer Immunol Res (2015) 3(6):583–9. doi: 10.1158/2326-
6066.cir-15-0057

54. Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and Cancer. Cell
Res (2021) 31(1):5–16. doi: 10.1038/s41422-020-0383-9

55. Zhang H, Wang J, Li J, Zhou X, Yin L, Wang Y, et al. HMGB1 is a Key Factor
for Tamoxifen Resistance and has the Potential to Predict the Efficacy of
CDK4/6 Inhibitors in Breast Cancer. Cancer Sci (2021) 112(4):1603–13.
doi: 10.1111/cas.14813

56. Zamanian M, Qader Hamadneh LA, Veerakumarasivam A, Abdul Rahman
S, Shohaimi S, Rosli R. Calreticulin Mediates an Invasive Breast Cancer
Phenotype Through the Transcriptional Dysregulation of P53 and MAPK
Pathways. Cancer Cell Int (2016) 16:56. doi: 10.1186/s12935-016-0329-y

57. Jiao D, Zhang J, Chen P, Guo X, Qiao J, Zhu J, et al. HN1L Promotes
Migration and Invasion of Breast Cancer by Up-Regulating the Expression
of HMGB1. J Cell Mol Med (2021) 25(1):397–410. doi: 10.1111/jcmm.16090

58. Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin JS. Immunological
Significance of HMGB1 Post-Translational Modification and Redox
Biology. Front Immunol (2020) 11:1189. doi: 10.3389/fimmu.2020.01189

59. Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, et al. The Role of
HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the
Pathogenesis of Lung Diseases. Antioxid Redox Signaling (2019) 31(13):954–
93. doi: 10.1089/ars.2019.7818

60. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, et al.
The Interaction Between HMGB1 and TLR4 Dictates the Outcome of
Anticancer Chemotherapy and Radiotherapy. Immunol Rev (2007)
220:47–59. doi: 10.1111/j.1600-065X.2007.00573.x

61. Amornsupak K, Insawang T, Thuwajit P, P OC, Eccles SA, Thuwajit C.
Cancer-Associated Fibroblasts Induce High Mobility Group Box 1 and
Frontiers in Immunology | www.frontiersin.org 11
Contribute to Resistance to Doxorubicin in Breast Cancer Cells. BMC
Cancer (2014) 14:955. doi: 10.1186/1471-2407-14-955

62. Arnold T, Michlmayr A, Baumann S, Burghuber C, Pluschnig U, Bartsch R,
et al. Plasma HMGB-1 After the Initial Dose of Epirubicin/Docetaxel in
Cancer. Eur J Clin Invest (2013) 43(3):286–91. doi: 10.1111/eci.12043

63. Aoto K, Mimura K, Okayama H, Saito M, Chida S, Noda M, et al.
Immunogenic Tumor Cell Death Induced by Chemotherapy in Patients
With Breast Cancer and Esophageal Squamous Cell Carcinoma. Oncol Rep
(2018) 39(1):151–9. doi: 10.3892/or.2017.6097

64. Exner R, Sachet M, Arnold T, Zinn-Zinnenburg M, Michlmayr A, Dubsky P,
et al. Prognostic Value of HMGB1 in Early Breast Cancer Patients Under
Neoadjuvant Chemotherapy. Cancer Med (2016) 5(9):2350–8. doi: 10.1002/
cam4.827

65. Heshmati Aghda N, Abdulsahib SM, Severson C, Lara EJ, Torres Hurtado S,
Yildiz T, et al. Induction of Immunogenic Cell Death of Cancer Cells
Through Nanoparticle-Mediated Dual Chemotherapy and Photothermal
The rapy . I n t J Pharm ( 2020 ) 589 : 119787 . do i : 1 0 . 1 016 /
j.ijpharm.2020.119787

66. Zhang J, Zhang P, Zou Q, Li X, Fu J, Luo Y, et al. Co-Delivery of Gemcitabine
and Paclitaxel in cRGD-Modified Long Circulating Nanoparticles With
Asymmetric Lipid Layers for Breast Cancer Treatment. Mol (Basel
Switzerland) (2018) 23(11):2906. doi: 10.3390/molecules23112906

67. Chen ST, Pan TL, Tsai YC, Huang CM. Proteomics Reveals Protein
Profile Changes in Doxorubicin–Treated MCF-7 Human Breast Cancer
Cells. Cancer Lett (2002) 181(1):95–107. doi: 10.1016/s0304-3835(02)
00025-3

68. Rothlin CV, Ghosh S. Lifting the Innate Immune Barriers to Antitumor
Immunity. J Immunother Cancer (2020) 8(1). doi: 10.1136/jitc-2020-000695

69. Feng H, Dong Y, Wu J, Qiao Y, Zhu G, Jin H, et al. Epirubicin Pretreatment
Enhances NK Cell-Mediated Cytotoxicity Against Breast Cancer Cells In
Vitro. Am J Trans Res (2016) 8(2):473–84.

70. Sewell HF, Halbert CF, Robins RA, Galvin A, Chan S, Blamey RW.
Chemotherapy-Induced Differential Changes in Lymphocyte Subsets and
Natural-Killer-Cell Function in Patients With Advanced Breast Cancer. Int J
Cancer (1993) 55(5):735–8. doi: 10.1002/ijc.2910550506
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121. Balog J, Hackler LJr., Kovács AK, Neuperger P, Alföldi R, Nagy LI, et al.
Single Cell Mass Cytometry Revealed the Immunomodulatory Effect of
Cisplatin Via Downregulation of Splenic CD44+, IL-17a+ MDSCs and
Promotion of Circulating IFN-g+ Myeloid Cells in the 4T1 Metastatic
Breast Cancer Model. Int J Mol Sci (2019) 21(1):170. doi: 10.3390/
ijms21010170

122. Asleh K, Brauer HA, Sullivan A, Lauttia S, Lindman H, Nielsen TO, et al.
Predictive Biomarkers for Adjuvant Capecitabine Benefit in Early-Stage
Triple-Negative Breast Cancer in the FinXX Clinical Trial. Clin Cancer Res
Off J Am Assoc Cancer Res (2020) 26(11):2603–14. doi: 10.1158/1078-
0432.ccr-19-1945

123. Wesolowski R, Duggan MC, Stiff A, Markowitz J, Trikha P, Levine KM, et al.
Circulating Myeloid-Derived Suppressor Cells Increase in Patients
Undergoing Neo-Adjuvant Chemotherapy for Breast Cancer. Cancer
Immunol Immunother CII (2017) 66(11):1437–47. doi: 10.1007/s00262-
017-2038-3

124. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG,
Rumboldt T, et al. Phase 2 Study of Neoadjuvant Treatment With NOV-
002 in Combination With Doxorubicin and Cyclophosphamide Followed by
Docetaxel in Patients With HER-2 Negative Clinical Stage II-IIIc Breast
Frontiers in Immunology | www.frontiersin.org 13
Cancer. Breast Cancer Res Treat (2012) 132(1):215–23. doi: 10.1007/s10549-
011-1889-0

125. Polk A, Svane IM, Andersson M, Nielsen D. Checkpoint Inhibitors in Breast
Cancer - Current Status. Cancer Treat Rev (2018) 63:122–34. doi: 10.1016/
j.ctrv.2017.12.008

126. Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and Challenges of
Immunotherapy in Triple-Negative Breast Cancer. Biochim Biophys Acta Rev
Cancer (2021) 1876(2):188593. doi: 10.1016/j.bbcan.2021.188593

127. Sadighi S, Sharifian R, Kazemimanesh M, Muhammadnejad A, Shahosseini
Z, Amanpour S, et al. Down-Regulation of Immune Checkpoints by
Doxorubicin and Carboplatin-Containing Neoadjuvant Regimens in a
Murine Breast Cancer Model. Iranian J Basic Med Sci (2021) 24(4):537–
44. doi: 10.22038/ijbms.2021.54383.12221
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