Technological Innovations and Resources

X Author’s Choice

© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

A Double-Barrel Liquid Chromatography-
Tandem Mass Spectrometry (LC-MS/MS)
System to Quantify 96 Interactomes per Day*s
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Eva C. Keilhauert, Korbinian Mayrt, and Matthias Manni§

The field of proteomics has evolved hand-in-hand with
technological advances in LC-MS/MS systems, now ena-
bling the analysis of very deep proteomes in a reasonable
time. However, most applications do not deal with full cell
or tissue proteomes but rather with restricted subpro-
teomes relevant for the research context at hand or re-
sulting from extensive fractionation. At the same time,
investigation of many conditions or perturbations puts a
strain on measurement capacity. Here, we develop a high-
throughput workflow capable of dealing with large num-
bers of low or medium complexity samples and specifi-
cally aim at the analysis of 96-well plates in a single day
(15 min per sample). We combine parallel sample proc-
essing with a modified liquid chromatography platform
driving two analytical columns in tandem, which are cou-
pled to a quadrupole Orbitrap mass spectrometer (Q Ex-
active HF). The modified LC platform eliminates idle time
between measurements, and the high sequencing speed
of the Q Exactive HF reduces required measurement time.
We apply the pipeline to the yeast chromatin remodeling
landscape and demonstrate quantification of 96 pull-
downs of chromatin complexes in about 1 day. This is
achieved with only 500 pg input material, enabling yeast
cultivation in a 96-well format. Our system retrieved
known complex-members and the high throughput al-
lowed probing with many bait proteins. Even alternative
complex compositions were detectable in these very
short gradients. Thus, sample throughput, sensitivity and
LC/MS-MS duty cycle are improved severalfold compared
with established workflows. The pipeline can be extended
to different types of interaction studies and to other me-
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Shotgun proteomics is concerned with the identification
and quantification of proteins (1-3). Prior to analysis, the
proteins are digested into peptides, resulting in highly com-
plex mixtures. To deal with this complexity, the peptides are
separated by liquid chromatography followed by online anal-
ysis with mass spectrometry (MS), today facilitating the char-
acterization of almost complete cell line proteomes in a short
time (3-5). In addition to the characterization of entire pro-
teomes, there is also a great demand for analyzing low or
medium complexity samples. Given the trend toward a sys-
tems biology view, relatively larges sets of samples often have
to be measured. One such category of lower complexity
protein mixtures occurs in the determination of physical inter-
action partners of a protein of interest, which requires the
identification and quantification of the proteins “pulled-down”
or immunoprecipitated via a bait protein. Protein interactions
are essential for almost all biological processes and orches-
trate a cell’s behavior by regulating enzymes, forming macro-
molecular assemblies and functionalizing multiprotein com-
plexes that are capable of more complex behavior than the
sum of their parts. The human genome has almost 20,000
protein encoding genes, and it has been estimated that 80%
of the proteins engage in complex interactions and that
130,000 to 650,000 protein interactions can take place in a
human cell (6, 7). These numbers demonstrate a clear need
for systematic and high-throughput mapping of protein—-
protein interactions (PPIs) to understand these complexes.

The introduction of generic methods to detect PPIs, such as
the yeast two-hybrid screen (Y2H) (8) or affinity purification
combined with mass spectrometry (AP-MS)" (9), have revolu-
tionized the protein interactomics field. AP-MS in particular
has emerged as an important tool to catalogue interactions
with the aim of better understanding basic biochemical mech-

" The abbreviations used are: AP-MS, affinity purification mass
spectrometry; FDR, false discovery rate; GFP, green fluorescent pro-
tein; MaxLFQ, MaxQuant label-free quantification; PPI, protein—
protein interaction; TMT, tandem mass tag; Y2H, yeast two-hybrid.
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anisms in many different organisms (10-17). It can be per-
formed under near-physiological conditions and is capable of
identifying functional protein complexes (18). In addition, the
combination of affinity purification with quantitative mass
spectrometry has greatly improved the discrimination of true
interactors from unspecific background binders, a long-
standing challenge in the AP-MS field (19-21). Nowadays,
quantitative AP-MS is employed to address many different
biological questions, such as detection of dynamic changes in
PPIs upon perturbation (22-25) or the impact of posttransla-
tional signaling on PPIs (26, 27). Recent developments even
make it possible to provide abundances and stoichiometry
information of the bait and prey proteins under study, com-
bined with quantitative data from very deep cellular pro-
teomes. Furthermore, sample preparation in AP-MS can now
be performed in high-throughput formats capable of produc-
ing hundreds of samples per day. With such throughput in
sample generation, the LC-MS/MS part of the AP-MS pipeline
has become a major bottleneck for large studies, limiting
throughput to a small fraction of the available samples. In
principle, this limitation could be circumvented by multiplex-
ing analysis via isotope-labeling strategies (28, 29) or by dras-
tically reducing the measurement time per sample (30-32).
The former strategy requires exquisite control of the process-
ing steps and has not been widely implemented yet. The latter
strategy depends on mass spectrometers with sufficiently
high sequencing speed to deal with the pull-down in a very
short time. Since its introduction about 10 years ago (33), the
Orbitrap mass spectrometer has featured ever-faster se-
quencing capabilities, with the Q Exactive HF now reaching a
peptide sequencing speed of up to 17 Hz (34). This should
now make it feasible to substantially lower the amount of time
spent per measurement.

Although very short LC-MS/MS runs can in principle be
used for high-throughput analyses, they usually lead to a drop
in LC-MS duty cycle. This is because each sample needs
initial washing, loading, and equilibration steps, independent
of gradient time, which takes a substantial percentage for
most LC setups - typically at least 15-20 min. To achieve a
more efficient LC-MS duty cycle, while maintaining high sen-
sitivity, a second analytical column can be introduced. This
enables the parallelization of several steps related to sample
loading and to the LC operating steps, including valve switch-
ing. Such dual analytical column or “double-barrel: setups
have been described for various applications and platforms
(30, 35-39).

Starting from the reported performance and throughput of
workflows that are standard today (16, 21, 40-42), we asked
if it would be possible to obtain a severalfold increase in both
sample throughput and sensitivity, as well as a considerable
reduction in overall wet lab costs and working time. Specifi-
cally, our goal was to quantify 96 medium complexity samples
in a single day. Such a number of samples can be processed
with a 96-well plate, which currently is the format of choice for

highly parallelized sample preparation workflows, often with a
high degree of automation. We investigated which advances
were needed in sample preparation, liquid chromatography,
and mass spectrometry. Based on our findings, we developed
a parallelized platform for high-throughput sample prepara-
tion and LC-MS/MS analysis, which we applied to pull-down
samples from the yeast chromatin remodeling landscape. The
extent of retrieval of known complex members served as a
quality control of the developed pipeline.

EXPERIMENTAL PROCEDURES

Preparation of Yeast Lysates—GFP-tagged yeast strains from the
Saccharomyces cerevisiae GFP Clone Collection (43), the parental
strain BY4741 and the control strain pHis3-GFP (21) were cultured in
YPD liquid medium in 96-deep well plates (Sarstedt, NUumbrecht,
Germany) at standard conditions. We used 32 distinct yeast strains in
biological triplicates, resulting in 96 experimental samples. Yeast cells
were grown until they reached an Optical Densityggg nm Of around 1,
followed by harvesting culture volumes equaling 2 ODs per well.
Yeast cell pellets were dissolved in 300 ul lysis buffer (150 mm NaCl,
50 mm Tris-HCI (pH 8.0), 1 mm MgCl,, 5% glycerol, 1% IGEPAL
CA-630 (Sigma-Aldrich, Schnelldorf, Germany), complete protease
inhibitors (Roche, Mannheim, Germany), 1% benzonase (Merck,
Darmstadt, Germany)), transferred into FastPrep tubes (MP Biomedi-
cals, Eschwege, Germany) containing 1 mm silica spheres (lysing
matrix C, MP Biomedicals), and lysed in a FastPrep24 instrument (MP
Biomedicals) for 6 X 1 min at maximum speed. Lysates were cleared
by centrifugation at 16,100 X g for 10 min at 4 °C.

Affinity Purification—Each well of a GFP-multiTrap plate (Chro-
moTek, Martinsried, Germany) was washed three times with 200 pul
buffer 1 (150 mm NaCl, 50 mm Tris-HCI, pH 8.0) and then incubated
with the cleared yeast cell lysate (500 ug total protein extract) with
gentle shaking at 100 rpm for 60 min at 4 °C. Next, each well was
washed twice with 200 ul buffer 2 (150 mm NaCl, 50 mm Tris-HCI (pH
8.0), 0.25% IGEPAL CA-630) and four times with 200 ul buffer 1
before incubation with 25 ul elution buffer (2 m urea, 20 mm Tris-HCI
(pH 8.0), 1 mm DTT, 100 ng sequence-grade modified trypsin (Pro-
mega, Madison, WI, USA) at room temperature for 90 min. Subse-
quently, the resulting peptides were alkylated with 25 ul alkylation
buffer (2 m urea, 20 mm Tris HCI (pH 8.0), 5 mm iodoacetamide) and
finally washed once with 50 ul urea buffer (2 m urea, 20 mm Tris HCI,
pH 8.0) for 10 min, respectively. The supernatants from the elution,
alkylation and washing step were collected after each step and com-
bined in a clean 96-well plate. This plate was incubated overnight at
room temperature to ensure a complete digest. The next morning, the
digest was stopped by addition of 10 ul 10% TFA per well. The
acidified peptides were purified on StageTips (44) containing two
layers of Poly(styrenedivinylbenzene)-Reversed-Phase Sulfonate
(Empore 2241, 3 M, Neuss, Germany) material to desalt and purify the
peptides. Samples were eluted from the StageTips with 60 ul elution
buffer (80% acetonitrile, 1% ammonium hydroxide) and evaporated in
a SpeedVac concentrator for 30 min. The remaining peptide solution
volume was adjusted to 4 ul with buffer A* (2% ACN, 0.1% formic
acid).

LC-MS/MS Analysis—Online chromatography was performed with
a modified Thermo EASY-nLC 1000 UHPLC system (Thermo Fisher
Scientific, Bremen, Germany) coupled online to the Q Exactive HF
instrument with a nano-electrospray ion source (Thermo Fisher Sci-
entific). Two analytical columns (15 cm long, 75 um inner diameter)
were packed in-house with ReproSil-Pur C;5 AQ 1.9 um reversed
phase resin (Dr. Maisch GmbH, Ammerbuch, Germany) in buffer A
(0.5% formic acid) and matched with regard to back-pressure to
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ensure intercolumn reproducibility. During online analysis, the analyt-
ical columns were placed in a modified column heater (Sonation
GmbH, Biberach, Germany) regulated to a temperature of 55 °C.
Modifications to both systems are described in RESULTS. Peptides
were loaded onto the analytical columns with buffer A at a back
pressure of 650 bar (generally resulting in a flow rate of 500 nL/min)
and separated with two distinct linear gradients of 8-30% buffer B
(80% ACN and 0.5% formic acid) at a flow rate of 450 nL/min
controlled by IntelliFlow technology over 10 min and 22 min, respec-
tively (generally at a back pressure of around 500 bar). Online quality
control was performed with SprayQc (45), which was extended with
an additional plugin to support a high-voltage switch controlling the
spray voltage for the analytical columns (RESULTS). MS data were
acquired with a Q Exactive Plus (27 min gradients) and a Q Exactive
HF (14 min gradients) instrument, as the latter has been found to be
up to twice as fast (34) and thus capable of dealing with the fast
chromatography of the 14 min gradient. The instruments were pro-
grammed with a data-dependent top 5 and top 10 method, respec-
tively, dynamically choosing the most abundant not yet sequenced
precursor ions from the survey scans (300-1,650 Th). Instruments
were controlled using Tune 2.5 and Xcalibur 3.0.63. At a maximum ion
inject time of 45 ms for both instruments, the cycle time was ~800
ms, sufficient for generating a median of 16 data points (14 min) or 25
data points (27 min) over the observed elution peaks (RESULTS).
Further settings were chosen according to their previously deter-
mined optimal values (34). Sequencing was done with higher-energy
collisional dissociation fragmentation with a target value of 1e5 ions
determined with predictive automatic gain control, for which the
isolation of precursors was performed with a window of 1.4 Th.
Survey scans were acquired at a resolution of 70,000 and 60,000,
respectively, at m/z 200 and the resolution for HCD spectra was set to
17,500 and 15,000, respectively, at m/z 200. Normalized collision
energy was set to 27 and the “underfill ratio,” specifying the minimum
percentage of the target ion value likely to be reached at maximum fill
time was defined as 10% (27 min) and 40% (14 min). The elevated
sequencing threshold ensured that, with the reduced complexity of
samples, the fragmentation scans are of higher quality. Furthermore,
the S-lens radio frequency level was set to 60, which gave optimal
transmission of the m/z region occupied by the peptides from our
digest (34). We excluded precursor ions with unassigned, single, or
five and higher charge states from fragmentation selection.

Data Analysis—All data were analyzed with the MaxQuant pro-
teomics data analysis workflow version 1.4.3.14 (46). The false dis-
covery rate (FDR) cut off was set to 1% for protein and peptide
spectrum matches. Peptides were required to have a minimum length
of seven amino acids and a maximum mass of 4,600 Da. MaxQuant
was used to score fragmentation scans for identification based on a
search with an initial allowed mass deviation of the precursor ion of a
maximum of 4.5 ppm after time-dependent mass calibration. The
allowed fragment mass deviation was 20 ppm. Fragmentation spectra
were identified using the UniprotKB S. cerevisiae database (based on
2014-07 release; 6,643 entries) combined with 262 common con-
taminants by the integrated Andromeda search engine (47). Enzyme
specificity was set as C-terminal to arginine and lysine, also allowing
cleavage before proline, and a maximum of two missed cleavages.
Carbamidomethylation of cysteine was set as fixed modification and
N-terminal protein acetylation and methionine oxidation as variable
modifications. Both “match between runs,” with a maximum time
difference of 30 s, and label-free quantification (LFQ) with standard
settings, were enabled (48). Additional metadata stored in the RAW
files (e.g. ion inject time, noise level, etc.) were extracted using MS-
FileReader (Thermo Scientific) with in-house-developed tools.

Further data analysis with the goal of assigning the interactors was
performed with the R scripting and statistical environment (49) using

ggplot (50) for data visualization. Briefly, LFQ intensity values were
base10 logarithmized, resulting in a normal distribution. Missing val-
ues were imputed by randomly selecting from a normal distribution
centered on the lower edge of the intensity values (for this normal
distribution the shift was set to 1.8 standard deviations from the mean
and the width to 0.3 standard deviations; see histograms describing
placement in Figs. S8 and S9). Proteins were excluded in subsequent
steps for baits with less than two valid values in the triplicate for the
bait (mostly presented as significantly depleted proteins due to the
imputed character of the intensity values). The fold enrichment was
calculated as the mean ratio between the bait measurements and
the proteome measurements of the parental strain (conforming to the
mean used in the consequent t test). For the fold enrichment, the
standard error of the mean was additionally determined. Permutation-
based FDR-controlled t test p values were calculated for each protein
between the bait triplicate and the parental strain triplicate (employing
250 permutations). The p value was adjusted using a scaling factor sO
with a value of 1 prior to FDR control, which magnifies the importance
of the difference of the mean (51). Furthermore, the correlation of
each protein’s LFQ intensity profile (consisting of all the measured
intensity values for that protein) to the LFQ intensity profile of the bait
was calculated (21), and the resulting correlation p values were ad-
justed to 1% FDR using the Benjamini and Hochberg procedure.
Interactor classes were assigned based on the following rules: (A) only
<1% FDR t test significance, (A+) both <1% FDR t test significance,
and <1% FDR correlation significance, (B+) both <5% FDR t test
significance and <1% FDR correlation significance and (B) only <5%
FDR t test significance. Known interactors from the Saccharomyces
Genome Database (www.yeastgenome.org) mainly fell in classes A+,
A, and B+. Therefore, we conducted follow-up analyses solely on
these classes. For each significant outlier, we also introduced a single
significance value, based on the s0 scaling introduced in the t test,
which combines the enrichment value and the t test statistic. This is
calculated as the distance in log-space from the origin. The higher this
value, the better the data quality and experimental success of that
particular interactor. Stoichiometry information was determined in
two ways. The first, termed interaction stoichiometry, is the ratio
between the calculated intensity-based absolute quantification values
(determining the copy numbers from the acquired mass spectrometry
data) of the interactors to the bait (52). The second, termed abun-
dance stoichiometry, is the ratio between the normal cellular copy
numbers of the interactors to the bait.

RESULTS

Reducing the LC-MS/MS Analysis Time—First, we aimed to
establish optimal conditions for reducing the LC gradient
length. Both the flow rate and gradient starting percentage
require adaptations to ensure that the signal of each peptide
does not degrade and to maximize the spread of peptides
over the gradient. To achieve this, we tested the effect of flow
rate (ranging from 200 to 500 nl/min) and gradient length (from
15 to 120 min) on the chromatographic peak-width with a
standard Hela digest on the Q Exactive HF (34). By far, the
largest effect on peak width was shortening the gradient
length as this provided a reduction of ~75% on the width,
while the flow rate reduced it only by ~4% (Fig. 1A). With
regard to overall proteome depth, we were able to identify
about 740 proteins with a standard Hela digest using the
shortest gradient length of 15 min with the Q Exactive HF (Fig.
1B). Hence, the complexity of protein samples should not
exceed such a number when high sample throughput is en-
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Fic. 1. Chromatography optimization for very short gradients. (A) Peak-width as a function of gradient length and flow rate. Effect size
is the calculation of the reduction compared with the largest change in peak-width. (B) Extrapolation of protein identifications as a function of
gradient length and scan speed of various MS platforms (Q Exactive HF and plus, Orbitrap Elite, and Velos, LTQ Orbitrap XL, respectively). (C)
Effect of flow rate on the signal-to-noise for a set of 750 unique isotope patterns identified in all measurements and spread out over the entire
gradient. (D) Elution time shift induced by higher flow rates, normalized to the gradient length.

visioned. We also determined protein identifications for lower
sequencing speed (Fig. 1B). Notably, even platforms with
lower sequencing speed like the Orbitrap XL identified about
1,000 proteins with a 120 min gradient, suggesting that al-
ready this machine generation had the potential to identify all
proteins of a lower complexity sample given sufficiently long
gradients.

Higher flow rates could have a detrimental effect on the
signal-to-noise due to the higher dilution of peptides in the
buffer, which we investigated by extracting the signal-to-
noise values for a set of 750 isotope patterns identified in all
the runs and spread out over the full retention time range. For
the longest gradient length of 120 min, we observe a slight
decrease in signal-to-noise for the higher flow rates, whereas
unexpectedly higher flow rates partially improve the signal-to-
noise for the shortest gradient. For the intermediate gradient
lengths, the flow rate does not appreciably affect the signal-
to-noise ratio. Between the two shortest gradients of 30 and
15 min, we observe a drop in signal-to-noise, which we at-
tribute to imprecision of the buffer delivery by the LC (Fig. 1C).
Given that it takes time for the buffer mixture to arrive from
the mixing T connection to the tip of the analytical column,
and therefore for the peptides to elute, the shorter gradients

suffer in terms of gradient occupancy (percentage of the
gradient occupied by peptides) when using lower flow rates.
This is mostly improved by forcing the peptides to elute
earlier with higher flow rates. For the shortest gradient
lengths, we were able to move the start of peptide elution
from 60% in the gradient (at 9 min) to 40% in the gradient (at
6 min), improving the spread of the peptides over the com-
plete gradient and providing better chromatographic reso-
lution. For the 30 min gradient, the first elution was moved
from 10 min (35% of the gradient time) to 7 min (25%)
(Fig. 1D).

Based on these findings, we determined the optimal gradi-
ent time to be 27 min with a flow rate of 450 nl/min, which kept
the backpressure of the LC pumps at an acceptable level of
around 500 bar. This, however, still results in 2 days of mea-
surements for 96 samples. The 12 min gradient at the same
flow rate necessary for exactly 24 h of measurement for the
same number of samples is expected to have reduced chro-
matographic performance compared with the 27 min gradi-
ent. This period is also too short to transfer the peptides onto
the analytical column in parallel. We therefore increased the
gradient time to 14 min and activated the loading pump during
the intersample preparation time, which reliably loaded all the
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continuous operation. (G) Positioning of the analytical columns in reference to the inlet of the mass spectrometer. (H) Redesign of the column

oven for two analytical columns.

peptides onto the analytical column. Additionally, we in-
creased the starting acetonitrile percentage of the gradient
from 2% to 8% (EXPERIMENTAL PROCEDURES) to start the
peptide elution at an earlier point of the gradient. Collectively,
this resulted in a time frame for peptide elution of 8 min and 18
min, representing 60 and 75%, respectively, of the total mea-
surement time for the 14 and 27 min gradients. At these
conditions, the median peak-width (base-to-base) was 6 s (14
min) and 11 s (27 min), respectively.

Double-Barrel Chromatography on the EASY-nLC—Next,
we set out to develop a double-barrel chromatography sys-
tem in order to reduce the idling time of the mass spectrom-
eter during loading of the peptides to the LC column. Unfor-
tunately, no such setup has been described for the Thermo
EASY-nLC 1000 UHPLC systems (Thermo Fisher Scientific)
that we employ and that are widely used with the Orbitrap-
family of mass spectrometers. To address this, we modified
the liquid pathway of the EASY-nLC 1000 UHPLC system
(Figs. 2A-2D). In brief, we placed the sample loop directly
between the pump S and valve S, allowing the system to
utilize pump S as both the sample pickup as well as the

sample-loading pump (in the original setup, pump A is used
as sample-loading pump). The valve S is connected to valve
W (in the original setup this valve is connected to a waste line
used for rapid evacuation of the buffers from the lines), which
connects to the buffer A and B mixing-T connection and the
two analytical columns through standard sample lines. This
setup allows loading of one sample onto one of the analytical
columns while the other is eluted.

To make use of this new liquid pathway and to drive two
analytical columns in parallel, we also modified the “business
logic” controlling the UHPLC system. The normally sequential
steps in the analysis process (Fig. 2E) were altered to work in
parallel with each other (Fig. 2F). As soon as the preparation
for the currently active analytical column has finished, the
initiation phase and the valve W has switched to elute the
loaded peptides, the inactive analytical column is prepared in
parallel for the next sample. This is done in three consecutive
steps: First, the sample loop is washed, then the new sample
is loaded into the sample loop, and finally the sample is
loaded from the sample loop onto the analytical column. With
the above described arrangement of the pumps and valves,
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these operations can be performed independently for each
of the two analytical columns. The intermeasurement time for
the double-barrel system was clocked at a maximum of 160 s
(Figs. 2E and 2F), which cannot be further reduced on this
particular system due to the necessity of refilling the syringe-
based pumps and bringing them back up to pressure (Sup-
plemental Fig. S1).

Finally, we modified our standard analytical column heater
(33) to accommodate the two analytical columns. The two
columns are now pointing sideways toward the mass spec-
trometer inlet at a fixed angle of 45 degrees at a distance of
roughly 2 mm from each other at the tip ends (equaling the
width of the heated capillary mounted on Orbitrap platforms;
Fig. 2G). As we utilize a fixed setup for the analytical columns,
we cannot supply the spray voltage in parallel (Fig. 2H). To
shift the voltage between the analytical columns, we addition-
ally developed a high-voltage switch capable of supplying
electricity to a single analytical column, controllable through a
universal serial bus connection (Supplemental Fig. S2). A
plugin module that we developed for the SprayQc environ-
ment (45) monitors the current position of the valve W and
switches the spray voltage to the eluting analytical column
according to a user-definable setting.

A Parallel Workflow for Analyzing 96 Pull-Down Samples
within a Single Day—A high-throughput platform should be
able to prepare samples in a parallelized format and subse-
quently measure all of them within a very short time period.
Here, we developed an analysis pipeline for pull-down sam-
ples that is capable of achieving this goal on pull-down sam-
ples (Fig. 3). To facilitate a streamlined workflow necessary for
achieving high-throughput processing of pull-down samples,
we used GFP-tagged yeast strains originating from the yeast
GFP clone collection (43). Further improvements were gained
by combining both the cultivation of the yeast and the pull-
downs in a 96-well format. Each well yields ~50 million yeast

cells, equal to 500 ug of protein lysate, which turned out to be
sufficient for the pull-down experiments.

Mass Spectrometry Platform Performance on Pull-Down
Samples—Using the transcriptional adapter protein ADA2 as
a bait, we compared the performance of the Q Exactive HF to
that of the LTQ-Orbitrap XL, an instrument introduced about 9
years ago with a sequencing speed of 2 Hz that is frequently
used for pull-down analyses. Notably, both instruments were
able to identify all known members of the reconstituted ADA2
complex within the commonly used measurement time of 2 h
(Supplemental Fig. S3A). This suggests that protein interac-
tion data acquired with older Orbitrap generations over the
last 10 years would generally gain little by remeasurement as
long as extended LC-MS/MS gradients have been used.
However, we note that the protein sequence coverage and,
consequently, enrichment of the preys (calculated by dividing
the MaxLFQ intensity of the interactors by the median of all
MaxLFQ intensities) was somewhat improved with the Q Ex-
active HF, making the setup slightly more sensitive in detect-
ing interactors (Supplemental Fig. S3B). Clearly, these gradi-
ent times are not making effective use of the superior
sequencing speed of the Q Exactive HF. By lowering the
measurement time to as low as 15 min, the identification
performance of the older platform started to suffer while that
of the Q Exactive HF still allowed capturing all the expected
interactors (Supplemental Fig. S3A). The major difference be-
tween the systems was in the sequence coverage per protein,
which for the Q Exactive HF remains constant up to 30 min
and slightly degrades at 15 min, while it degrades dramatically
for the Orbitrap XL (Supplemental Fig. S3C). The decreased
sequence coverage negatively impacts the ability to accu-
rately quantify proteins as label-free quantification improves
with the number of peptides associated to a given protein
(48). This is reflected in the measured enrichment ratios,
which for the Orbitrap XL made the bait interactors nearly
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complexes.

indistinguishable from the background, while for the Q Exac-
tive HF it remained superior even at 30 min when comparing
to 2 h (Supplemental Fig. S3B). Overall, as expected, the Q
Exactive HF outperformed the Orbitrap XL for all measure-
ment times tested in terms of prey enrichment, sequence
coverage, and isotopic features (Supplemental Fig. S3B-
S3D). While we observed a decrease in obtained sequence
information in the 15 min Q Exactive HF methods, these very
short runs still yielded sufficiently high sequence coverage to
identify the members of the complex under investigation. In
conclusion, these results show that mass spectrometers with
relatively low sequencing speed can perform equivalently at
long gradients for protein interaction studies, whereas very
high sequencing speeds are required for high-throughput
identification.

Reproducibility of the Data Acquisition System—To inves-
tigate the reproducibility of protein quantification between
different measurements, we acquired PPI data for the yeast
chromatin remodelers RSC8, SPT7, and SWI3 with our work-
flow. Visual inspection of the chromatograms for the RSC8
pull-down, measured in triplicates, already shows a high de-
gree of technical reproducibility for the double barrel system
with back pressure matched analytical columns (Fig. 4A). In
modern PPl experiments, the number of background binders
can be in the thousands as opposed to only a few true
interactors. We take advantage of these unspecific binders to
estimate reproducibility by calculating the correlation be-
tween each pair of the measurements where only the gener-
ally small number of true interactors degrade the correlation
(21). Most of the detected unspecific binders were indeed
reproducibly quantified in all three samples. There was one
exception with a slightly reduced Pearson correlation coeffi-
cient for the RSC8 pull-down (Fig. 4B), for which we con-
cluded based on the large number of imputed values that the
enrichment was not completely successful. A small outlier

population observed for each bait protein indeed represented
the expected interaction partners (Fig. 4C and Supplemental
Fig. S4). Collectively, these results indicate that our double-
barrel setup can be operated with very low MS idling time
between two independent measurements and achieves high
reproducibility at the same time.

PPI Data Quality from Very Short Gradients—To identify
preys of a given bait protein, we classified all interactors into
four distinct classes essentially as described (21) and im-
proved on that concept by making it completely data driven
(EXPERIMENTAL PROCEDURES). Distinction of specific from
unspecific binders was achieved by a permutation-based
false-discovery rate approach operating on a t test and en-
richment with two distinct stringencies (EXPERIMENTAL
PROCEDURES; Supplemental Fig. S5A). Proteins passing the
stringent cutoff represent highly enriched interactors, whereas
proteins only passing the less stringent cutoff are character-
ized as mildly enriched interactors. All other proteins were
considered to be unspecific binders. In addition, we used
Benjamini-Hochberg-corrected intensity profile correlation of
potential interactors compared with the bait protein to mini-
mize false-positive identifications of mildly enriched interac-
tors (EXPERIMENTAL PROCEDURES; Supplemental Figs.
S5E and S5F) (21). With these criteria, interactors were
grouped into confidence classes A+, A, B+, and B (Supple-
mental Figs. S4C and S4G). Absolute quantification data from
whole yeast proteome experiments (53) allowed us to also
estimate interaction and abundance stoichiometries for every
protein complex under investigation (Supplemental Fig. S5D).

To assess the quality control of both the LC-MS/MS mea-
surements and the subsequent interactor classification given
our large throughput, we employed three distinct layers. The
first layer consists of the real-time validation provided by
SprayQc (45). Besides the logic for the voltage switch, this
software implements automatic warnings via E-mail to the
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operator for a large number of components involved in the
measurement and reports meta-data for these components
(EXPERIMENTAL PROCEDURES). The second layer consists
of verification of the sample preparation and LC-MS/MS
measurement success by the number of identified proteins
per measurement. Given the preponderance of background
proteins, this value should be roughly equal for all pull-downs.
The histograms displaying the imputed values provide a sim-
ple visual guide in the form of the peaks for the imputed
proteins (EXPERIMENTAL PROCEDURES). The third layer is
the data-driven determination of what constitutes a success-
ful pull-down experiment. For this, we used the information
from the volcano plots, specifically the significance value as
described (EXPERIMENTAL PROCEDURES). For all the pull-
downs, we combine this value for all the baits to determine a
valid range for the baits. Anything falling outside this range is
flagged as potentially unreliable.

A Snapshot of the S. cerevisiae Chromatin Remodeling
Landscape—The data obtained from our very short LC-
MS/MS measurements operated with double barrel chroma-
tography demonstrated that AP-MS screens of sufficient
quality can be performed in a high-throughput format (Fig. 4).
To investigate our workflow on a set of protein complexes
involved in a particular biological pathway, we selected 30
distinct bait proteins that are part of the yeast chromatin
remodeling landscape. In addition, we also used a GFP-
expressing control and the haploid parental strain (EXPERI-
MENTAL PROCEDURES). Our bait selection spans three or-

ders of expression abundance over the whole yeast proteome
(Fig. 5A) and includes several baits with very low abundance
(<100 copies per cell). We found that the protein input
amount of 500 ng, which is much lower than that traditionally
used, was sufficient to identify the bait proteins and to retrieve
known interactors, even for lowest expressed bait proteins
(Supplementary Material_14min and Supplementary Material _
27min). Additionally, where possible, we selected multiple
baits per protein complex in an attempt to characterize the
complex as thoroughly as possible. This collection covers 21
distinct protein complexes subdivided into four enzyme class-
es: histone acetyltranferase, chromatin remodeling, histone
methyltransferase, and histone deacetylase complexes. For
the 32 distinct yeast strains, we performed pull-down exper-
iments in biological triplicates, resulting in 96 samples. Each
of these pull-down samples was measured with both the 14
and the 27 min LC-MS/MS methods, respectively. Together,
the interactomes of 96 pull-down samples were measured in
either 47.5 h (27 min method) or 26.7 h (14 min method) of
start-to-end complete measurement time, including all over-
head. As expected, we found that the sequence coverage of
bait proteins and specific interactors was reduced for almost
every protein in the 14 compared with the 27 min method (Fig.
5B). Nevertheless, the sequence information acquired in the
14 min runs was still sufficient to identify enriched baits and
their corresponding preys. We did not experience problems
with regard to the bioinformatic enrichment value based on
the LFQ intensities, as had been the case for the short gradi-
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ents on the older platforms (see Supplemental Figs. S6
and S7, Supplementary Material_14min and Supplementary
Material_27min).

To provide an overview of our identified PPIs, we created a
topology network of all interactors assigned to one of the
defined prey classifications. While the overall interactor class
ranking was slightly reduced, we found only small variations in
the final complex coverage even though the LC-MS/MS gra-
dient was nearly halved when comparing the 14 to the 27 min
method (Fig. 6). Out of 21 protein complexes analyzed, both
run times performed equally well in nine cases, whereas the
27 min outperforms the 14 min in ten cases. Conversely, the
14 min runs were better in two cases. The 27 min method
allowed a high retrieval of known interactors even for several
very low abundant baits with less than 100 copies per cells.
While the 14 min method identified less preys of baits with
very low abundance, its superior speed allowed throughput of
the same sample set in almost half the time.

Remarkably, we could even validate the presence of two
different RSC nucleosome-remodeling complexes. The RSC
complex is present in two distinct isoforms with distinct roles
in the DNA damage response, as defined by the presence of
either RSC1 or RSC2 (54, 55). While performing pull-downs on
either RSC4 or RSC8, we identified both RSC1 and RSC2 as
interactors, demonstrating that RSC4 and RSC8 are part of
both RSC complex isoforms (Supplementary Material_
27min). In contrast, pulling down RSC2 only resulted in RSC2
but not RSC1 as complex members. These results demon-

strate that our workflow is capable of identifying distinct com-
plex compositions in a rapid manner.

Discussion and Outlook—In this study, we have described
advances for analyzing up to 96 proteomes with lower com-
plexity in about 1 day of LC-MS/MS data acquisition, includ-
ing all overhead. Our interaction workflow employs parallel-
ized sample generation in a 96-well format together with a
modified LC setup and mass spectrometers with very high
sequencing speed. With this combination, we demonstrated a
severalfold increase in sample processing throughput and
sensitivity, as well as in the LC-MS duty cycle.

Including the preceding yeast cultivation and sample prep-
aration steps, processing of 96 pull-down experiments can be
achieved within 48 h. However, several 96 samples could be
handled in parallel, allowing nesting upstream sample prepa-
ration and downstream LC-MS/MS analysis. This in principle
would allow a sustained workflow with a capacity of 96 dis-
tinct samples per day. The data presented here were acquired
following manual sample preparation. However, the majority
of sample preparation steps in our workflow only require liquid
handling and are thus easily automated using robotic sample
preparation systems.

LC-MS/MS data acquisition within 14 min per sample
pushes both the LC and MS systems to their current limits.
Consequently, the 14 min runs yielded reduced chromato-
graphic quality compared with the 27 min runs. Although this
was still sufficient to yield almost the same complex coverage,
the 14 min runs did result in lower sequence coverage for both
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bait and prey proteins (Fig 5B). This adversely affects analy-
ses and more importantly reduces the enrichment values,
making it harder to pinpoint interactors (Fig 2B). Potential
optimization could be obtained in an improved experimental
design. In this study, we focused on the reproducibility of the
complete workflow and chose to perform all steps and mea-
surements in a consecutive series of steps. However, random-
izing the measurements, while ensuring that all the replicates
of one particular pull-down are always run on the same col-
umn, should further improve higher data quality and statistical
significance for the interaction determination.

The implementation of double-barrel systems opens up
interesting possibilities. On the technological side, it enables
automatic detection of a break down in one of the columns
due to clogging and reacting to this by using the other col-
umn, instead of stopping further analysis. To detect this sit-
uation, the software tracks the amount of pressure during the
gradient and the flow rate achieved during loading. When the
pressure during the gradient or the flow rate during loading
exceed critical parameters the system automatically stops
operations on this particular column. Further operation is then
continued as a single-barrel system. This simple mechanism
has the potential to drastically extend the effective up-time
and enable almost 24/7 operation of the mass spectrometer.
A second technological possibility is the automatic determi-
nation of the optimal time for sample loading. The flow rate
achieved during loading of the previous sample on the par-
ticular analytical column can be used to estimate the required
loading time for the current sample. The software then auto-
matically determines the delay required before loading the
sample, for instance with a 10 min overhead to ensure that
the sample is completely loaded irrespective of fluctuations in
the flow rate. This is particularly important for double-barrel-
based LC setups as during long gradients it is conceivable
that it would be detrimental for the sample to be loaded at the
start of the gradient of the other analytical column and then
remain at the elevated temperature conditions of the analyti-
cal column heater. Third, the described setup could be further
extended by using two completely independent UHPLC sys-
tems. Even though such a concept is not straightforward to
implement on our current system due to software-related
issues, the extra redundancy of hardware components would
enable troubleshooting of an erroneous UHPLC while the
other system maintains measuring. In this way, genuine 24/7
operation of LC-MS/MS data acquisition would be feasible.

Recently, we have reported a high-performance affinity en-
richment-mass spectrometry method (21) that uses accurate
quantitation of background and unspecific binders for re-
trieval of true protein complexes. We propose to combine
both strategies to allow both the confident retrieval of binding
partners and a high throughput. This should be a powerful
strategy, especially when a high sequence coverage is not
essential (56). Moreover, our results also show that AP-MS
can be performed with protein input amounts as low as 500

ng per pull-down and probably much lower in the future,
which is considerably less than previously described (21, 42).
This increase in sensitivity strongly promotes parallelization
and thus throughput efforts. Currently, our pipeline permits a
maximum throughput of 96 samples in about 1 day. Employ-
ment of other quantification strategies with higher multiplex-
ing, such as TMT labeling for instance, would drastically in-
crease throughput even further.

While we have demonstrated the workflow for protein—
protein interactions, our pipeline is generic and can be ex-
tended to any kind of protein-based interaction studies in
which there is an effective immobilization of the bait material
as affinity matrix. We envision other baits such as peptides,
DNA, RNA, lipids, or small molecules will greatly facilitate
large-scale screening and elucidate drug targets, changes in
protein complex formation upon perturbation, and the inter-
twined relationship between proteins and DNA or RNA.

Finally, the advances described here for the LC-MS/MS
part of the workflow can also be extended to the analysis of
whole proteomes. For example, biochemical fractionation of
whole cell lysates is a routine procedure in mass-spectrom-
etry-based proteomics as it enables much deeper character-
ization (57, 58). The concomitant increase in LC-MS/MS
measurement time caused by the larger number of fractions
could be mitigated by using our optimized LC-MS/MS setup.
Here, we demonstrated that our very short gradients of 15 min
are still able to identify about 700 proteins in a standard HelLa
digest (Fig. 1B). If such a complexity is not exceeded, high-
throughput analysis can be performed even for fractionated
whole proteomes of cell lines, small model organisms, or
clinical samples. Finally, given the exponential progress in
proteomics related technology, it should only be a matter of
time until entire proteomes can be measured in minutes.
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