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Background

Electron tomography (ET) is an important technique for the study of complex biologi-
cal structures and their functions, which reconstructs the interior of a three-dimensional
object from its projections at different orientations [1]. However, due to the instrument
limitation, the angular tilt range of the projections is limited within +70° to —70°. Such
a series of the projections compose an angle-limited projection dataset, in which the
unsampled high tilt angles are called the missing wedge and will cause artifacts. Therefore,
the reconstruction of the tomogram in ET is an optimization problem with incomplete
information. Additionally, the optimization problem becomes more difficult due to the
extreme noise caused by the low electron doses in the collection of Electron Microscopy
(EM) images.

Traditional 3D reconstruction methods, such as Weighted back-projection (WBP) and
Filtered back-projection (FBP), suffer from the incomplete data and extremely noisy pro-
jections, resulting in the undesired artifacts. Many algorithms have been proposed to
deal with the incompleteness caused by the limited projections and strong noise. By
combining the algebra reconstruction technique (ART) and the nonlinear diffusion (ND)
filter technique, filtered iterative reconstruction technique (FIRT) [2] could partially
restore some information at the non-sampled angular region. Iterative reconstruction-
reprojection (IRR) [3-5] and its variations, such as discrete IRR algorithm and the
finite impulse response (FIR) lowpass filter (DIRRLF) [6], iterative reconstruction-
reprojection (IRR) algorithm with total variation (TV) constraint (IRR-TV) [7], iterative
reconstruction-reprojection in projection space (IRRP) algorithm [8] and algebraic itera-
tive reconstruction-reprojection (AIRR) [9], estimate the missing projects by an iterative
optimization procedure between the projection and image domain.

Improved iterative reconstruction-reprojection (IIRR) [10, 11] is one of the variations of
the IRR algorithm, whose convergence under extremely noisy condition has been proved
[12]. However, without prior information, IIRR is not efficient in suppressing the effect
of the missing wedge and restoring the missing information for ET data, because of the
low correlation between known projections and unknown projections in the missing
wedge. On the other hand, other algorithms reduce artifacts by introducing prior infor-
mation. Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform
reconstruction (ICON) [13-15] combines compressed sensing (CS) with non-uniform
fast Fourier transform (NUFFT) in order to restore the missing information. There are
two main steps in ICON. One is the fidelity preservation step which minimizes the differ-
ence between the reconstructed volume and the projections. Another one is prior sparsity
restriction step which increases the sparsity of the reconstructed volume. Nonetheless, a
drawback of ICON is its slow computational speed.

In this paper, we proposed a novel algorithm which follows the schedule of IIRR but fur-
ther considers the sparsity of the biological ultra-structural content in specimen, resulting
in an estimation of the electron tomography with faster execution speed and better
reconstruction result. A comprehensive experiment on both the simulated and real-world
dataset is carried out to estimate the performance of our algorithm and compare the new
algorithm with other state-of-the-art methods. The experimental results indicate that the
proposed algorithm has the ability to suppress the effect of missing wedge and restore the
missing information within the missing wedge. Specifically, compared with the classical
methods, our algorithm can achieve better reconstruction with faster convergence.
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Preliminaries

Without loss of generality, our following discussion is defined in two-dimensional space.
Nevertheless, the algorithm we proposed can be extended to three-dimensional space
easily.

From filtered backprojection (FBP) to iterative reconstruction-reprojection (IRR)
The filtered back-projection (FBP) algorithm is one of the oldest algorithms in computing
tomography. Its mathematical model could be concluded as following:

Given a function f(x) (x € R?), the projections of function f is defined as a linear
integral along a straight line L = {x € R?| (cos ) x1 + (sina) xy = s}

p(s,a) = Zf
= d
Lf(x) X 1)

b3
= / f(tsina +scosa, —tcosa + ssina) dt,
0

where Z is the Radon transform operator, s € R is the distance of line L from the origin,
«a is the angle between normal vector to L and the x; axis. Suppose the value of p on
Q C {(s,a)|a € (0,7],s € R} is known in prior. Let xo(s,&) = L) e be the
0,(s,x) ¢ Q
characteristic function of set @, pyuknown(s, ) = (1 — xa(s, @))p(s,a) be the unknown
projections and pruown(s,a) = xa(s,a)p(s,«) be the known projections. FBP will first
apply a filter on the projections and then backproject these filtered projections to get an
estimation of the original signal f:

1) Convolution (Filtering)

Pc(8,0) = Pluown (s, &) * ff1|a)|

(2)
= /pknown(t;a) : (yl_llwl)(s — bdt
where * denotes convolution, .7~ ! denotes the one dimensional Fourier transform.
2) Backprojection
?(xl;xZ) = Bp.
(3)

= /pc(x1 coso + xy sina, a)da,

wheref is the estimation of f, x; is the ith element of x, 4 is the backprojection operator.

It should be noted that, in FBP, the unknown projections p,k,ow, have been set to 0.
Meanwhile, the iterative reconstruction-reprojection algorithm (IRR) is an iterative

reconstruction method which is able to suppress the effect of insufficient tilt angles by

estimating the unknown projections. At the beginning, all the unknown projections in the

1
unknown

system p are set to 0 as in FBP. During the computational process of IRR, for the ith
iteration, the ith estimation of f will be reconstructed from both the known projections

Prnown and the ith estimated unknown projections p; lnown’

Fix1,%2) = B(Bronown + Pogenown) * 1 o). (4)
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In IRR, the (i)th

However, indeed, we do not know the unknown projections p! . .

unknown projections are estimated from f in the previous iteration:

pfmknown(s’ a) = (- XQ)%fi_l. )

By estimating the unknown projections rather than setting them to 0, IRR suffers less
from the 'missing wedge’ problem than FBP.

The improved algorithms based on IRR

Improved iterative reconstruction-reprojection (IIRR)

A drawback of IRR is that the convergence of IRR under extremely noisy condition is
not guaranteed. By introducing a relaxed parameter X into IRR, the convergence under
extremely noisy condition has been proved. More precisely, [IRR changes Eq. (4) into

Fix1,%2) = B(Brnown + M. inown) * F1 ), (6)

where 0 < A < 1 is a relaxed parameter. The smaller value of A considers more in
the known projections while larger value of A considers more about the unknown pro-
jections. IIRR can restrain the artifact caused by the incomplete data in Computerized
Tomography (CT).

Iterative reconstruction-reprojection with total variation (IRR-TV)
IRR-TV is an reconstruction method which is developed for few-view projections, in
which the angular tilt range of the projections is not limited but the number of projec-
tions is limited. IRR-TV poses the reconstruction problem as an optimization problem
with the form as:
min TV (f)
S (7)
st. Af =b,

where Af = b is the fidelity term,

[T

TV(f) = Z ((ﬂn,xzm _ﬁﬂ*l,xz,xs)z'f'(fxl,xz,xs _fxl,xzfllxs)z + (fxbxz,xs _ﬁq,xz,xs*l)z)

(x1,%2,%3)€Z3

(8)

is the total variation norm, f is the unknown 3D reconstruction volume, (x1,x3,x3) € 73
is the coordinate of voxels in unknown volume, A is the projection matrix, and b is the
observations or projections. By introducing TV into IRR, IRR-TV achieves an accelerated
convergence rate compared with the classic IRR algorithm.

Specifically, in each iteration before the estimation of unknown projections, IRR-TV
minimizes the TV norm by deepest gradient descent:

ATV ()
T

where d is step size, f* is the ith estimation of £, and TV () is the TV norm.

fl=f'—d )

Matching pursuit
Matching pursuit (MP) is an algorithm which represents a signal in a redundant basis.
Let 2 = {g,},yer be a family of vectors in Hilbert space and f be a signal. f can be
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represented as a linear combination of N vectors selected from 2

N
fr~ Z“Vngyn’ (10)
n=1

where a,, is the weight of g,,,, g,, is the vectors selected from Z, N is the total number of
vectors selected from 2. The basic idea of MP is choosing vectors from & greedily. More
precisely, let R; = f be the initial approximation error. For i = 1,2, 3, .., MP finds g,, with
maximum absolute value of inner product | < R;,g,, > |, where R; = f — ZLZI ay,8y, is
the ith approximation error. Then we set a; =< R;, g, >. The process continues until the
approximation error is small enough.

Methods

Problem definition

Despite the success of IIRR in Computed Tomography (CT), IIRR is not efficient in sup-
pressing the effect of the missing wedge and restore the missing information for ET
data. Here, an algorithm based on the schedule of IIRR with the consideration of sparse
information is proposed to achieve better ET reconstruction.

According to the previous study [13], the biological ultra-structural content is rela-
tively sparse with respect to the surrounding solvent. Such sparsity is used as the prior
information in our proposed method. Formally, let f(x) be the space function (x € R?)
representing the sample and suppose that f is supported on set T which is a subset of Z2.
The consequent optimization problem could be defined as

min ||fllo
S (11)
st. xQf = Prnown>
where |fllo = #{x € Z> N T|f(x) # 0} is the [y norm of £, x is a 2 dimensional vector
representing the coordinate of pixels in picture f, Z is the Radon transform, pg,ow, is
the known projections, xgq is the characteristic function of set €2, and € is the subset of
projection space corresponding to the known projections.

Compressed sensing improved iterative reconstruction-reprojection (CSIIRR)
We designed a new algorithm to solve the optimization problem (11) by combining IIRR
and CS. The proposed algorithm is elaborated as follows.

e Step 0: Preprocess
e Step 1: Estimate the unknown projections
® Step 2: Reconstruct via modified matching pursuit (MMP), return to step 1

Step 0: preprocess
Alignment is needed for the raw projections before reconstruction for ET data [16, 17].
Then we need an initial guess of specimen f which can be the reconstruction result via

any reconstruction method or even a zero function. We denote the initial guess of f as f°.

Step 1: estimate the unknown projections

Let f¥=1 be the reconstruction result in the (k — 1)th step, k = 1,2,.... We estimate the
unknown projections by reprojecting fX~! at the corresponding tilt angles. We denote the
estimated projections as

Ml =1 - x) (12)

P niknown
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where the notation & denotes the Radon transform, € is the subset of projection space
corresponding to the known projections, and xq denotes the characteristic function of 2.

Step 2: reconstruct via modified MP (MMP)

In this step, we want to reconstruct specimen f* from the known projections piown
We seek for the sparsest fX such that Zf<~1 =
Prnown + Apunknown, where 0 < A < 1is a relaxed parameter. A small X is suggested for

and the estimated projections punknown
extremely noisy data because the reliability of estimated unknown projections is low with
high noise levels. So we introduced compressed sensing to this step by a modified match-
ing pursuit method. The detailed process of our modified matching pursuit method is
described in Algorithm 1.

Algorithm 1 Modified matching pursuit

Input: Known projections py,on, and estimated projections punknown

Output: Reconstruction result f¥
. ~1
function %, (pknow,,, pk )

unknown
Ro < Pknown + )»P unknown
0
mp < 0
<1
repeat

Find the largest M absolute values of pixel value in x7.%(R;_; * .# ~|w|)
Restore the location of the M pixels in x1, X2, ..., XA

Fomp < o + (Z Xi) BRi—1 % F ol (13)
i=1
R < Prnown + A Punknown - '%fr{qmp (14)
l<—I+1
until |R| < €
f fmmp

end function

As shown in Algorithm 1, we first initialize the approximation of reconstruction result

to zero vector, and the residual Ry to piown +Ap In the [-th iteration, we want

mmp unknown
to find the largest M absolute values of pixel value in x7%(R;_ * .7 ~!|w|) and restore
the location of the M voxels in x1, %2, ..., xy1. The parameter M affects the sparsity of the
reconstruction result. A small M is suggested if the biological ultra-structural content is
sparse in the specimen. Next, we use the restored information to update the approxima-
tion f,fqmp by Eq. (13) and the consequent residual R; by Eq. (14). The process continues
until |R|| < €. After obtaining ¥, the algorithm returns to step 1 in order to optimize the
estimated projections pun known®

The main advantage of combining CS with IIRR is to introduce sparsity into IIRR. There
are two main differences between the Algorithm 1 and MP methods. First, Algorithm 1
estimates the tomogram not only from the known projections py,on, but also from the

estimated projections pl;;klnown, which makes the proposed algorithm more stable than
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MP. Second, instead of choosing only one atom, Algorithm 1 chooses multiple pixels
in each iteration. By doing so, Algorithm 1 can achieve a quick convergence compared
with the classic MP. Moreover, there are also some differences between IRR-TV and CSI-
IRR. First, the two methods choose different regularization. IRR-TV minimizes the TV
norm while CSIIRR minimizes the /p norm. Second, IRR-TV adds a 'deepest gradient
descent’ step after the back projection, which is time-consuming. Third, IRR-TV focuses
on the few-view problem in CT while CSIIRR focuses on the angle-limited problem in ET.
Especially, CSIIRR is able to handle extremely noisy data on which IRR-TV usually fails.

Results

The CSIIRR is challenged by both the simulated data and real-world data. Expect for
CSIIRR, the filtered back-projection (FBP), IIRR, weighted back-projection (WBP), Itera-
tive Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction
(ICON) [13, 14] and total variation (TV) are also tested in our experiment as a compari-
son. (Here, the algorithms of FBP, IIRR and CSIIRR are implemented with MATLAB, the
implementation of ICON is download from http://ear.ict.ac.cn and the implementation
of WBP comes from the ’tilt’ module in IMOD.) In the experiment, the relaxation factor
A is set to 0.99 for both IIRR and the CSIIRR.

Performance on simulated data

Overall evaluation

First, CSIIRR is challenged on the noise-free simulated data. The ribosome structure
downloaded from EMDB-3489 [18] is used as the ground-truth, whose volume size of
EMDB-3489 is 4003 voxels. A set of the projections with the range of the tilt angle from
60° to —60° is generated as the measured observations, with an angular increment of 1°.

To reconstruct the tomogram, the number of iterations is set to 10 in IIRR. For the sake
of fairness, the number of outer-loop iterations in our proposed algorithm is also set to
10. To make reconstruction results converge, the number of iterations for modified MP in
the proposed algorithm is set to 50. To trade off the convergence rate of CSIIRR and the
sparsity of the output, the number of atoms selected in each iteration (M in Algorithm 1)
is set to 335103 in modified MP.

Figure 1 demonstrates the reconstruction results obtained by FBP, IIRR, CSIIRR, ICON
and TV. As shown in the first row, the central slice of the reconstruction produced
by CSIIRR suffers the least artifacts caused by the incompleteness of the sampling
angle compared with the ones of other methods. The log-scaled power spectrums
on the second row of Fig. 1 shows that CSIIRR has filled some missing data in the
missing wedge. Furthermore, the phase difference of the tomograms reconstructed by
different methods has been presented in the third row of Fig. 1 (The point-to-point
phase difference [13] A of a and b is defined as A = ||“ﬂ;b| — 1].), which shows
that CSIIRR has restored some correct information in the missing wedge. Moreover,
the histograms demonstrated in the fourth row of Fig. 1 further support the conclu-
sion made from the log-scaled power spectrum, in which the histogram shows that
the reconstruction result by CSIIRR has a much more similar voxel distribution with
the ground-truth, compared with the ones obtained from other methods. Addition-
ally, the histogram accurately presents the sparseness of the reconstruction generated
by CSIIRR.
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Ground Truth CSIIRR

Reconstruction

Power Spectrum

Fig. 1 Missing wedge analysis. Comparison of central slices from the ground truth and the tomograms
reconstructed by FBP, IIRR, CSIIRR, ICON, TV, of the log-scaled power spectrum, phase difference, and
histogram

Phase Difference

Histogram

Convergence analysis

Except for the reconstruction accuracy, the convergence and running speed are also the
important issues for a novel iterative method. Here, we first investigated the convergence
of the modified MP algorithm (MMP) and the classic matching pursuit algorithm (MP)
under different parameter configuration. And then compared the runtime of the proposed
CSIIRR with the other classical methods (e.g. WBP, IIRR and ICON). The simulated data
shown in the previous section is used as the benchmark dataset. When comparing the
proposed modified MP and classic MP, we omitted the estimation of unknown projec-
tion in MMP (i.e., we set p];;kln own = 0 in Algorithm 1) for fair comparison. One point
should be noted is that the classic MP is a special case of MMP if setting the parameter
M to 1. The Pearson correlation coefficient (PCC) between the ground-truth and each
turn’s reconstruction result is measured to indicate the improvement of reconstruction
quality during the iteration process. Figure 2 demonstrates the change of PCC value for
the two methods. It can be found that the MMP algorithm has a much faster convergence
rate compared with the classic MP algorithm, no matter how we set the parameters. Fur-
thermore, in the early iterations, the larger the M is, the faster the convergence speed
will be.

When comparing the run-time between the whole CSIIRR framework and the classic
WBP, IIRR, and ICON methods, the M used in modified MP is set to 335103 (i.e., with
0.01 ratio). We use structural similarity (SSIM) which is a measurement of image qual-
ity to evaluate CSIIRR. Figure 3 shows the experimental result, in which the SSIM curves
of CSIIRR, ICON, WBP and IIRR with respect to the running time are demonstrated.
It can be observed that CSIIRR converged to the highest SSIM value with the fastest
convergence rate.

Effect of tilt angle change
Next, we tested the robustness of CSIIRR on different tilt angle ranges and intervals.
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running time. The number in the legend represent the ratio of M to the number of volumes in f. M is the
number of pixel values updated in each iteration

CSIIRR was tested on simulated data with angular range set to —50° to 50°, —60° to 60°
and —70° to 70° (Fig. 4). As shown in Fig. 4, CSIIRR’s FSC curve is significantly higher
than the ones of other methods.

Furthermore, CSIIRR was tested on simulated data with angular intervals 1°, 2° and 3°
(Fig. 5). As shown in Fig. 5, CSIIRR’s FSC curve has significantly higher coefficients than
that of other methods, especially for high frequency.

0.95 [ et ¢ =+ § - == & 4 = CSIIRR |
—g— |CON
=== \WBP

09 —A&— IRR N

0.85 N

Structural Similarity Index (SSIM)
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Running time (s) x10%

Fig. 3 Comparing of running time. The SSIM of CSIIRR, ICON, WBP and IIRR with respect to the running time
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Effect of noise

The effect of noise on the behavior CSIIRR has been investigated. The noise with
signal-to-noise ratio SNR = 0.5,1,2 is added to the projections and the tomogram is
reconstructed by WBP, IIRR, ICON and CSIIRR. The Fourier shell correlation (FSC)
between the reconstructed tomogram and the ground-truth is calculated to show the
reconstruction quality of each method. Figure 6 shows corresponding FSC curve. For the
data with SNR = 0.5 and 1(Fig. 6a, b), the result obtained by CSIIRR achieves the highest
correlation value for each Fourier frequency compared with the ones of WBP, IIRR and
ICON. For the data with SNR = 2 (Fig. 6c¢), the result obtained by CSIIRR achieves the
highest correlation value for high frequency compared with the ones of WBP, IIRR and
ICON.

Performance on real data

The proposed CSIIRR was further challenged by real-world datasets. We first made a
whole tilt series reconstruction to see the behavior differences between the proposed CSI-
IRR and the other classical methods (e.g., [IRR and ICON). Then, a leave-one-out analysis
was carried out to further make a quantitative analysis.

The leave-one-out [19] validation can show how precise the missing information is
restored by a reconstruction method. In detail, we exclude the projection with the
minimum tilt angle from the tilt series and then reconstruct the tomogram without con-
sidering the excluded projection. After the reconstruction, we reproject the tomogram
according to the tilt angle value of the excluded projection and calculate the similarity
between the reprojection and the exact excluded projection by Fourier ring correlation.

Experiment on centriole

The Centriole dataset is a tilt series of plastic embedded cell section around a centri-
ole region, which was taken on a FEI TF30 microscope (operated at 300 kV) with a
Gatan Camera. This dataset is downloaded from IMOD’s website [20]. The tilt angles
of the projections range from +65.0° to —61.0° at 2° intervals. The size of each projec-
tion is 1024 x 1024 with a pixel size of 1.01 nm. The tilt series is aligned in advance by
IMOD [20].

To reconstruct the tomogram, the number of iterations is set to 15 in I[IRR. For the sake
of fairness, the number of outer-loop iterations in our proposed algorithm is also set to
15. The number of iterations for modified MP in CSIIRR is set to 3, and the number of
atoms selected in each iterations M is set to 19,191,398 in modified MP. The iteration is
set to "30,120,300” in ICON.

Figure 7 shows the XY-slice and XZ-slice of the reconstructed tomograms by dif-
ferent methods. From Figs. 7a, b and e, f, it can be found that the tomogram
reconstructed by CSIIRR has a clearer background comparing with the ones recon-
structed by IIRR. Additionally, according to Fig. 7c, d, stripe noise appears around
the boundary of the XY-slice of tomogram from ICON while this kind of stripe
noise does not appear around the boundary of the XY-slice of tomogram from
CSIIRR.

Figure 8 demonstrates the result of reprojection analysis. It can be found that the repro-
jection produced by IIRR is blurred while the reprojection produced by CSIIRR and ICON
are very clear and keep high similarity with the exact excluded groundtruth. The Fourier



Li et al. BMC Bioinformatics 2020, 21(Suppl 6):202

0.7

0.5

Fourier Shell Correlation
o
[}
T

0.3

0.2 L

A WBP
0.9 IIRR 4
ICON
CSIIRR
0.8 3
[ =4
o
©
© 07 o
5
O
3 0.6 8
£
n
205 gy
=
(¢}
(g
0.4 7
0.3 1
0.2
0 0.05 0.1 0.15 0.2 0.25 0.3
Resolution(1/A)
1 T T T T T T
B WBP
0.9 IIRR 2
ICON
CSIIRR
0.8 .
C
]
©
©07r i
S
O
5 06 8
£
[%]
205 &
3
(¢}
(g
0.4+ &
03 3
0.2 . . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3
Resolution(1/A)
1 T T T T T T
C WBP
0.9 IIRR 4
ICON
CSIIRR

L L L L L

0 0.05

t0 0.5, 1 and 2 respectively

0.1 0.15 0.2 0.25 0.3
Resolution(1/A)

Fig. 6 Effect of noise. a, b, cis the FSC curves of tomograms reconstructed from simulated data with SNR set
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Fig. 7 Reconstruction result of the Centriole dataset. a, ¢, e is the XY-slice of reconstruction result from IIRR,

ICON and CSIIRR respectively. b, d, fis the XZ-slice of reconstruction result from IIRR, ICON and CSIIRR

respectively

ring correlation (FRC) curve (Fig. 8b) further indicates that CSIIRR could estimate the
missing information more precisely compared with ICON.

Experiment on mitochondria

The Mitochondria dataset is a tilt series of mitochondria from mouse hepatic taken with
a FEI Tecnai 20, with voltage at 200 kV. cells without fiducial markers. The tilt angles of
the projections range from —52.0° to +59.0° at 1° intervals. The tilt series is aligned in
advance by the marker-free alignment module in AuTom [16, 21].
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Figure 9 shows the XY-slice and XZ-slice of the reconstructed tomograms. As shown in
Fig. 9a, b and e, f, the tomogram reconstructed by CSIIRR has a better contrast comparing
with the ones reconstructed by IIRR. According to Fig. 9¢, d, stripe noise appears around
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Fig. 9 Reconstruction result of the Mitochondria dataset. a, ¢, e is the XY-slice of reconstruction result from
IIRR, ICON and CSIIRR respectively. (B)(D)(F) is the XZ-slice of reconstruction result from IIRR, ICON and CSIIRR
respectively

the boundary of the XY-slice of tomogram from ICON while this kind of stripe noise does
not appear around the boundary of the XY-slice of tomogram from CSIIRR.

Figure 10 demonstrates the experiment result. As shown in Fig. 10a, the reprojection
produced by IIRR has been blurred compared with the groundtruth. The reprojection
produced by ICON looks better than IIRR. Nevertheless, strip artifacts still exist around
the boundary of the projection produced by ICON. The reprojection produced by CSIIRR
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Fig. 10 Reprojection result of the Mitochondria dataset. a The excluded projection (groundtruth) and the
reprojections at the minimum tilt angle produced by IIRR, ICON, and CSIIRR. b The FRC curve of lIRR, ICON
and CSIIRR, by comparison with the groundtruth

has the most visual details and is the most similar to the original excluded projection. The
FRC curves shown in Fig. 10b further support our conclusion.
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Conclusion

In this work, we proposed a novel algorithm for the reconstruction of electron tomog-
raphy. By combining the concept of compressed sensing (CS) and improved iterative
reconstruction-reprojection (IIRR) together, this algorithm is able to suppress the effect
of the missing wedge and restore the missing information.

Setting a proper value to the parameters in CSIIRR is really important to the perfor-
mance of this method. First, the factor A should be set carefully to ensure the convergence
of the method. The author proposing the IIRR suggested that A should be close to 1, so
we set A = 0.99 in the experiment. Next, the number of atoms M should be set carefully
to trade off the convergence rate and the sparsity of the reconstructed volume.

The proposed algorithm was challenged by both the simulated data and real-world data.
The results show that the proposed algorithm has an obvious advance in the suppression
of missing wedge effects and the restoration of missing information.
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