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ABSTRACT: The Curvature Constrained Splines (CCS) methodology has been used for fitting
repulsive potentials to be used in SCC-DFTB calculations. The benefit of using CCS is that the
actual fitting of the repulsive potential is performed through quadratic programming on a convex
objective function. This guarantees a unique (for strictly convex) and optimum two-body repulsive
potential in a single shot, thereby making the parametrization process robust, and with minimal
human effort. Furthermore, the constraints in CCS give the user control to tune the shape of the
repulsive potential based on prior knowledge about the system in question. Herein, we developed
the method further with new constraints and the capability to handle sparse data. We used the
method to generate accurate repulsive potentials for bulk Si polymorphs and demonstrate that for
a given Slater-Koster table, which reproduces the experimental band structure for bulk Si in its
ground state, we are unable to find one single two-body repulsive potential that can accurately
describe the various bulk polymorphs of silicon in our training set. We further demonstrate that to increase transferability, the
repulsive potential needs to be adjusted to account for changes in the chemical environment, here expressed in the form of a
coordination number. By training a near-sighted Atomistic Neural Network potential, which includes many-body effects but still
essentially within the first-neighbor shell, we can obtain full transferability for SCC-DFTB in terms of describing the energetics of
different Si polymorphs.

1. INTRODUCTION

Within the field of material science, Density Functional Theory
(DFT)1,2 has become one of the main working horses owing to
its wide range of applicability and its favorable scaling behavior
with system size. Despite its success, DFT is not computa-
tionally efficient for systems containing a large number of
atoms, sampling of complex energy landscapes, and for high-
throughput screening purposes.3

In regard to challenges with computational efficiency, a
force-field (FF) based approach would be ideal. However, the
lack of an electronic description makes these approaches
unable to estimate electronic properties (e.g., band structure,
band gap, etc.). In general, the gap between DFT and FF-
methods is filled by semiempirical methods, which strikes the
right balance between accuracy and computational cost.
Self-consistent charge density functional tight binding

(SCC-DFTB)4 is a semiempirical method, an approximate
and parametrized DFT method, about 2 orders of magnitude
faster than DFT when using local or semilocal density
functionals. Compared to hybrid density functionals, the gain
is even larger. The method is applicable to a wide range of
problems within chemistry and physics, including redox
chemistry of oxides,5 van der Waals interactions,6 electron
transport,7 etc. The method can also be systematically
extended to overcome limitations in DFT, such as the problem
with underestimated band gaps.8,9

While SCC-DFTB is a very capable tool that can be used to
calculate both geometries and electronic properties at a
relatively low computational cost, there is a rather substantial
effort required in terms of parametrization when applied to
new systems. There are primarily two types of parameters in
the SCC-DFTB method: (i) those related to the electronic
structure and electronic energy of the valence electrons, the so-
called compression radii, and (ii) those related to the repulsion
between the ionic cores (the core electrons and the nuclei).
Generally, the electronic parameters are optimized first to
obtain an accurate electronic structure description. Thereafter,
empirical short ranged two-body potentials are used to correct
for the remaining missing contributions. We will refer to these
potentials as repulsive potentials. Ideally, these potentials
should be monotonic, smooth, and not vary too rapidly.10

Moreover, transferability is limited, due to the pairwise additive
nature of the repulsive potentials, which means that when we
extend beyond the range for which a particular parameter set
was developed, we must be prepared to reparametrize the
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potential. Hence, the parametrization of the repulsive
potentials is often a laborious and tedious task, calling for
the development of novel methods utilizing robust, efficient,
and fast mathematical routines to make the generation of
reliable parameter sets more efficient.
In recent years, a number of initiatives to develop automated

fitting procedures and protocols have been developed (see,
e.g., refs 8 and 10−25). Some of these focused exclusively on
obtaining the parameters for the repulsive poten-
tial.11−15,17,20,22,24,25 A key feature among these developments
is the use of splines to represent the repulsive potential. Here,
the initial steps toward a semiautomated repulsive potential
fitting scheme was done by Knaup et al.11 by their use of cubic
splines combined with an evolutionary algorithm to find the
best repulsive potential. A more rigorous least-squares
optimization using fourth-order splines was done by Gaus et
al.13 A drawback with this procedure was the difficulty in
determining the knot position of the splines. Later, Chou et al.8

presented an automated Multi-Objective Particle Swarm
Optimization (MOPSO) approach for optimizing both the
knot positions of the splines for the repulsive potential as well
as electronic parameters in the form of l-dependent
compression radii. However, even though splines satisfy the
criteria of smoothness, their flexibility can in some cases lead to
oscillations in the repulsive potential. This prompted Bodrog et
al.12 to instead define the repulsive potential as a linear
combination of higher-order polynomials (excluding zeroth
and first-degree terms) or of exponential basis functions

e v N, ( 1, 2, , )a rv
v

∑ = ··· . Indeed, the exponential basis
functions (monotonous and smooth) are an ideal choice to
approximate the repulsive potential, but in reality, the repulsive
potential need not always be strictly repulsive. Therefore, the
rigid exponential form for the repulsive potential becomes a
drawback. Furthermore, the user has to identify the choice of
basis functions required for a specific system, which could be
problematic in some cases.
On a similar note, Hellström et al.15 found that the problem

of incorrect energetics for various polymorphs of ZnO using
the znorg-0.1 parameter set by Moreira et al.26 could be
alleviated by a reparametrization of the repulsive potential
using a training set of structures with different coordination
numbers. For the new repulsive potential, a four-range
Buckingham potential was chosen, an analytical function
which the authors found to constitute a fair balance between
flexibility and smoothness. The advantage of such an approach
is that it avoid problems with oscillations that can occur for
splines or high order polynomials. Clearly, the rigid parametric
functional form of the four-range Buckingham is a drawback.
More recently, Panosetti et al.25 introduced a Gaussian Process
Regression (GPR) machine learning approach for fitting the
two-body repulsive potential. Even though GPR is a non-
parametric approach, the optimization of hyperparameters can
be a challenge. Another problem is that GPR models require a
large number of data points to train the potential against and
are known to have poor extrapolation capabilities.
In this work, we demonstrate how the curvature constrained

cubic splines (CCS) methodology developed in ref 27 can be
used to build repulsive potentials without the need for
adjustable parameters. The aforementioned problems with
splines (oscillatory behavior and nonmonotonocity) are
alleviated by defining a set of intuitive constraints on the
curvature of the repulsive potential. An additional benefit of

using the CCS methodology is that the optimization problem,
i.e., the actual fitting of the repulsive potential, is a convex
problem which can be solved using quadratic programming,
which guarantees a unique (if strictly convex) and optimum
two-body repulsive potential in a single shot.
The methodology is tested for various polymorphs of Si. We

examine the flexibility of the CCS method in terms of adopting
different shapes to best reproduce the energetics for a number
of silicon polymorphs (3D and 2D). Since the CCS method is
virtually free from meta-parameters, apart from the cutoff
radius in the two-body interaction, it reduces the number of
parameters in a SCC-DFTB parametrization to merely the
electronic ones. As such, the CCS method is ideal to use in
conjunction with global optimization techniques like the
MOPSO method presented in ref 8.
The outline of the paper is as follows: In Section 2, we first

briefly introduce the SCC-DFTB formalism and the CCS
methodology and show in detail how it can be used for fitting
the repulsive potential. Then, in Section 3, we describe the
computational details concerning our DFT and SCC-DFTB
calculations. In Section 4, we discuss the results obtained, and
Section 5 concludes the paper.

2. THEORY
2.1. DFTB. The SCC-DFTB method is based on a Taylor

expansion of the Kohn−Sham energy functional about a
reference density, ρ0, taken to be a superposition of
pseudoatomic densities.4 The total energy expression in
SCC-DFTB is normally truncated at the second-order and
thus becomes

E E E E, , ( )
E E

0
0

0
1

0
2

0
2

rep elec
´ ≠ÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖρ δρ ρ ρ δρ ρ δρ[ + ] = [ ] + [ ] + [ ]

(1)

E1 is obtained from the occupied eigenstates. More precisely, it
is computed by

E H,
i

occ

i i
1

0 0∑ρ δρ ψ ρ ψ[ ] = ⟨ | [ ]| ⟩
(2)

By the use of a linear combination of atomic orbitals (LCAO)
ansatz and a two-center approximation, all required entries for
solving eq 2 can be conveniently precalculated and stored in
so-called Slater−Koster tables. The second-order term, E2,
describes the energy originating from density fluctuations
about the reference ρ0. The term E0 primarily describes the
ionic core−ionic core repulsion. However, the term essentially
includes all remaining energy contributions not captured by
the other two terms. The total repulsive energy of a system in
SCC-DFTB is a sum of contributions of repulsive potentials
Vrep(r) from each atom pair

E V r( )
i j

ij
rep

rep∑=
< (3)

where i and j run over the atom indices in the system, and rij is
the distance between pair of atoms. The Vrep is usually short-
ranged and smoothly decaying to zero at a certain cutoff
distance (rcut). For a comprehensive description of the SCC-
DFTB method and its capabilities, we refer to refs 10 and28.

2.2. Vrep Using Curvature Constrained Splines. The
repulsive potential in the actual SCC-DFTB is often
constructed using cubic splines. Cubic splines are flexible
and easy to use, and their coefficients can be optimized by
performing least-squares fitting to reference values. Here, we

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01156
J. Chem. Theory Comput. 2021, 17, 1771−1781

1772

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01156?ref=pdf


use the Curvature Constrained cubic Splines (CCS) method-
ology to provide the best possible repulsive potential. The
reason is that traditional cubic spline methods can lead to
repulsive potentials with spurious oscillations due to overfitting
unless a small number of knots (number of spline intervals) are
used, but a small number of knots lead to a poor linear
approximation of the repulsive potential’s Hessian. To improve
the description of the Hessian, Gaus et al.13 suggested the
fourth-order spline fitting (a quadratic approximation for the
Hessian) as an alternative. However, the former approach,
though an improvement, still needs manual intervention to
decide the number of knots below which overfitting can be
avoided. In the CCS methodology, constraints are imposed in
such a way that overfitting is prevented irrespective of the
number of knots used.27 Hence, the Hessian can be
approximated with arbitrary accuracy by increasing the number
of knots. Moreover, constraints can be applied to each spline
coefficient to have various shape-preserving properties.
Consider a pair of atoms, the repulsive potential (Vrep)
between these atoms is defined from an interval of interatomic
distances r ranging from (0,rcut). We subdivide the interval into
N subintervals In = [xn−1,xn], for n = 1, ..., N. On each
subinterval, we define a cubic function

f x a b x x
c

x x
d

x x( ) ( )
2

( )
6

( )n n n n
n

n
n

n
2 3= + − + − + −

(4)

To determine the so-called spline coefficients, we impose
interpolation conditions for the second derivative of the spline
and continuity conditions for the spline function itself as well
as its first derivative. We remark that this treatment is different
from the standard. A typical approach is to impose
interpolation conditions on the spline function itself and the
continuity conditions on its first and second derivatives. The
reason for this treatment is that here we are interested in
stipulating the curvature or the second derivative of the spline
function at each subinterval’s end points. That is, we impose
the 2N conditions

f x c n N

f x c n N

( ) , for 1, ...,

( ) , for 1, ...,

n n n

n n n

1 1″ = =

″ = =

− −

(5)

Later, we will use the curvatures as the unknowns in an
optimization problem to determine the best potential. (We
remark that the above conditions ensure that f n″(xn) = f n+1″ (xn)
for n = 1, ..., N − 1.) Moreover, we impose the following
continuity conditions

f x f x n N

f x f x n N

( ) ( ), for 1, ..., 1

( ) ( ), for 1, ..., 1

n n n n

n n n n

1

1

= = −

′ = ′ = −
+

+ (6)

at the interior interval end points. This gives us 2N − 2
additional conditions for the 4N spline coefficients. Finally, to
close the system, we also require the spline to have zero value
and gradient at the xN = rcut, that is,

f x f x( ) ( ) 0N N N N= ′ = (7)

By using the above relations (6 and 7), we can show that the
coefficients a = [a1,a2,...,aN]

T, b = [b1,b2,...,bN]
T, and d =

[d1,d2,...,dN]
T are linearly dependent on the imposed curvatures

c = [c0,c1,...,cN]
T.

We want to express the pair potential function Vrep(r) as a
spline function. So, in eq 3, the pair potential function Vrep(r)
is substituted with eq 4 and can be written as follows:

v cErep T= (8)

A detailed derivation of vector v can be found in ref 27. In this
work, we add an additional one-body term to the repulsive
potential, to get the correct energies at the dissociation limits.
This is shown below

v c wErep T Tϵ= + (9)

where ϵ and w are the vectors containing one-body energy
terms and number of atoms, respectively. The usage of one-
body terms has earlier been found to improve geometries and
reaction energies.12 In this work, the one-body terms were
used to aid the fitting process and to investigate the lack of
transferability of the two-body potential (see Section 4.5). The
repulsive potential energy (Erep) has a linear dependence on
the unknown coefficients c (see eq 8). As is detailed below, this
implies that the coefficient vector c can be solved via the least-
squares regression method. To get an accurate repulsive
potential, the difference between the reference energies and
corresponding DFTB electronic energies are minimized over a
set of diverse chemical configurations ranging from k
∈{1,...,K}, where K denotes the number of configurations in
the training set. The objective function (J) can be written
down as follows

e e e Vc W e

J E E E
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where

V e

W

w
w

w

v v v
v v v

v v v

E E
E E

E E

, , and
N
N

K K KN
K K

K

11 12 1
21 22 2

1 2

1
ref

1
elec

2
ref

2
elec

ref elec

1
T

2
T

T

μ
μ

∂ ∂ ∏ ∂μ ∂

∂

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

= =
−
−

−

=

The W in eq 10 is a matrix for heteroatomic systems and a
vector for homoatomic systems. On a similar note, ϵ is a vector
for heteroatomic systems and a scalar for homoatomic systems.
The objective function in eq 10 can be written as

Mx eJ
1
2 2

2= −
(11)

where

x
c

M V Wand
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑϵ= = [ ]

(12)

The determination of the best vector x can be written as the
standard Quadratic Programming (QP) problem

x Px q x

Gx h

min
1
2

subject to
x

T T+

≤ (13)
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where P = MTM and q = −MTe. The details for constraint
matrices G and h are discussed in the next section. By
construction, the matrix P in eq 13 is at least positive
semidefinite, and hence the QP problem is convex. A convex
optimization problem has the advantage that all local minima
are global minima. If P is positive definite, then the problem is
strictly convex, and thus only has one minimum.
2.3. Constraints. The highlight of the CCS method is that

the shape of the optimized potential can be tuned via
constraints on the curvature at the knot intervals. Additionally,
the user is free to constrain the potential based on prior
information about the system. We have developed new
constraints exclusively for SCC-DFTB repulsive potential
fitting (see Sections 2.3.1 and 2.3.3). For simplicity of
notation, we omit constraints on ϵ, so for the discussion
below x = c.
2.3.1. Repulsive and Monotonous Constraints. The

repulsive constraint ensures that the spline approximated
repulsive potential has a strictly positive curvature. However,
such repulsive potentials can still have oscillations in the
second derivative which may lead to poor forces and
frequencies. In such cases, it would be ideal to have a tighter
set of constraints with monotonically decreasing curvature
values (see Figure 1). The corresponding constraint matrices G
and h (shown in eq 13) are given by

G G

G
h 0and N

repulsive

monotonous (2 1) 1

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
= = + ×

(14)

in which 0(2N+1)×1 is the zero matrix of dimension (2N + 1) ×
1 and

G I Gand

1 1 0 ... 0
0 1 1 ... 0

0 0 0 1 1

N
repulsive

1
monotonous
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Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

= − =

−
−

−

+

(15)

where IN+1 is the identity matrix of dimension (N + 1) × (N +
1), and Grepulsive has dimension N × (N + 1).

2.3.2. Switch Constraint. Due to the approximations in
SCC-DFTB, the repulsive potential at times can have some
attractive regions. This cannot be captured by the repulsive
constraints discussed above. By instead adding a switch
constraint, we allow the curvature values to change sign once
(see Figure 1c) at a certain knot position called Nswitch. This
allows the repulsive potential to have at most one minimum
(for more details see ref 27). The corresponding constraint
matrices are given by

G
I

I
h

0

0
0and

N N N

N N N
N( 2) 1

1 1 2

2 1 2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
=

−
=

×

×
+ ×

(16)

where N1 = Nswitch, N2 = N + 1 − Nswitch, and 0N1×N2
is the zero

matrix of dimension N1 × N2.
2.3.3. Sparsity Constraint. The success of the CCS method

lies in its flexibility, which can adopt the shape of the repulsive
potential to arbitrary precision under the given constraints by
gradually increasing the number of knots in the spline table.
However, such a procedure can lead to a situation in which our
problem becomes underdetermined, a problem of sparsity that
needs to be handled. Thus, if we choose a fine mesh of knots,

Figure 1. A schematic illustration of all the constraints used in CCS. The x-axis is divided into intervals, and on each interval we define a cubic
spline uniquely determined by the c coefficients. The top panels (a) and (b) show the repulsive and monotonous constraints on c coefficients. Panel
(c) depicts the switch constraint with red and black dots, respectively, indicating negative and positive values for c coefficients. The switching point
Nswitch is at the kth knot. The bottom panel (d) represents the sparse constraint. The knot point with an open circle indicates a bin with no data
points. The c coefficient of the spline here is undetermined and can without loss of generality be set to an average value of neighboring c
coefficients. This is equivalent to merging of the bins or intervals.
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we can resolve the curvature in each part of the interval very
well. However, in some regions where data is sparse, for
example, at distances in between the first and second
coordination shells, we have many more knots than there is
information available. In other words, the curvature at certain
knots cannot be uniquely determined. This problem can be
handled by removing redundant knots by subinterval merging.
The procedure is illustrated in Figure 1d and ensures that the
curvature changes linearly over coherent undetermined
subintervals. With this technique, we avoid any ambiguity in
the optimization, and in the limit of an infinitely fine mesh, the
method would correspond to one having freely adjustable knot
positions.

3. COMPUTATIONAL DETAILS
Our primary reference method in the validation and testing of
our new spline method is density functional theory in the
implementation with plane waves and pseudopotentials. More
specifically, the electronic wave functions were expanded in a
plane-wave basis set with a kinetic energy cutoff of 600 eV. The
core−valence interactions were modeled with pseudopotentials
generated within the Projector Augmented Wave (PAW)
scheme proposed by Blöchl.29 In the calculations, we explicitly
treated four electrons for each Si atom. Furthermore, we used
the PBE functional30 as a reference to generate a training set
for repulsive potential fitting (i.e., energies). However, as
semilocal DFT functionals generally give poor band gap
estimates, we used a modified HSE06 functional31,32 (denoted
as HSE06’) for this purpose. Instead of the normal 25%
nonlocal Fock exchange, we used 10%, which previously has
been shown to yield electronic band gaps in better accord to
experiments.33 All DFT calculations were performed with the
Vienna Ab-initio Simulation Package (VASP).34−37 All SCC-
DFTB calculations were done using the DFTB+ software.28,38

The repulsive potential fitting was performed using a modified
version of the CCS package.27

4. RESULTS AND DISCUSSION
In this section, we will demonstrate some key features of CCS
when used in conjunction with SCC-DFTB. We start by

Figure 2. Diversity in the local chemical environment for Si
polymorphs expressed in terms of a coordination number: (a)
graphene, (b) diamond, (c) simple cubic, and (d) body-centered
cubic.

Figure 3. A schematic description of the electronic structure for Si
polymorphs including graphene, diamond, simple cubic, and body-
centered cubic. The valence band (VB) and the conduction band
(CB) are colored gray and red, respectively. The gap between VB and
CB for the nonmetallic polymorphs (diamond and graphene)
indicates the band gap. All energies are in eV.

Figure 4. Top panel shows the range of first and second nearest-
neighbor distances for graphene (orange), diamond (blue), SC (red),
and BCC (green) in the training set. The middle panel shows the
variation of RMSE as a function of Rcut for both diamond (blue) and
all polymorphs (black). The bottom panel shows the variation of
RMSE as a function of Rcut for individual polymorphs. The dashed
vertical line at 3.3 Å indicates the largest nearest-neighbor distance in
the training set.
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introducing our training set, which consists of various Si
polymorphs. Before fitting the repulsive potentials, we start
discussing transferability concerning electronic properties.
Next, we demonstrate the flexibility of CCS in terms of
adapting to different shapes when fitted to data for Si in

different chemical environments, here expressed in terms of
varying coordination numbers. We further utilize key features
of the CCS method which allow us to address the question of
the apparent lack of transferability of SCC-DFTB and propose
possible solutions to this issue.

Figure 5. Left panel in a) compares DFT energies (black dotted lines) with SCC-DFTB for various polymorphs of Si, with a repulsive constraint.
The corresponding repulsive potentials are shown to the right. Panels in b) show a corresponding comparison for the switch constraint. Panels c)
and d) show the best approximate potential for all Si polymorphs with a repulsive and switch constraint, respectively.
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4.1. Structures and Training Set. As the training set, we
have chosen crystalline phases of Si that lack internal
parameters to ensure that we probe effects due to an isotropic
chemical environment. There is, however, no technical
hindrance to also add structures with internal parameters.
The following polymorphs of Si were considered (with
corresponding coordination numbers): graphene (3 coordi-
nated), diamond (4 coordinated), simple cubic (6 coordi-
nated), and body-centered cubic (8 coordinated). A schematic
illustration of the polymorphs used is shown in Figure 2. The
training set comprises Energy-Volume (E-V) scans for all the
polymorphs. The volumes in the training set correspond to
nearest-neighbor distances between Si from 2.1 to 3.3 Å in
steps of 0.1 Å. The nearest-neighbor distance distributions for
the different polymorphs are shown in Figure 4.
4.2. Transferability in Electronic Parameters. Before

fitting repulsive potentials, the quality of the electronic
parameters of existing Slater-Koster tables available in the
SCC-DFTB community is validated by comparing computed
electronic properties toward hybrid-DFT data. In the literature,
the following Slater-Koster tables for Si are available: pbc-0.3,39

matsci,40 and siband.9,41 The pbc-0.3 and matsci sets are
known to give a poor description of the band structure for Si
polymorphs.8 In contrast, the electronic parameters of the
siband set were optimized by Markov et al.9 toward
experimental Si and SiO2 band structure data.
The electronic structures in terms of bandwidths and band

gaps for the different Si polymorphs in our training set
calculated using hybrid DFT and SCC-DFTB with pbc-0.3 and
siband are shown in Figure 3. The energies in the plots are
aligned through the lowest lying occupied Si state, i.e., the
bottom of the valence band. We note that the bandwidths of
the valence bands and conduction bands are in good
agreement between our modified hybrid DFT calculations
and the SCC-DFTB using the siband set for all polymorphs.
From these data, it is further clear that the siband set is
superior to the pbc-0.3 set and that the transferability when it
comes to SCC-DFTB electronic properties, here in terms of
bandwidth and band gap, is rather good.
4.3. Two-Body Hyperparameter Rcut. Before generating

the repulsive potentials using the CCS scheme, we need to
determine the two-body hyperparameter Rcut and how the
changes in this parameter affect the accuracy of the resulting
potential. The repulsive potential in SCC-DFTB is usually
short-ranged, and in general, we use a small cutoff value for
Rcut. Typically, the range of the first nearest-neighbor distances
in the training set (refer to Figure 4 top panel) is used.

However, using CCS the ideal cutoff could be determined
from a simple grid search. For this purpose, we made the
following training sets: i) a set containing E-V scans for all the
polymorphs and ii) sets containing E-V scans for individual
polymorphs. The Rcut values were varied from 2.38 to 6.42 Å,
and optimization was performed using the switch constraint
(see Section 2.3.2).
In Figure 4 (middle and bottom panels), we show the

variation of the training set error as a function of the Rcut
values. We infer that the training set error converges
immediately after the first nearest-neighbor distances, except
for the SC polymorph. The convergence occurs at 4.3 Å for the
SC polymorph. Overall, this suggests that the assumption of a
short-ranged behavior for the repulsive potential seems valid in
this case. The root-mean-squared-error (RMSE) of individual
polymorphs is less than 10−2 eV/atom at Rcut greater than 3.4
Å. Hence, we have chosen a Rcut value of 3.4 Å for the Si−Si
repulsive potential. The training set error for individual
polymorphs converges toward zero, whereas a nonzero
convergence is seen for the training set including all
polymorphs. A nonzero value for the training set error
convergence indicates the limit of accuracy for the two-body
approximation. We remark that the choice of electronic
parameters might influence this value. In principle, for a
given training set, one could search for a set of electronic
parameters that minimize the converged error in the two-body
approximation. This could be done by combining CCS with a
global search algorithm, e.g., MOPSO.

4.4. Repulsive Potential Fitting Using CCS. Having
established a scheme for obtaining the optimal Rcut value, we
move on to discuss the generation of the repulsive potentials
for the silicon polymorphs in our training set (see Section 4.1).
The electronic energies from SCC-DFTB are obtained using
the siband Slater-Koster tables of Markov et al.9 The CCS
method was used to optimize the repulsive parameters. Two
different types of fitting procedures (optimizations) were done,
one using the original constraints on the curvature (strictly
positive) and one in which the curvature is allowed to change
sign once (switch constraint, see Section 2.3.2). The resulting
repulsive potentials are shown in Figure 5.
Our first observation is that there is no good repulsive

potential that can simultaneously reproduce the energetics for
all the polymorphs in the training set with an acceptable
accuracy. This is not completely unexpected; in fact, similar
transferability issues have been reported previously in the
literature. For example, see the incorrect 2D-3D transition in
boron clusters for the borg-0-1 set42 and coordination
dependence of repulsive potential for different polymorphs of
ZnO.15 A similar trend in repulsive potentials for silicon
polymorphs was also observed by Chou et al.8 They showed
that the accuracy can be improved by increasing the cutoff of
the repulsive potential from 3.5 to 6.3 Å (up to the fourth
nearest neighbor for diamond). However, within the limits of
the constraints used here, we see no significant improvement in
extending the cutoff radii beyond 3.4 Å. It should be pointed
out that Chou et al.8 also optimized the electronic parameters
along with the repulsive potential.
We further note that there exists a repulsive potential for

each individual polymorph that leads to an almost perfect
agreement between the DFT and DFTB energies, see Figure 5.
The variations in the shape of the repulsive potentials, across
different polymorphs and with different constraints, can be
appreciated by looking at Figure 5. Clearly, the repulsive

Figure 6. A comparison of energy-volume curve DFT (black) and
SCC-DFTB (blue) for nonisotropic deformation of diamond.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01156
J. Chem. Theory Comput. 2021, 17, 1771−1781

1777

https://pubs.acs.org/doi/10.1021/acs.jctc.0c01156?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01156?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01156?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01156?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01156?ref=pdf


curvature constraint leads to smoother repulsive potentials, but
this comes at the expense of a slightly worse fit to the target
energies in the training set. This is illustrated by the incorrect
shape of the E-V curve for high-coordinated phases like SC and
BCC. The aforementioned problem can be rectified by the use
of a softer single minimum constraint (at most one minimum).
The occurrence of attractive regions in the repulsive potential
for condensed Si phases was also reported by Chou et al.8

The silicon example demonstrated here clearly indicates the
problems in transferability of SCC-DFTB parametrizations.
This issue will be discussed in more detail in the following.
4.4.1. Transferability of the Repulsive Potential within a

Polymorph. The results from the above section show that it is
possible to get a smooth repulsive potential that can describe

the isotropic E-V curves for individual polymorphs. Here, we
look at the transferability of the obtained repulsive potential for
nonisotropic deformations. For this purpose, we consider E-V
curves for the diamond (4C) structure along one axis keeping
the other two constant. The results obtained are shown in
Figure 6. The results indicate that the repulsive potential fitted
on isotropic deformations is transferable for nonisotropic
deformations.

4.5. Exploring Limits of Transferability Using Two-
Body Repulsive Potentials. The results from Section 4.4
suggest that there does not exist a single repulsive energy
expression (One-fits-all), consisting of one-body and two-body
energy terms under the given constraints, that leads to a
satisfactory fit across the various polymorphs of Si with

Figure 7. Absolute error per atom (y axis) for structures in the training set for different repulsive models presented in Section 4.5. The black dot
indicates the mean absolute error. The upper and lower whiskers indicate the maximum and minimum errors for the training set.
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different coordination numbers. At the same time, for each
polymorph, we can readily obtain a repulsive potential which
fits the data with minimal errors. Here, we will analyze the one-
body and two-body contributions in detail, before discussing
possible extensions of the method that could allow for a single
energy expression to fit the whole data set.
As an example, let us consider the diamond (4C) and simple

cubic (6C) structures of Si. We may express the two fitting
approaches adopted so far in the following way. First, for the
“One-fits-all” procedure, we may write

E V r( )rep
C C C C ij4 6 4 6= ϵ ++ + (17)

where the subscripts indicate that there is a single one-body
(ϵ) and single two-body (V) for both the 4C and 6C
structures. Second, for the individual fits, we may write

E V r V r( ) ( )rep
C C C ij C ij4 6 4 6= ϵ + ϵ + + (18)

where all energy terms are strictly zero when the coordination
number does not match that of the subscript. From the
previous sections, we know that the quality of the latter is
superior to the formerbut what about the other combina-
tions of these ϵ’s and V’s? Using the same notation as before
these would correspond to

E V r( )rep
C C C C ij4 6 4 6= ϵ + ϵ + + (19a)

E V r V r( ) ( )rep
C C C ij C ij4 6 4 6= ϵ + ++ (19b)

Next, we consider a training set solely comprising of
diamond (4C) and simple cubic (6C) E-V scans. We again use
the siband Slater-Koster tables of Markov et al.9 for the
electronic SCC-DFTB energies. Figure 7 shows a boxplot
comparison using all four expressions above for repulsive
fitting, with their combinations of ϵ’s and V’s for the 4C and
6C Si polymorphs. Additionally, we performed a similar
analysis with other combinations of polymorphs corresponding
to graphene + diamond and simple cubic + body centered
cubic (see Figure 7).
Although the magnitude of the one-body term is large, there

is little improvement in the fits when multiple ϵ’s are used
compared to the corresponding fits with a single ϵ. Instead, the
results indicate that we need to go beyond the simple two-
body repulsive potential to reach transferability in SCC-DFTB.
One such solution will be presented in the following section.

4.6. Beyond Two-Body Repulsive Potentials: Atom-
istic Neural Networks. It is clear that to describe a
transferable repulsive potential with a single energy expression,
we need to go beyond the one-body and two-body
contributions. Ideally, we need a model that captures the
local chemical environment with reasonable accuracy.
Recently, machine learning models like Atomistic Neural
Networks (ANN) have gained popularity for accurately
describing the short-ranged interactions. However, a pure
ANN approach fails to account for long-range interactions,
even with large cutoff radii. In the case of SCC-DFTB, we have
a good description of the long-range interactions but clearly
lack transferability in the short-range description. The
combination of the two is therefore appealing, and indeed
such combined approaches have been presented in the
literature using a Deep Tensor Neural Network together
with SCC-DFTB.22

The Behler−Parinello Neural Network (BPNN)43 is a
popular ANN architecture that has been proven to work well
for molecular and solid systems. Here, we used a BPNN
potential to approximate the repulsive potential. The general
idea is to represent the local chemical environment of an atom
using a set of radial and angular symmetry functions. Our
network architecture comprises of four radial and four angular
symmetry functions, two hidden layers with two nodes per
layer, with a cutoff radius of merely 4 Å (typical cutoff radii are
6−10 Å44), and a hyperbolic tangent activation function. This
is a much smaller and more nearsighted neural network

Figure 8. Schematic illustration of a conventional ANN (gray) and SCC-DFTB+ANN (blue) approach. The value of r indicates the radius of the
cutoff sphere, and N is the expected number of neighboring atoms within the cutoff. The cutoff value can be kept small for the SCC-DFTB+ANN
approach because of the inbuilt long-range interactions of the SCC-DFTB method.

Figure 9. Comparison between DFT (black dotted lines) and SCC-
DFTB+ANN energies for Si polymorphs using a neural network as
the repulsive potential.
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representation as compared to pure ANN approaches. Figure 8
shows a schematic comparing a pure ANN approach and our
DFTB+ANN approach. For the generation of the ANN
potentials, we used the PROPhet package,45 which is an open
source implementation of the BPNN method. The network
was trained on the same data set (E-V curves of polymorphs)
as used in section 4.4 and was optimized using a resilient
backpropagation algorithm. The E-V scans for DFT and the
corresponding SCC-DFTB+ANN methods are shown in
Figure 9. Indeed, a nearsighted ANN repulsive potential can
be used to get a “One-fits-all” repulsive potential. However,
one should bear in mind that the increased transferability
comes with a cost. The extrapolating power of using
“chemically intuitive” functions is lost when using the ANN
repulsive potential, which implies that the transferability of the
repulsive potential to systems beyond the training set must be
carefully investigated.

5. CONCLUSION
The goal in this work was to develop a fast and robust
machinery to obtain SCC-DFTB repulsive potentials without
having to resort to nonlinear fitting procedures. For this
purpose, we used a scheme called CCS to generate the
repulsive potentials. The CCS scheme was augmented with
new constraints (repulsive and monotonous) and was
successfully applied to create accurate repulsive potentials for
Si polymorphs. The key features of the augmented CCS
method include the following: i) Its ability to adopt various
shapes without producing spurious oscillations, ii) The method
is compatible with sparse data sets, and iii) The lack of
hyperparameters reduces the global search/optimization space
allowing us to fully concentrate on the electronic parameters.
For individual polymorphs of Si, accurate parametrization of
the repulsive potential was possible using CCS. However, due
to the approximations in SCC-DFTB, global transferability is
limited.
Regarding transferability, we show that a description beyond

a two-body additive repulsive potential is required. In this
respect, we further demonstrated that a nearsighted nonlinear
ANN model can be a viable solution. The generalized repulsive
potential approach by Kranz et al.,20 the multicenter tight
binding approach of Goldman et al.,24 and the Deep Tensor
Neural Network (DTNN) based many body repulsive
potential of Stöhr et al.22 are steps along this path.
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(40) Guimaraẽs, L.; Enyashin, A. N.; Frenzel, J.; Heine, T.; Duarte,
H. A.; Seifert, G. Imogolite nanotubes: Stability, electronic, and
mechanical properties. ACS Nano 2007, 1, 362−368.
(41) Markov, S.; Aradi, B.; Yam, C. Y.; Xie, H.; Frauenheim, T.;
Chen, G. Atomic level modeling of extremely thin silicon-on-insulator
MOSFETs including the silicon dioxide: Electronic structure. IEEE
Trans. Electron Devices 2015, 62, 696−704.
(42) Lian, M. H.; Yoon, T. L.; Lim, T. L. DFTB parameterization
and its application for the global minimum search of the small boron-
carbon clusters. Chem. Phys. Lett. 2019, 716, 207−210.
(43) Behler, J.; Parrinello, M. Generalized neural-network
representation of high-dimensional potential-energy surfaces. Phys.
Rev. Lett. 2007, 98, 146401.
(44) Behler, J. First Principles Neural Network Potentials for
Reactive Simulations of Large Molecular and Condensed Systems.
Angew. Chem., Int. Ed. 2017, 56, 12828−12840.
(45) Kolb, B.; Lentz, L. C.; Kolpak, A. M. Discovering charge density
functionals and structure-property relationships with PROPhet: A
general framework for coupling machine learning and first-principles
methods. Sci. Rep. 2017, 7, 1192.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01156
J. Chem. Theory Comput. 2021, 17, 1771−1781

1781

https://dx.doi.org/10.1021/ct4004959
https://dx.doi.org/10.1021/acs.jctc.5b00702
https://dx.doi.org/10.1021/acs.jctc.5b00702
https://dx.doi.org/10.1021/acs.jctc.5b00702
https://dx.doi.org/10.1021/acs.jctc.8b00039
https://dx.doi.org/10.1021/acs.jctc.8b00039
https://dx.doi.org/10.1021/acs.jctc.8b00873
https://dx.doi.org/10.1021/acs.jctc.8b00873
https://dx.doi.org/10.1021/acs.jctc.8b00873
https://dx.doi.org/10.1021/acs.jctc.7b00933
https://dx.doi.org/10.1021/acs.jctc.7b00933
https://dx.doi.org/10.1021/acs.jctc.9b00880
https://dx.doi.org/10.1021/acs.jctc.9b00880
https://dx.doi.org/10.1021/acs.jctc.9b00880
https://dx.doi.org/10.1021/acs.jpclett.0c01307
https://dx.doi.org/10.1021/acs.jpclett.0c01307
https://dx.doi.org/10.1021/acs.jpclett.0c01307
https://dx.doi.org/10.1021/acs.jctc.0c00842
https://dx.doi.org/10.1021/acs.jctc.0c00842
https://dx.doi.org/10.1021/acs.jctc.8b00165
https://dx.doi.org/10.1021/acs.jctc.8b00165
https://dx.doi.org/10.1021/acs.jctc.9b00975
https://dx.doi.org/10.1021/acs.jctc.9b00975
https://dx.doi.org/10.1021/ct800455a
https://dx.doi.org/10.1021/ct800455a
https://dx.doi.org/10.1016/j.cpc.2020.107602
https://dx.doi.org/10.1016/j.cpc.2020.107602
https://dx.doi.org/10.1063/1.5143190
https://dx.doi.org/10.1063/1.5143190
https://dx.doi.org/10.1063/1.5143190
https://dx.doi.org/10.1103/PhysRevB.50.17953
https://dx.doi.org/10.1103/PhysRevLett.77.3865
https://dx.doi.org/10.1103/PhysRevLett.77.3865
https://dx.doi.org/10.1063/1.1564060
https://dx.doi.org/10.1063/1.1564060
https://dx.doi.org/10.1063/1.2204597
https://dx.doi.org/10.1063/1.2204597
https://dx.doi.org/10.1063/1.2204597
https://dx.doi.org/10.1103/PhysRevB.78.075203
https://dx.doi.org/10.1103/PhysRevB.78.075203
https://dx.doi.org/10.1103/PhysRevB.47.558
https://dx.doi.org/10.1103/PhysRevB.47.558
https://dx.doi.org/10.1103/PhysRevB.49.14251
https://dx.doi.org/10.1103/PhysRevB.49.14251
https://dx.doi.org/10.1103/PhysRevB.49.14251
https://dx.doi.org/10.1016/0927-0256(96)00008-0
https://dx.doi.org/10.1016/0927-0256(96)00008-0
https://dx.doi.org/10.1016/0927-0256(96)00008-0
https://dx.doi.org/10.1103/PhysRevB.54.11169
https://dx.doi.org/10.1103/PhysRevB.54.11169
https://dx.doi.org/10.1021/jp070186p
https://dx.doi.org/10.1021/jp070186p
https://dx.doi.org/10.1002/pssb.200301886
https://dx.doi.org/10.1002/pssb.200301886
https://dx.doi.org/10.1021/nn700184k
https://dx.doi.org/10.1021/nn700184k
https://dx.doi.org/10.1109/TED.2014.2387288
https://dx.doi.org/10.1109/TED.2014.2387288
https://dx.doi.org/10.1016/j.cplett.2018.12.023
https://dx.doi.org/10.1016/j.cplett.2018.12.023
https://dx.doi.org/10.1016/j.cplett.2018.12.023
https://dx.doi.org/10.1103/PhysRevLett.98.146401
https://dx.doi.org/10.1103/PhysRevLett.98.146401
https://dx.doi.org/10.1002/anie.201703114
https://dx.doi.org/10.1002/anie.201703114
https://dx.doi.org/10.1038/s41598-017-01251-z
https://dx.doi.org/10.1038/s41598-017-01251-z
https://dx.doi.org/10.1038/s41598-017-01251-z
https://dx.doi.org/10.1038/s41598-017-01251-z
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01156?ref=pdf

