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Enzymes play vital roles in all organisms. The enzymatic process is progressively at its
peak, mainly for producing biochemical products with a higher value. The immobilization of
enzymes can sometimes tremendously improve the outcome of biocatalytic processes,
making the product(s) relatively pure and economical. Carrier-free immobilized enzymes
can increase the yield of the product and the stability of the enzyme in biocatalysis.
Immobilized enzymes are easier to purify. Due to these varied advantages, researchers are
tempted to explore carrier-free methods used for the immobilization of enzymes. In this
review article, we have discussed various aspects of enzyme immobilization, approaches
followed to design a process used for immobilization of an enzyme and the advantages
and disadvantages of various common processes used for enzyme immobilization.
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INTRODUCTION

Enzymes have been the most important part of our day-to-day life. Enzymes can regulate the
biochemical and chemical reactions in the organisms as well as in situ biotransformations without
being altered in the process (Palmer and Bonner, 2007). These biocatalysts are mostly used in the
industries such as pharmaceutical and dairy industries for making food and dairy products,
pharmaceutical industries for making medicines, textile industry for texture improvement, and
paper and pulp industry (Watanabe et al., 1988; Sheldon and Woodley, 2018). To increase the use of
enzymes on an industrial scale as biocatalysts (Zhang et al., 2012; Chapman et al., 2018), it is
mandated that the enzyme system must be stable in a reaction system, the enzyme must possess
improved operational stability in an aqueous or organic or biphasic system, stable biocatalytic
potential, optimal requirement of raw materials, and more, so the enzyme selectivity and specificity
should be high (Kricka and Thorpe, 1986). On top of a biocatalytic system, preferably, the enzyme
system should be driven into a hygienic and cleaner industrial process.

The goal of enzyme immobilization is to create a strong biocatalyst that can operate under non-
native and severe conditions for a longer period. Therefore, instead of using soluble enzyme
counterparts, countless efforts have been committed for the improvement of enzyme immobilization
techniques, optimizing their catalytic efficiency for a greater yield, stability, and reusability (Cao,
2005; Cao et al., 2021). For instance, it is recommendable to identify a suitable reusable matrix with a
better selective absorbent, create a green recyclable process in order to improve the control of the
catalysis process, and reduce the manufacturing cost of the desired product. Immobilized enzymes
comprise two essential functional units irrespective of their methods of preparation or nature of the
enzyme preparation: First, they possess a non-catalytic unit which is essential for their separation
with the host environment, recycle process, and overall process management; Second, the functional
catalytic unit which converts the substrate into a product (Cao, 2011; Dwevedi, 2016). Non-catalytic
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units comprise chemical and physical characteristics of the
immobilized enzyme system, such as size, shape, and length of
the chosen carrier, whereas the catalytic units are more similar to
the chemical properties such as selectivity, pH, and activity (Cao
et al., 2003). These are the criteria of choice when planning for the
immobilization process of an enzyme. Carrier-free enzymes
provide a cost-effective, simple, and straightforward method of
reusing enzymes while also maintaining their catalytic efficiency
and thermostability. This immobilization technology has been
thoroughly evaluated upon numerous enzymes, and it has been
successfully used in industrial processes (Velasco-Lozano et al.,
2016). Thus, this review shows different aspects of enzyme
immobilization and various approaches, along with the
disadvantages and advantages of common processes used for
enzyme immobilization.

APPROACH TOWARD IMMOBILIZATION
OF ENZYMES

Currently, the use of enzymes as a robust immobilized biocatalyst
system(s) is experiencing a passage through crucial transition(s).
This is supported by the fact that the strategies used for the layout
of immobilized enzymes have come to be more and more
rational; often, more complex and advanced immobilization
strategies are utilized to overcome difficulties of older
immobilization strategies involving only a particular
immobilization methodology (Cao, 2011). In this context, this
article tries not only to summarize the plenty of the artwork in
enzyme immobilization techniques but also examines the fashion
of improvement of biocatalyst efficacy, the aggregate of numerous
immobilization methods, strategies, or disciplines, which have
been previously successfully employed to attain the favored.

IMMOBILIZATION OF ENZYMES AND OLD
VS. NEW STRATEGIES

During earlier times, the enzyme immobilization or in-
solubilization process was synonymously used (Patel et al.,
1969). The term “enzyme immobilization” refers to the
physical confinement of the soluble proteinaceous enzyme
molecules via different interactions to the carrier’s matrix in a
region of space such as cross-linking/embedding, generally an
insoluble material that can be easily removed from the medium,
using simple basic procedures such as filtration, centrifugation,
self-aggregation, or sieving (Mosbach, 1976). The characteristics
of immobilized enzymes are largely governed by four important
factors in an enzyme immobilization process, which are the
nature and type of enzyme employed, the nature of the
carrier, and the immobilization conditions (Datta et al., 2013;
Liu et al., 2020).

To date, enzyme immobilization techniques have been
extensively researched, with more than 6,000 publications and
patents over it. Enzymes including amino acylase, PGA, invertase,
many lipases, proteases, amylase, and nitrilase have been
immobilized and are employed for diverse commercial

processes (Heinen et al., 2017; Almeida et al., 2018; Facchini
et al., 2018; Monteiro et al., 2019). Although the primary
techniques of enzyme immobilization may be classified into
some special techniques only, yet covalent bonding,
adsorption, entrapment, encapsulation, and cross-linking are
all examples of modifications that have been produced in the
past, largely based on combinations of authentic techniques
(Ahmad and Sardar, 2015). Similarly, numerous carriers of
varied physical and chemical natures or occurrences have been
developed for a wide range of bio-immobilization and bio-
separation media. It is critical to remember that none of the
existing immobilization methods can tackle the challenges that
will be encountered in a certain process when building the best-
suited immobilized enzyme for that process (Cao, 2011).
Optimization and stabilization can be additionally carried out
with the aid of a chemical change. One of the often used strategies
to enhance the enzyme balance is hydrophilization of enzyme
molecules through chemical change with hydrophilic practical
polymers. The stabilization impact due to hydrophilization of a
selected enzyme is manifested because of the creation of a positive
hydrophilic microenvironment. The entrapment of the stabilized
enzyme frequently results in the formation of an extra strong
immobilized biocatalyst in comparison with an entrapped
biocatalyst (Cao, 2005).

In the older case, the entrapped enzymes might be in addition
subjected to chemical cross-linking to improve the balance or
avoidance of enzyme leakage. Remarkably, a β-amylase obtained
from Bacillus megaterium, immobilized in a bovine serum
albumin gel matrix and covalently cross-connected depicted a
14-fold better thermostability than that of a native enzyme (Ray
et al., 1994). Generally, the combination of techniques, including
the pre-immobilization strategies, together with imprinting,
chemical modification, cross-linking, etc., with the right
immobilization method is decided as an essential
immobilization technique (Cao, 2011).

When designing an immobilized enzyme for any biological
process, it is far critical to take note of the truth that the selection
of the immobilization techniques is very important to get the
desired results (Mohamad et al., 2015). The practical method
would possibly be the usage of enzyme-immobilization methods,
usually divided into numerous critical steps, and discrete
optimization procedures of rational designs would possibly
result in the introduction of strong and functional
immobilized biocatalysts. A diagrammatic representation of
the different methods of enzyme immobilization is
summarized in Figure 1.

CLASSIFICATION OF
IMMOBILIZED-ENZYMES

Immobilized enzymes have been classified into two major groups
that are given as follows:

A) Carrier-bound immobilized enzymes: These are the enzymes
that are physically or chemically bound to a matrix or support
(i.e., carrier).
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B) Carrier-free immobilized enzymes do not need
supererogatory inactive mass. Carrier-free immobilized
enzymes are normally constructed on the basis of their
molecular mass via chemical cross-linking (Cao, 2011).

NEED FOR CARRIER-FREE IMMOBILIZED
ENZYMES

In the past few decades, the use of an immobilized enzyme has
become a major priority in industrial processes. The use of non-
toxic, biodegradable, renewal, and commercially sustainable
carrier-free immobilized enzymes and their physical or
chemical property to fit in with its counterpart enzyme (or
biocatalyst) makes it insoluble, aids during the separation
process, and their continuous reusability in industrial or
commercial processes (Sheldon, 2019; Ottone et al., 2020).
Thompson et al. (2019a) have defined the parameters that an
immobilized enzyme must satisfy in order to be commercially
viable: easier recovery, more recyclability (~above 20 cycles),
stable during the reaction process, lower cost, tolerant to harsh
solvents, minimum or no leaching, maximum activity recovery
(~above 50%), and maximum loading of the enzyme. Carrier-free
immobilization as a cross-linked enzyme(s) and their derivatives
is one way to do this. With a wide range of enzymes, particularly
carbohydrate-converting enzymes, this technology is proved to be
quite successful (Contesini et al., 2013).

The selection of good carriers gives clean control over the non-
catalytic units of the acquired immobilized biocatalyst. The
physical and the chemical nature of the carrier such as
chemical composition, hydrophobic/hydrophilic balance, pore
size, and binding chemistries dictates the performance of a
carrier-bound immobilized enzyme (i.e., enzyme activity and

stability) and a good carrier or suitable binding chemistry for
an enzyme is not necessarily the right one for other enzymes or
other applications (Sheldon, 2019). Thus, the nature of the
selected carrier may be taken into consideration so as to
modify the biocatalyst. Correspondingly, a high-quality
quantity of artificial or organic/herbal carrier matrix, with
unique shapes/sizes, porous/non-porous structures, and
binding functionalities are particularly designed for diverse
bio-immobilization and bio-separation procedures (Cao, 2011).
Regardless of accelerated expertise on carrier-based enzyme
immobilization, the layout of the carrier and certain
immobilized enzymes nonetheless are based largely on
rigorous screening procedures.

MAJOR TYPES OF CARRIER-FREE
IMMOBILIZED ENZYMES

Carrier-free immobilized enzymes do not require additional
inactive material or mass, that is, a carrier. At present, the
following approaches have been devised for creating a carrier-
free immobilized enzyme (Table 1), namely, cross-linked
dissolved enzyme: CLEs; cross-linked enzyme crystals
(CLECs); cross-linked enzyme aggregates (CLEAs); cross-
linked enzyme lyophilizates (CLELs); and cross-linked spray-
dried enzymes (CSDEs) (Wilson et al., 2004). Thus, utilizing
various cross-linking precursors aids in distinguishing between
different types of carrier-free immobilized enzymes.

The use of carriers in carrier-bound enzymes could decrease
catalytic activity due to dilution of the enzyme due to the
inclusion of more than 95 percent non-catalytic unit in the
form of carrier (Roessl et al., 2010). For some applications,
this might result in unacceptably reduced volumetric and

FIGURE 1 | Chemical and physical method(s) of immobilization and their characteristics.
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space-time yields, as well as decreased catalyst efficiency. In
contrast, carrier-free immobilized enzymes, particularly cross-
linked enzyme aggregates and cross-linked enzyme crystals,
perform well (DeSantis and Jones, 1999). As a result,
significant research has been conducted to train these carrier-
free immobilized enzymes, particularly CLEs. More than 20
different enzymes have been directly cross-connected to form
many CLEs that were originally adsorbed on inert supports,
including membranes cross-connected to shape supported
CLEs (Cao, 2011).

Cross-linking Enzymes
A dissolved enzyme may be cross-linked to increase its
thermostability; however, additional factors that may influence
the stability of such biocatalysts include the amount of cross-
linker, temperature, ionic strength, pH, and the amount of
dissolved enzyme used (Taylor, 1985).

Despite many improvements, it is very difficult to optimize
stronger mechanical balance via CLEs entrapment or dissolved
enzyme cross-linking in a gel matrix (Manecke, 1972). The usage
of greater mass glaringly decreased the volumetric interest to the
extent of a service-sure immobilized enzyme. Consequently, in
many biocatalytic studies, scientists switched to carrier-bound
enzymes with an extensive variety of carriers. Thus, many
companies particularly exploited advanced immobilization
techniques (Mosbach, 1971), and numerous reactions for
binding enzymes to carriers were established (Cui and Jia, 2015).

Cross-linking Enzymes Crystals
The remarkable discovery that is cross-linking of enzyme crystals
of dissolved enzymes with a bifunctional chemical cross-linker,
such as glutaraldehyde, could result in the formation of what we
now refer to as insoluble CLECs, which was made in the early
1960s by researchers studying solid-phase protein chemistry by
synthesizing compact cross-linked crystals of carboxypeptidase A
(Quiocho and Richards, 1964). Following this work, a few other

enzyme crystals were made using enzymes such as ribonuclease
A, lysozyme (Manecke, 1972), subtilisin (Tüchsen and Ottesen,
1977, carboxypeptidase A (Quiocho and Richards, 1966), and
alcohol dehydrogenase (Lee et al., 1986).

When compared to non-immobilized equivalents and
standard carrier-bound immobilized enzymes (López–Serrano
et al., 2002), their excellent stability under severe temperature
and wider pH range in solvents made them an appealing
prospective biocatalytic tools. Furthermore, it was
demonstrated that CLECs could be designed in a reasonably
short time because of no requirement of highly purified enzyme
(Roessl et al., 2010). It was feasible to preserve comparable activity
and selectivity relative to the soluble enzyme in an aqueous
medium or relative to the crude enzyme in organic solvents by
selecting the correct crystal shape or size or manipulating the
crystallization characteristics of medium. The activity would also
be affected by the size and characteristics of the substrates, the

TABLE 1 | Comparison of different properties of soluble, carrier-bound immobilized, and carrier-free immobilized enzymes (Jegan Roy and Emilia Abraham, 2004; Cui et al.,
2014; Voběrková et al., 2018).

Parameter Soluble enzyme Carrier-bound
immobilized enzymes

Carrier-free immobilized enzymes

CLEsa CLECsa CLEAsa CSDEsa

Purity level
required for
synthesis

Crude or purified
enzyme

Crude or purified enzyme Crude or purified
enzyme

Only purified enzyme Crude or purified
enzyme

Purified enzyme only

Storage
conditions

Refrigeration
required

Refrigeration required Can be refrigerated or
stored at room
temperature

Can be refrigerated or
stored at room
temperature

Can be refrigerated or
stored at room
temperature

Can be refrigerated or
stored at room
temperature

Activity High activity Reduced activity due to
higher concentration of
carrier

High activity due to
increased volumetric
activity

High activity due to
increased volumetric
activity

High activity due to
increased volumetric
activity

Limited activity due to
drying of enzyme

Media Aqueous More reactive in aqueous
and less in organic media

More reactive in both
aqueous and organic
media

More reactive in both
aqueous and organic
media

More reactive in both
aqueous and organic
media

More reactive in both
aqueous and organic
media

pH and thermo-
stability

Limited pH and
temperature range

Limited pH and
temperature range

Stable pH and
temperature range

Stable pH and
temperature range

Stable pH and
temperature range

Stable pH and
temperature range

Processivity Low High High Very high Very high Low

aCLEs, cross-linked enzymes; CLECs, cross-linked enzyme crystals; CLEAs, cross-linked enzyme aggregates; CSDEs, cross-linked spray-dried enzymes.

FIGURE 2 | Features of cross-linked enzyme aggregates.
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reaction media, the kind of reaction, and the reaction
circumstances (Mehta et al., 2016). The biocatalytic activity
could additionally depend upon the scale and residences of the
substrates, the response medium, and response conditions (Cao
et al., 1999). CLECs were formulated as strong and active
immobilized enzymes of a controllable size. Several CLECs,
particularly hydrolases consisting of acylases, proteases, and
lipase, have been continuously used for chiral biocatalysis.
Other uses of CLECs are microporous substances for
controlled release of protein/peptide drugs, CLEC-based
biosensor, lipase therapy for cystic fibrosis or pancreatitis, etc.
(Jegan Roy and Emilia Abraham, 2004).

Cross-Linking Enzyme Aggregates
CLEAs have been introduced as one of most effective carrier-free
immobilized enzyme systems (Figure 2), and the major
advantage of this technique is that a tedious purification step
is not required (Thompson et al., 2019b). By altering their
properties that affect the proximity of soluble enzyme
molecules, they can be used to shape bodily aggregates that,
after cross-linking, termed as CLEAs (Cao et al., 2003; Table 2).
When distributed in an aqueous media, these solid aggregates are
kept together by non-covalent bonding and are easily collapsed
and redissolved as a result of the non-covalent bonding. In the
case of physical aggregates, chemical cross-linking would result in
the formation of cross-linked enzyme aggregates, in which the
restructured superstructure of the aggregates and their activity
would be preserved (Nadar et al., 2016; Alves et al., 2021). This
can partly explain why the enzyme could not consistently be
cross-linked, even when 80% of overall lysine residues were
changed through glutaraldehyde (Tomimatsu et al., 1971).
Interestingly, it determined that the catalytic behavior of
CLEAs differs because of the presence of the precipitants. In
the case of CLEAs of penicillin G acylase produced through
ammonium sulfate precipitation, the biocatalyst displayed similar
behavior to the local enzyme for ampicillin synthesis, while

CLEAs employed the use of test-butanol as a precipitant (Ling
et al., 2016).

In most biological processes, more than one enzyme(s) are
included, allowing them to maintain a high level of efficiency
during metabolic and anabolic processes. In order to attain this
aim during in vitro conditions, multiple-enzyme catalysis is
preferred. Hence, combined cross-linked enzyme aggregates
(combi-CLEAs) based on the CLEAs were designed and tested
in the laboratory. Combi-CLEAs are enzyme complexes that
include two or more immobilized enzymes that are capable of
catalyzing sequential or simultaneous reactions in the same
system (Sheldon, 2019).

Magnetic CLEA(s) of several enzymes has been synthesized by
chemically cross-linking enzyme aggregates with magnetic
nanoparticles, which can be isolated readily from the process
mixture using a magnetic field (Sheldon, 2019). Moreover, wide-
range thermostability increased buffering capacity, and varied pH
has also been observed (Talekar et al., 2012).

Cross-Linked Enzyme Lyophilizates
The cross-linked enzyme lyophilizates are synthesized from
freeze-dried/lyophilized enzyme preparation in presence of
lyoprotectants (polymers/sugars) to minimize denaturation
during the drying stages, and these lyophilizates are subjected
to cross-linkers and precipitants. Organic compounds,
carbohydrates, amino acids, etc. and their derivatives can be
produced using CLELs through enzymatic processes such as
reduction, esterification, and asymmetric conversion processes
(Jegan Roy and Emilia Abraham, 2004).

Cross-Linked Spray-Dried Enzymes
Spray-dried enzyme powders are cross-linked to produce CSDEs.
In addition, the fact that CSDEs are reversibly deactivated by the
spray-drying process has prevented this technique from being
widely used, even though it yielded respectable activity.
Therefore, when compared to other carrier-free

TABLE 2 | Various types of support systems used in CLEAs.

Types
of support system

Different
classes of enzymes

Techniques utilized for
immobilization

References

Super nanoporous silica Lipase; chymotrypsin Cross-linking and adsorption Iyer and Ananthanarayan (2008)
Nanoporous silicate foam Beta-glucosidase Cross-linking and adsorption Califano and Costantini (2020)
Silica gel (macroporous in nature) Pepsin (papain) Cross-linking and adsorption Hudson et al. (2008)
Sol-gel system Lipase (lipid-digesting) Encapsulating Acevedo-Fani et al. (2021)
Lentikats Penicillin amidase Encapsulating Sawant et al. (2020)
Foaming agent monocellular in nature Glucose–oxidase Entrapping and cross-linking Wahab et al. (2020)
Super nanoporous silica (SAB 15) Lipase; chymotrypsin Cross-linking and adsorption Zhou and Hartmann (2013)
Hydro-gel pellet Subtilisin Entrapping Jana et al. (2017)
Polylysine Citrate synthase and subtilisin Cross-linking Yamaguchi et al. (2011)
Nano-fibers Carbonic anhydrase Cross-linking and adsorption Ranimol et al. (2021)
Microporous polymeric sheet Lipase (lipid digesting) Embedded Liu et al. (2021)
Chitosan electrospun Lysozymes Cross-linking and adsorption Ribeiro et al. (2021)
Polystyrene nano-fibers Lysozymes Cross-linking and adsorption Sabzehmeidani and Ghaedi (2021)
Magnetic nanoparticle Esterases Cross-linking Sharma et al. (2021)
Mesocellular super nanoporous silicate Chymotrypsin Cross-linking Vinu et al. (2008)
Calcium alginate (gelling form) Tyrosinase Encapsulating Wei et al. (2021)
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TABLE 3 | Commercial uses of carrier free enzymes.

Enzyme Source Class Type Commercial use References

Thermolysin Bacillus thermoproteolyticus,
Bacillus spp.

Protease CLECs Manufacturing of artificial
sweetener aspartame

Clair and Navia (1992)

Trypsin Pancreatic trypsin in vertebrates Protease CLEAs Food processing industry, clinical
use, biotechnological processes

Menfaatli and Zihnioglu
(2015)

Rabbit muscle fructose
diphosphate aldolase

Rabbit muscle Aldolase CLECs Synthesis of euk. RNA pol inhibitor Sobolov et al. (1994)

Papain Carica papaya fruit Protease CLEs Leather, cosmetic, textiles,
detergents, food, and
pharmaceutical industries

Jansen and Olson (1969)

Penicillin acylase Bacteria, yeast, and fungi Hydrolase CLEAs Production of beta-lactam
antibiotics

Cao et al. (2000)

Lipase, esterase Pseudomonas stutzeri, Candida
antarctica, Thermomyces
lanuginosus, Rhizomucor miehei,
Aspergillus niger, Mucor miehei

Hydrolase CLEAs,
Magnetic-
CLEAs,
CLECs

Processing of fats and oils,
detergents and degreasing
formulations, food processing, the
synthesis of fine chemicals and
pharmaceuticals, paper
manufacture, and production of
cosmetics

Adam et al. (1999),
Schoevaart et al. (2004),
Paitaid and H-Kittikun (2020),
Guajardo et al. (2021)

Nitrile hydratase;
alkaliphilic nitrile
hydratase

N. alkaliphilus Lyase CLEAs;
combi-
CLEAs

Acrylamide production; aldehydes
to (S)-α-hydroxycarboxylic acid
amides

van Pelt et al. (2009), Gao
et al. (2015)

Hydroxynitrile lyase M. esculenta Lyase Combi-
CLEAs

Synthesis of agrochemicals Roberge et al. (2007),
Lanfranchi et al. (2015)

Subtilisin Bacillus subtilis Protease CLEAs Stain cutter, cosmetics, food
processing, skincare ointments,
contact lens cleaners

Sangeetha and Abraham
(2008)

Acylase Porcine kidney Hydrolase CLEAs Used as antifouling agent which
causes biofilm degradation
(replacement of tributyltin)

Lee et al. (2017)

Alginate lyase Flavobacterium sp. Lyase CLEAs Degrading gel Kunjukunju et al. (2018)
Xylanase B. licheniformis Hydrolase CLEAs Paper and pulp industry, food

processing
Kumar et al. (2017)

Phenylalanine ammonia
lyase

Rhodotorula glutinis Lyase CLEAs Conversion of L-phenylalanine to
ammonia and trans-cinnamic acid

Cui et al. (2014)

Laccase Coriolus versicolor, Trametes
versicolor, Trametes villosa, Agaricus
bisporus

Oxidoreductase CLEAs Elimination of undesirable phenolic
compounds in baking, juice
processing, wine stabilization, and
bioremediation of wastewater

Bourbonnais and Paice
(1990), Matijošytė et al.
(2010)

Glucose/xylose
isomerase

Streptomyces thermonitrificans Isomerase Magnetic-
CLEAs

High-fructose corn syrup Gupta and Srivastava (2017)

Peroxidase Bjerkandera adusta Oxidoreductase Combi-
CLEAs

Pharmaceutical preparations,
treatment of industrial wastes

Taboada-Puig et al. (2011)

Ligninolytic enzymes Trametes versicolor Oxidoreductases Combi-
CLEAs

Decolorizing ability Li Y. et al. (2015)

Penicillin amidase Recombinant Escherichia coli Hydrolase Combi-
CLEAs

Ampicillin, 6-aminopenicillanic acid Illanes et al. (2006)

Lactase Kluyveromyces lactis Hydrolase CLEAs Lactose-free milk Dong and Zhong (2019),
Wilson et al. (2022)

Cellulase–xylanase
mixture

Microorganisms, algae, protozoans,
crustaceans, and insects

Hydrolase CSDEs Fabric softening, pulp processing,
bio-bleaching, oil extraction,
beverage production, bioscouring

Santa-Maria et al. (2012)

Tyrosinase Mushroom tyrosinase Oxidoreductase CLEAs Elimination of phenolic compounds
from wastewater

Xu and Yang (2013)

Carbonic anhydrase Rhodobacter sphaeroides Lyase CLEAs Carbon sequestration and biofuel
production

Park et al. (2012)

Phytase Soya milk Hydrolase CLEAs Animal feed supplement Tirunagari et al. (2018)
β-galactosidase Recombinant E. coli BL21 Hydrolase CLEAs Synthesis of galacto-

oligosaccharides
Li L. et al. (2015)

Monoamine oxidase Arthrobacter aurescens Oxidoreductase CLEAs Determination of biogenic
monoamines

Kim and Kim (2016)

Transglutaminase Plants, microbial origin Transferase CSDEs Flavoring agent Gong et al. (2019)
Urease Jack bean Hydrolase CLELs Fertilizers industry, clinical kits,

reducing agents in beverages.
Akkas et al. (2020)

(Continued on following page)
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immobilization techniques, CSDEs have lower biocatalytic
activity (Zicari et al., 2017).

PROCESS OPTIMIZATION OF
CARRIER-FREE ENZYMES

Immobilized enzyme preparations are effective biocatalysts for
commercial manufacturing processes (Table 3). The introduction
of carrier-free immobilized enzymes for process optimization has
tackled major drawbacks of carrier bound immobilized enzymes
by reducing the use of expensive carriers and increased catalytic
mass with increased yield and reduced costs in the scale-up
process (Cao et al., 2003). It is possible to achieve increased
thermostability by cross-linking the dissolved enzyme (CLEs),
but this needed a precise balance between numerous elements,
including the quantity of cross-linkers used, temperature, pH,
and ionic strength of the solution. Furthermore, intermolecular
cross-linking of these highly solvated enzyme molecules often
resulted in a number of undesirable side effects, including
decreased activity retention, poor repeatability, and limited
mechanical stability.

Cross-linked enzyme crystals (CLECs) were introduced by
Quiocho and Richards (1964). When compared to CLEs, it was
discovered that CLECs demonstrated improved thermostability,
pH, more tolerance to organic solvents, and mechanical forces
and showed higher retained activity. But one major drawback to
CLECs was the requirement of high purified enzymes and their
crystallization, which makes this process costlier. This limitation
was overcome by a more promising, commercially utilized
technique, that is, CLEAs (Sheldon, 2011). It is synthesized in
two different phases: The initial step includes enzyme aggregation
by precipitants using methods such as salting out with
ammonium sulfate, organic solvents, isoelectric precipitation
by TCA, using polyethylenimine, etc. which is then followed
by the establishment of chemical linkages between the enzymes
via cross-linking agents such as glutaraldehyde to further
strengthen the interactions. The aggregation of proteins is
exploited by rapid change of their hydration state by the
addition of precipitants in the solvent solution. The
development of precipitated enzyme aggregates is a necessary
step in the preservation of enzyme activity during cross-linking
(Arana-Peña et al., 2021). It has been observed that the catalytic
activity of CLEAs varies based on the characteristics of the
precipitants used in aggregation. In addition, spray drying is a

reasonably affordable and readily scaled-up approach that is
repeatable, making it a useful method of encapsulation
technologies in industrial processes (Cui and Jia, 2015). At
present, CSDEs have limited use in the industrial process but
are still a robust and emerging technique. The objective is to
provide a highly adaptable technological platform for screening
and building strong carrier-free enzymes for a wide range of
commercial applications.

FUTURE PROSPECTUS

In summary, the carrier-free immobilized enzyme technology has
gained interest among researchers and engineers due to its
commercial applicability in industrial processes. Many variants
of cross-linked enzymes have proven their multiple applications,
such as biotransformation processes, water treatment, antibiotic
production, food processing, and several other potential
applications. Another advantage in commercial use is their
primary preference to replace toxic compounds in future
chemical industries with more ecofriendly biocatalytic
enzymes. Combi-CLEAs and magnetic CLEAs have proven to
be more convenient in future production processes due to the
presence of multiple catalysts in individual aggregates and easier
separation.

CONCLUSION

Although the selected approach of immobilization may differ
from enzyme to enzyme, carrier to carrier, and for a different
application, primarily relying upon the peculiarities of every
unique process, standards for measuring immobilized
enzyme’s robustness remain the same. Commercially applied
immobilized enzymes need to be relatively active, relatively
selective (to lessen cross-reactions), relatively stable (to lessen
value via way of means of efficient reuse), value-intensive (low-
value contribution therefore economically viable), secure to use
(to satisfy protection regulations), and definitely innovative. The
productiveness of almost every immobilized enzyme is relatively
lower than that of chemical processes. Due to diffusion
constraints, activity retention for porous carriers is regularly
underneath 50% at most enzyme loading in a biocatalytic
reaction system. Although improvement of carrier-free
enzymes, including CLEA or CLEC, can put off the use of the

TABLE 3 | (Continued) Commercial uses of carrier free enzymes.

Enzyme Source Class Type Commercial use References

L-methioninase Bacterial, fungal, and plant origin Lyase CLEAs Therapeutic formulations Kannan and Marudhamuthu
(2019)

Amylase Bacillus lehensis G1 Hydrolase CLEAs,
magnetic-
CLEAs

Fuel alcohol production, detergent,
textile, paper industry, starch
conversion

Nadar et al. (2016), Nawawi
et al. (2020)

Glycerol
dehydrogenase and
NADH oxidase

Recombinant E. coli BL21 Oxidoreductase Combi-
CLEAs

Synthesis of chiral chemicals Xu et al. (2020)
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non-catalytic mass provider, the intrinsic drawbacks related to
the carrier-free immobilized enzymes. The carrier-free
biocatalytic systems appear to be greatly appealing as no
scaffold/matrix is required, no matrix modification or
activation is needed, little leaching effect is seen, and the
complete absence of aldehyde cross-linking chemicals of the
benefits of such biocatalytic systems. With the progressive
research in the field, the future seems to be bright in creating
advanced techniques to immobilize different enzymes, which
would result in enhancing the efficiency of the enzyme by
many folds.
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