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Workload in the human brain can be a useful marker of internal brain state. However,
due to technical limitations, previous workload studies have been unable to record brain
activity via conventional electroencephalography (EEG) and magnetoencephalography
(MEG) devices in mobile participants. In this study, we used a wearable EEG system to
estimate workload while participants walked in a naturalistic environment. Specifically,
we used the auditory steady-state response (ASSR) which is an oscillatory brain activity
evoked by repetitive auditory stimuli, as an estimation index of workload. Participants
performed three types of N-back tasks, which were expected to command different
workloads, while walking at a constant speed. We used a binaural 500 Hz pure tone
with amplitude modulation at 40 Hz to evoke the ASSR. We found that the phase-
locking index (PLI) of ASSR activity was significantly correlated with the degree of task
difficulty, even for EEG data from few electrodes. Thus, ASSR appears to be an effective
indicator of workload during walking in an ecologically valid environment.

Keywords: workload, electroencephalogram, auditory steady-state response (ASSR), n-back task, real world
recording

INTRODUCTION

The workload of the human brain changes constantly throughout the day according to internal
brain state. The workload is high for active states, such as thinking and concentrating, and low
in resting states. The ability to estimate workload may enable the evaluation of internal brain
state. This could have a number of practical applications, such as in systems that measure the
fatigue level of drivers during the operation of a vehicle, evaluations of the mental load of exercise
during rehabilitation in hospitalized patients, and assessments of the mental load of pilots during
operation of an airplane.

In this study, we used the auditory steady-state response (ASSR) to estimate brain workload.
The ASSR is an oscillatory brain signal evoked by repetitive auditory stimuli. In general, the ASSR
is known to be most strongly evoked by a 40 Hz auditory stimulus (Galambos et al., 1981; Ross
et al., 2000). Recent studies have shown that the 40 Hz ASSR changes according to the difficulty of a
corresponding task (Tiitinen et al., 1993; Griskova et al., 2007, 2009; Griskova-Bulanova et al., 2011;
Roth et al., 2013; Yokota and Naruse, 2015). For example, Griskova-Bulanova et al. (2011) observed
attenuated phase synchronization of the 40-Hz ASSR in a visual search task. They suggested that
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the workload related with visual modality has induced
desynchronization of 40 Hz ASSR. Previously, we observed
a change in the ASSR associated with cognitive load (Yokota and
Naruse, 2015). Thus, it appears that the ASSR can be modulated
by workload changes in several modalities. Frequently, the goal
of previous studies has been to precisely characterize the ASSR,
and so participants have been encouraged to remain motionless
to reduce instances of movement artifact. Moreover, many
previous studies used conventional electroencephalography
(EEG) or magnetoencephalography (MEG) devices that are
not suitable (i.e., too large) for measuring brain activity in
ecologically valid environments. Thus, such studies have not
thoroughly examined neural activity during activities of daily
living, such as walking in a naturalistic environment. To address
this, we sought to develop a novel method for estimating the
workload of brain activity recorded in an ecologically valid
environment.

Several studies have attempted to investigate neural activity
during walking (Bulea et al., 2014; Ehinger et al., 2014; Kline et al.,
2014; Lau et al., 2014; Lin et al., 2014; Seeber et al., 2014, 2015;
Wagner et al., 2014). Some studies have reported that complex
denoising methods are not necessary to extract brain activities
during walking. Nathan and Contreras-Vidal (2016) suggested
that the motion artifacts in slower walking rarely contaminate
the EEG data. Moreover, Debener et al. (2012) and De Vos et al.
(2014) were able to detect the P300 caused by odd-ball tasks
without complex denoising methods during walking. However,
artifacts such as muscle potentials and oscillatory noises caused
by walking can contaminate EEG data. Therefore, to increase the
signal to noise ratio, many studies have employed spatial filters,
such as independent component analysis (ICA), to separate
the EEG signal from the artifact (Lau et al., 2012, 2014; Bulea
et al., 2014; Kline et al., 2014; Reis et al., 2014; Wagner et al.,
2014).

Successful application of a spatial filter to an EEG signal
requires data from many channels, thus necessitating EEG
devices that can simultaneously record from more than
19 channels. In past studies that measured ERP during walking,
the researchers removed the noise by using spatial filters such as
ICA. In this study, we tried to reduce artifacts in the time domain
rather than in the spatial domain. Kline et al. (2015) reported
that the frequency of noise caused by walking was mainly lower
than the gamma frequency band even if participants walked at
faster speeds. Therefore, we focused on the high frequency band
(around 40 Hz). Because the ASSR is known to be strongly
evoked at 40 Hz (Galambos et al., 1981; Ross et al., 2000),
it is possible to extract the ASSR modulation caused by the
workload from the EEG data in which noise caused by walking
is contaminated, without any pre-processing such as ICA. The
large size and weight of such conventional EEG devices limits
the use of these technologies in naturalistic settings. Moreover,
the time required to place numerous EEG electrodes on the
head of each participant further reduces the accessibility of this
approach.

In this study, we developed a novel method for estimating
brain workload from a small number of data channels recorded
via a portable EEG system worn while walking in a naturalistic

environment. The wearable EEG system consisted of a portable
EEG device (Weight: 80 g, Size: W52 mm × D50 × H20 mm)
that could be attached to custom-designed headgear. We used
seven electrodes to measure EEG, and placed a single electrode
at the anterior, three electrodes at the front-central and three
electrodes at the occipital location. Because we used active
electrodes, we were able to measure highly reliable data using dry
electrodes without conductive paste (Higashi et al., in press). As
in our previous studies, we used the ASSR to estimate workload
and employed an N-back task to regulate the degree of task
difficulty. We hypothesized that the ASSR changes according to
the difficulty of a corresponding task.

MATERIALS AND METHODS

Participants
Fifteen participants (male 7, female 8; age range 20–35 years)
took part in this study. All participants had normal hearing
and normal or corrected-to-normal vision. Participants provided
informed written consent after the details of the procedure
had been explained. All experimental procedures were approved
by the Ethical Committee for Human and Animal Research
of National Institute of Information and Communications
Technology. All experiments were performed in accordance
with the ethical standards described in the Declaration of
Helsinki.

Experimental Procedure
Schematic illustrations of the experimental setup are shown in
Figure 1. Participants were asked to perform the N-back task
while walking on a treadmill. The N-back task is a continuous
performance task that has been used to study short-termworking
memory (Owen et al., 2005). The experimental stimuli included
the visual stimuli in the N-back task and the repetitive auditory
stimuli used to evoke the ASSR. Visual stimulus presentation was
controlled via Visage (Cambridge Research System, Rochester,
UK) and presented on a screen using an LCD projector
(Canon, WUX400ST, Japan). Participants viewed the screen
while walking on a treadmill (Zebris, FDM-T, DEU) at a speed of
2 km/h (Figure 1C). The walking speed was set to be equivalent
among all trials to ensure that the noise caused by walking was
similar among all the tasks. Several previous studies that recorded
EEG during walking set the walking speed at approximately
2 km/h (Seeber et al., 2014, 2015; Wagner et al., 2014). Therefore,
we adopted a walking speed of 2 km/h in this study.

Visual stimuli were presented to the participants during the
N-back task. A schematic illustration of the visual stimulus
presentation is shown in Figure 2. In all experiments, we
randomly presented either the characters ‘‘1’’ or ‘‘2’’ (each at
a rate of 50%) on the screen for 500 ms. Each task comprised
70 trials, and a blank image with a fixation point was presented
for 2000 ms between trials. One block included three different
tasks: no-load (NL), 1-back and the 2-back task. In the NL
task, participants performed visual discrimination. Specifically,
they reported the current number shown on the screen by
pressing a corresponding button. In the 1- and 2-back tasks,
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FIGURE 1 | Wearable electroencephalography (EEG) system and experimental setup. (A) Portable EEG device (Polymate Mini AP108) and dry electrodes.
(B) Custom-designed headgear. (C) Experimental setup.

participants reported whether the current number matched the
one from the previous N numbers. Participants used the index
or middle finger of their right hand to press the buttons. The
tasks in the first block were performed in the following order:
NL, 1-back and 2-back tasks. The tasks in the second block
were performed in the following order: 2-back, 1-back and NL

FIGURE 2 | Experimental procedure. Participants performed an N-back task
with visual stimuli “1” and “2”. The auditory stimuli had a carrier frequency of
500 Hz and 40 Hz amplitude modulation.

tasks. All participants performed a practice test for approximately
10 min before beginning the experiment.

The auditory repetitive stimuli consisted of a 500 Hz pure
tone with amplitude modulation at 40 Hz. The stimuli were
transmitted to the participant via canal type earphones (Elecom,
EHP-CH3000, JPN). The depth of the amplitude modulation of
the sounds was 100%. The average A-weighted sound pressure
level of the auditory stimulus was 63 dB for both ears. The
participants were instructed to ignore the auditory stimuli, which
were constantly presented to them while they performed the
tasks.

We measured EEG responses using an 8-channel wireless
EEG system (Miyuki Giken, Polymate Mini AP108 (W52-D50-
H20 mm, 80 g), Japan) with active dry electrodes (Unique
Medical, unique development, Japan) positioned at the following
sites: Fpz, FC3, FCz, FC4, O1, Oz and O2. The participants wore
custom-designed headgear (Sawamura Prosthetics and Orthotics
Service, unique development, Japan) with the attached electrodes
and wireless EEG device. EEG data were sampled at 500 Hz. All
recorded signals were referenced to the left mastoid. The ground
electrode was placed on the right mastoid.

EEG Data Analyses
A schematic illustration of the data analysis is shown in Figure 3.
EEG analyses were performed using MATLAB (MathWorks,
Inc., Natick, MA, USA). For each channel, the EEG data were
divided into 3000 ms epochs on the basis of the auditory
trigger, which occurred every second in the continuous EEG
data. Thus, the auditory trigger rose every time that the
amplitude modulation of auditory stimuli occurred 40 times.
We discarded the EEG epochs of the first five trials for each
task, to investigate brain activities after steady-state condition
was attained under the auditory stimuli condition. We did not

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2017 | Volume 11 | Article 314

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Yokota et al. Estimation of Human Workload

FIGURE 3 | Data analysis. The continuous EEG data were divided into 3000 ms epochs based on triggers that occurred every second. Subsequently, each epoch
was subjected to Fourier analysis to calculate the frequency response. Finally, we calculated the 40 Hz phase-locking index (PLI) from the frequency response.

perform any pre-processing to remove artifacts caused by eye
movement. We performed Fourier analysis for each epoch to
calculate the frequency response.

Previous studies have suggested that the phase-locking index
(PLI) of an ASSR can be modulated by changes in workload
(Griskova-Bulanova et al., 2011; Yokota andNaruse, 2015). Thus,
we focused on the PLI of the ASSR. The PLI was defined by the
following formula:

PLI =
1
n

∣∣∣∣∣
n∑

k = 1

F(f , ch, k)∣∣F(f , ch, k)∣∣
∣∣∣∣∣ (1)

where F is the Fourier response, f is the frequency, ch is the
channel number, k is the trial number and n is the number of
trials. We used the average value of two PLIs obtained in two
experimental blocks as an index of workload. We calculated the
PLI for each participant at each electrode, and then averaged
the PLI within each electrode location: anterior (Fpz), fronto-
central (FC3, FCz and FC4), and occipital (O1, Oz and O2). We
combined data from three electrodes in the fronto-central and
occipital regions to make the data more robust with respect to
environmental noise. Finally, we calculated the grand-averaged
PLI using the average PLI of each electrode location in all
participants. A schematic illustration of the three locations is

shown in Figure 3. Data from our previous MEG study (Yokota
et al., 2015) indicated that the ASSR data collected at the
occipital electrode is important for estimating the workload,
even though the ASSR at this location is relatively small.
Thus, we sought to observe ASSR modulation via the occipital
electrodes.

Statistical Analyses
We performed the Lilliefors test for all data to validate whether
the data were normally distributed. To validate the sphericity, we
performedMendoza’s multisample sphericity test for all data. For
the data in which the sphericity was not validated, we corrected
p values using the Greenhouse-Geisser method.

For the behavioral data (reaction time data and accuracy
data), we used a repeated measures analysis of variance
(ANOVA) for data in which the normality was validated, and we
used the Friedman test for data in which the normality was not
validated. For the behavioral data, the independent variable was
task difficulty.

For the PLIs, we performed the Rayleigh test for each PLI
value to verify whether the PLIs were statistically significant
and then performed an ANOVA. The independent variables in
the ANOVA were task difficulty, electrode location and block
(experimental order).
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For post hoc test (multiple comparison), we used t-tests or the
Wilcoxon signed-rank test. The p values were corrected by the
Shaffer method.

RESULTS

Behavioral Data
The accuracy and reaction time data for the N-back tasks are
shown in Figure 4. Because the normality was not rejected for
the reaction time data (p = 0.173), we performed a repeated
measures ANOVA for reaction time. In contrast, because the
normality was rejected for the accuracy data (p < 0.001),
we performed the Friedman test for the accuracy. A one-way
repeated measures ANOVA revealed significant differences in
the reaction time (F(1.5,14) = 53.7; p < 0.0001; η2p = 0.793)
between the different tasks. Subsequent multiple comparison
tests also revealed a significant difference in the reaction
times for different tasks, such that the NL task was associated
with a faster reaction time than the 1- and 2-back tasks
(t(14) = 6.50; p < 0.0001, t(14) = 8.25; p < 0.0001), and the
1-back task was associated with a faster reaction time than
the 2-back task (t(14) = 5.80; p < 0.0001). The Friedman test
revealed significant differences in the accuracy (χ2 = 25.2;
p < 0.0001; η2 = 0.84). Subsequent multiple comparison
tests revealed a significant difference in the accuracy for the
different tasks, such that the NL task was associated with

greater accuracy than the 1- and 2-back tasks (Z = 3.41;
p < 0.0001, Z = 3.41; p < 0.0001), and the 1-back task was
associated with greater accuracy than the 2-back tasks (Z = 2.78;
p < 0.01). These results indicate that the NL and N-back tasks
successfully varied with the task difficulty. The reaction times
for all participants increased according to the task difficulty.
Additionally, task accuracy decreased as the task difficulty
increased in 12 participants.

EEG Data
The number of epochs in the PLI analysis for each participant
is shown in Table 1. The number of epochs was not
entirely consistent between participants because we experienced
occasional and transient loss of the wireless connection. The
grand-averaged PLIs for each frequency for the three electrode
locations are shown in Figure 5. We observed clear peaks in
the 40 Hz PLI at the anterior and fronto-central electrodes. The
grand-averaged PLI values among all the electrodes over all the
participants according to the experimental blocks are shown
in Figure 6. The 40 Hz PLIs for the three electrode locations
(anterior, fronto-central and occipital) for each participant are
shown in Figure 7. The PLIs were averaged over blocks. The
hatched bars indicate PLIs that were not statistically significant
at the five percent level.

The Rayleigh test revealed that more than one-third of
the occipital PLIs (13/45) were lower than significant value.

FIGURE 4 | Behavioral results. (A) Accuracy for button pressing during each task. (B) Reaction time. We observed significant differences in both behavioral
measures between the no-load (NL) and N-back tasks. Error bars indicate the 95% confidence limits of the mean.
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TABLE 1 | The number of epochs in the phase-locking index (PLI) analysis for each participant.

Task Block 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NL 1 92 118 138 137 107 141 96 148 138 135 131 146 148 141 140
2 82 127 142 110 141 134 139 141 131 120 130 141 152 143 141

1-back 1 57 123 140 96 140 140 140 144 130 133 128 145 145 194 145
2 98 132 147 142 133 142 136 141 126 113 146 144 149 144 140

2-back 1 80 133 138 139 139 137 141 143 132 139 131 140 148 145 143
2 92 116 129 137 141 132 139 143 126 132 138 144 146 142 139

This result suggests that it is difficult to capture activities
related to ASSR at the occipital electrode location. Thus, we
removed the occipital data for the following analysis. Because
the normality was not rejected for the anterior and fronto-
central PLIs (p = 0.518, p = 0.802), we performed a repeated
measures ANOVA for PLI. We performed a three-way ANOVA
with task difficulty (NL, 1- and 2-back task), electrode location
(anterior and fronto-central) and block (first block and second
block) as independent variables. A three-way repeated measures
ANOVA of the PLI revealed the main effects of task difficulty
(F(1.67,14) = 9.49; p < 0.01; η2p = 0.404) and block (F(1,14) = 13.5;
p < 0.01; η2p = 0.491). We observed a significant interaction
between task difficulty and block (F(1.94,14) = 5.92; p < 0.01;
η2p = 0.298). Subsequent multiple comparison tests revealed
significant effects of the task, such that the NL task elicited
a higher PLI than the 1-back and 2-back task (t(14) = 2.37;

p < 0.05, t(14) = 4.08; p < 0.01), and the 1-back task
elicited a higher PLI than the 2-back task (t(14) = 2.23;
p < 0.05). We did not observe any significant interaction
between task difficulty and electrode locations. However, in
order to investigate which location showed the clearest change
according to the task difficulty, we performed a multiple
comparisons analysis. Subsequent multiple comparisons tests
revealed significant effects of task difficulty at the anterior
electrode, where the NL task elicited higher PLIs compared
with the 2-back task (t(14) = 2.87; p < 0.05). Likewise, multiple
comparison tests revealed significant effects of task difficulty
at the fronto-central electrodes, where the NL and 1-back task
elicited higher PLIs compared with the 2-back task (t(14) = 3.75;
p < 0.01, t(14) = 2.20; p < 0.05), and the NL task elicited higher
PLIs compared with the 1-back task (t(14) = 2.21; p < 0.05).
The individual data showed that the PLIs elicited by the 2-back

FIGURE 5 | PLI vs. frequency. The grand-averaged PLI vs. frequency measured at the anterior, fronto-central and occipital electrodes. The shaded areas indicate the
standard error.
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FIGURE 6 | Change in fronto-central PLI according to experimental block.
We observed significant differences in the auditory steady-state response
(ASSR) between the first and second block.

task at the fronto-central electrodes were smaller than those
elicited by the NL-task, which was less difficult, in 13 of 15
participants.

Because the fronto-central PLI was most significantly
modulated by task difficulty, we investigated the relationship

between the fronto-central PLI and reaction time. We performed
a regression analysis for the fronto-central PLIs and reaction
times for each participant (Figure 8). We found that the
regression coefficient was significantly negative (sign test;
p< 0.01).

DISCUSSION

In the present study, we developed a wearable EEG system
and were able to use the PLI of the ASSR to estimate the
workload associated with NL and N-back tasks while participants
wearing the portable EEG system walked in an ecologically
valid environment. As in our previous study, the reaction time
and accuracy in the NL and N-back tasks were modulated
according to task difficulty. We also found that the reaction
times of all participants increased according to the task difficulty.
The accuracies of the NL task were higher than those of the
N-back task for all participants. These results indicate that the
N-back tasks successfully modulated the participant workload.
The PLI of the ASSR measured by the wearable EEG system
significantly decreased as the task difficulty increased. This result
is consistent with our previous MEG study (Yokota and Naruse,
2015). Moreover, the PLI was modulated not only according to
task difficulty but also the block (experimental order). This result
suggests the possibility that the PLI was modulated according

FIGURE 7 | PLI results. The PLIs measured at the (A) anterior, (B) fronto-central and (C) occipital electrodes of the participants and the grand averaged value. We
observed significant differences in the ASSR between the NL and 2-back task at the anterior, and between each tasks at the fronto-central electrodes. Error bars
indicate the 95% confidence limits of the mean. The hatched bars indicate the PLI value that was below a threshold value of random variations tested using the
Rayleigh test.
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FIGURE 8 | Correlation of reaction times and fronto-central PLIs for each participant.

to the fatigue level of the participants as they performed the
experiments. As reflected in the PLI, ASSRs were strongly evoked
at the anterior and fronto-central electrodes. The PLI values at
the fronto-central electrodes decreased according to the increase
in reaction time. This result indicates that the PLI decreases
according to increases in the task load. The PLI is the index
measuring the amount of synchronization between the ASSR and
the auditory stimuli. Therefore, the decrease in the PLI within the
anterior electrode or fronto-central electrodes according to the
task load reflects a decrease in the synchronization between the
ASSR and auditory stimuli.

The PLI values at the fronto-central electrodes and anterior
electrode can be used for workload estimation while the
participant is walking. Moreover, the individual data showed
that, among the different tasks, the fronto-central PLIs elicited
by the 2-back task were the smallest in most of the participants.
This result demonstrates the robustness of our method. In this
study, we employed three EEG channels in the fronto-central
electrode location and one at the anterior electrode location.

Thus, it appears to be possible to estimate workload from EEG
data recorded with few channels.

In this study, we found a maximum PLI at the fronto-
central electrodes. Previous studies have reported a larger 40 Hz
ASSR over the frontal area (Tiitinen et al., 1993; Griskova
et al., 2007, 2009; Krishnan et al., 2009; de Jong et al., 2010;
Griskova-Bulanova et al., 2011; Roth et al., 2013). Many studies
have suggested that the ASSR source is mainly localized in the
primary auditory cortex (Kuriki et al., 1995; Pantev et al., 1996;
Gutschalk et al., 1999; Engelien et al., 2000; Herdman et al.,
2002; Weisz et al., 2004). Thus, the maximal value of the ASSR
observed at the fronto-central electrodes is considered to be due
to the contribution of the primary auditory cortex. The occipital
electrodes are far from the primary auditory cortex. Thus, the
PLIs at the occipital electrodes were small since it is difficult to
record the ASSR with the occipital electrodes.

In this study, all participants walked at a constant speed. Thus,
we were able to control the amount of noise caused by walking
among participants. The walking speed that we used in this study
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was close to the average walking speeds used in some previous
studies (Seeber et al., 2014, 2015; Wagner et al., 2014). However,
there is a possibility that some participants felt uncomfortable at
the prescribed walking speed. Participants’ feeling of discomfort,
may indicate increased workload caused by the walking speed.
It is possible that this is a factor in the variation in PLI between
participants.

Several previous studies have successfully used ASSR to
define a relationship between workload and task difficulty
(Griskova et al., 2007, 2009; Griskova-Bulanova et al., 2011;
Roth et al., 2013; Yokota and Naruse, 2015). However, although
many studies on EEG measurement during walking have been
published, to the best of our knowledge, ours is the first study
to estimate workload from the ASSR while participants were
walking. Moreover, our wearable EEG system does not require
conductive paste, thus reducing the time required to position
the electrodes on the heads of the participants. As a result,
we believe our system is superior in terms of application and
ease of use. Our analysis method for ASSR did not include
a spatial filter, which is commonly used for noise reduction
for data collected while a participant is walking. Instead, we
performed Fourier analysis to obtain the phase information
corresponding to the 40 Hz signal measured by our wearable
EEG system. This phase information was then used to calculate
the PLI. The results of this study indicate that the phase
information associated with the 40 Hz ASSR was particularly
robust against artifacts induced by walking and eye movements.
The artifact caused by walking mainly occurs when each foot
lands on the floor. The artifact caused by eye movements occurs
only when the participants move their eyes. Therefore, the
artifacts are transient, although the amplitudes of the artifacts
are extremely high compared with that of EEG. For the PLI
calculation, we only used phase information associated with
40 Hz. This corresponds to the normalization of amplitude
information. Thus, the phase information is robust against the
artifact caused by walking and eye movements. The results of this
study suggest that the PLI can be a good indicator to estimate
the cognitive workload during walking with a limited EEG
recording. Previous studies have measured EEG during walking
by using a spatial filter. We reduced the artifacts in the time
domain rather than in the spatial domain. Thus, we succeeded
in estimating the workload from EEG data recorded with a few
electrodes. Furthermore, several studies have reportedmeasuring
the workload during walking using mobile EEG systems (De
Sanctis et al., 2014; Marcar et al., 2014; Beurskens et al., 2016).

These researchers investigated the cognitive and motor workload
in dual tasks in which participants performed another motor
and cognitive task in addition to walking. However, they used
different physical stimuli or different experimental tasks to
modulate the workload. Therefore, it is not clear whether the
workload was caused by the change in the cognitive and motor
workload itself or the change in the workload due to different
experimental modality. To avoid this problem, we compared the
workload by using an N-back task, in which the visual stimuli
were same throughout the experiment with constant walking
speed.

In this study, as we did not perform any noise reduction
processing, it is quite likely that the PLI was affected by the
artifact to some extent. Previous studies that measured EEG
during walking used ICA and canonical correlation analysis
(CCA) for noise reduction (Bulea et al., 2014; Kline et al., 2014;
Lau et al., 2014; Lin et al., 2014; Wagner et al., 2014). The
advantage of the PLI analysis is that it can be used for EEG
data collected from few electrodes. However, if we had recorded
EEG data from many electrodes, we could have also used ICA
and CCA for noise reduction. Previous studies have succeeded
in extracting steady-state responses frommultiple channels (Zhu
et al., 2013; Bharadwaj and Shinn-Cunningham, 2014). Indeed,
suchmethods could enable the estimation of brain workload with
higher precision.

In the present study, we estimated human workload while
participants walked in a naturalistic environment. Participants
were outfitted with a custom wearable EEG system. Our results
suggest that the ASSR can be used to estimate workload in an
ecologically valid environment when participants are engaged in
a variety of tasks.
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