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Abstract: Few studies have simultaneously investigated the impact of inflammation and genetic
polymorphisms of cytochromes P450 2C19 and 3A4 on voriconazole trough concentrations. We aimed
to define the respective impact of inflammation and genetic polymorphisms on voriconazole exposure
by performing individual data meta-analyses. A systematic literature review was conducted using
PubMed to identify studies focusing on voriconazole therapeutic drug monitoring with data of both
inflammation (assessed by C-reactive protein level) and the pharmacogenomics of cytochromes P450.
Individual patient data were collected and analyzed in a mixed-effect model. In total, 203 patients
and 754 voriconazole trough concentrations from six studies were included. Voriconazole trough
concentrations were independently influenced by age, dose, C-reactive protein level, and both
cytochrome P450 2C19 and 3A4 genotype, considered individually or through a combined genetic
score. An increase in the C-reactive protein of 10, 50, or 100 mg/L was associated with an increased
voriconazole trough concentration of 6, 35, or 82%, respectively. The inhibitory effect of inflammation
appeared to be less important for patients with loss-of-function polymorphisms for cytochrome P450
2C19. Voriconazole exposure is influenced by age, inflammatory status, and the genotypes of both
cytochromes P450 2C19 and 3A4, suggesting that all these determinants need to be considered in
approaches of personalization of voriconazole treatment.

Keywords: voriconazole; therapeutic drug monitoring; inflammation; pharmacogenomics; personal-
ized treatment

1. Introduction

Voriconazole (VRC) is a broad-spectrum azole antifungal agent indicated for the treat-
ment and prevention of invasive fungal infections. It is one of the first-line treatments for
invasive aspergillosis [1,2]. However, despite adequate care, mortality due to invasive
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aspergillosis remains very high, ranging between 19 and 61% for patients with hemato-
logical malignancies [3]. One of the possible causes of these many failures is insufficient
exposure to the drug [4]. Indeed, VRC exhibits high pharmacokinetic variability, with
insufficient concentrations exposing patients to an increased risk of treatment failure and
excessively high concentrations resulting in adverse effects and the risk of treatment discon-
tinuation [5,6]. In this context, VRC therapeutic drug monitoring (TDM) is recommended
throughout treatment [2,7].

As invasive aspergillosis is a serious and directly life-threatening disease, it is essential
to achieve effective concentrations as soon as treatment is initiated [8–10]. In this context,
VRC personalized treatment with a priori dose adjustment has already been proposed
instead of five days after the initiation of treatment [4]. Such strategies are most frequently
based on the cytochrome P450 (CYP) 2C19 genotype [11–14], as many studies have demon-
strated the contribution of CYP2C19 polymorphisms in the variability of VRC trough
concentrations (Cmin) [15–18].

In addition to CYP2C19 polymorphisms, numerous other factors are known to influ-
ence VRC exposure. For example, certain genetic variants of CYP3A4 (rs35599367 and
rs1464637) [19–21] and inflammatory status [22–26] are associated with increased VRC
Cmin. The clinical implications have been limited, as only a few small-scale studies have
simultaneously evaluated genetic polymorphisms of both CYP2C19 and CYP3A4, along
with the inflammatory status of patients [25–28]. Moreover, it was suggested that the effect
of inflammation on VRC exposure may depend on the CYP genotype [27,28].

We aimed, therefore, to more precisely define the respective impact of the inflamma-
tory state and genetic variants on VRC exposure by gathering available data to perform an
individual patient data meta-analysis.

2. Materials and Methods

This meta-analysis was performed according to the Preferred Reporting Items for
Systematic Reviews and Meta-analysis statement guideline [29]. The study is registered
with PROSPERO (CRD42020162292), and the protocol and systematic search strategy are
available online.

2.1. Systematic Literature Review

A systematic literature review was conducted using Pubmed to identify studies evalu-
ating the impact of CYP genetic polymorphisms on VRC exposure, taking into account the
inflammatory status of patients. The following search terms were used: (“VORICONA-
ZOLE”) AND (“PHARMACOGENETICS” OR “PHARMACOGENOMICS” OR “THERA-
PEUTIC DRUG MONITORING” OR “CYP2C19” OR “CYP3A4” OR “PHARMACOKINET-
ICS” OR “POLYMORPHISM”). The terms (“VORICONAZOLE”) AND (“THERAPEUTIC
DRUG MONITORING” OR “PHARMACOKINETICS”) AND (“INFLAMMATION”) were
used to identify studies that evaluated the impact of inflammation on VRC concentrations.

2.2. Study Selection Criteria

One of the authors (LB) first screened studies based on titles and abstracts. Then,
a second selection was made by two authors (LB and EG) based on the full text of the
manuscripts. Studies were deemed eligible if they were case-control or cohort studies with
VRC Cmin measured at pharmacokinetic steady-state and genetic data (at least CYP2C19
genotyping ± CYP3A4 and 3A5 genotyping) were available. Even if the inflammatory
status of patients was not investigated in some studies, it was not a discriminating criterion
for inclusion because CRP levels determined during routine medical care could be retro-
spectively collected. Literature reviews, case reports, and studies conducted on pediatric
populations, healthy volunteers, or less than 10 patients were excluded.
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2.3. Data Extraction

The objective of this work was to collect individual patient data from the studies
selected during the systematic literature review. Thus, all the authors were contacted three
times by email. The following data were requested and merged into a single database for
analysis: patient identification, age, sex, weight, main pathology, CRP level, method of
measuring CRP, liver enzymes (aspartate amino transferase (ASAT) and alanine amino-
transferase (ALAT)), VRC Cmin determined at pharmacokinetic steady-state, the method
for VRC Cmin determination, date of blood collection, date of VRC initiation, daily dose,
route of administration, concomitant proton-pump inhibitor (PPI) treatment, CYP2C19,
3A4, and 3A5 genotype, and genotyping technique. The inclusion criteria were patients
with a CYP2C19 genotype ± CYP3A4 and CYP3A5 genotypes with at least one pair of
VRC Cmin and CRP level determined concomitantly. The absence of major drug-drug
interactions was verified in each included study. The presumed ethnicity of the patients
was determined based on the geographical origin of the studies, except for one study in
which ethnicity was specified [30]. VRC Cmin values below the limit of quantification were
replaced by the lower limit of quantification of the method.

The phenotype of CYP2C19 (poor (PM), intermediate (IM), extensive (EM), rapid
(RM), or ultrarapid (UM) metabolizer) was determined based on CPIC recommendations
for each patient [31]. Subsequently, three groups were defined: patients with increased
metabolic capacity (RM and UM), patients with decreased metabolic capacity (IM and PM),
and patients with standard metabolic capacity (EM). Similarly, the phenotype of CYP3A4
and 3A5 was determined for each patient if data were available. For CYP3A4, patients
with the rs35599367 (CYP3A4*22) allele were assigned an IM phenotype. For CYP3A5, the
rs776746 (CYP3A5*1) allele is associated with the expression of this cytochrome, unlike the
*3 alleles, which is associated with non-expression. The combined genetic score, including
the CYP2C19, CYP3A4, and CYP3A5 genotypes, was calculated, as previously described
(see [19] and Table S2).

2.4. Quality Assessment

The quality of the included studies was assessed by two authors (LB and CK) using the
Newcastle-Ottawa Scale (NOS), as they were observational case-control or cohort studies.
This scale assigns a maximum of 9 stars for good quality studies with a low risk of bias. It
is based on the selection of study groups, comparability of groups, and determination of
the exposure or outcome of interest for case-control or cohort studies.

2.5. Statistical Analysis

A linear mixed-effect model was used to assess the influence of various factors on VRC
exposure. In the base mixed-effect model, random effects were included in the intercept
for interindividual variability and study. Then, we performed univariate analyses for all
continuous (age, weight, ASAT, ALAT, CRP levels, daily dose, and combined genetic score)
and categorical (route of administration, concomitant PPI intake, CYP3A4, 3A5, and 2C19
genotypes) variables. Covariates associated with a p-value < 0.1 in the univariate analysis
were considered clinically relevant and biologically plausible and were, therefore, included
in the multivariate intermediate model. The final model was selected using a backward
stepwise process based on the Akaike information criterion. Finally, all assumptions were
checked in the final model, including linearity, absence of collinearity, homoscedasticity,
normality of residuals, absence of influential data points, and independence. Finally, the
marginal means of the selected variables in the final model were plotted. Missing data for
weight, ASAT, and ALAT were imputed using subject-centered means of available data
from other visits.

The genetic score was included in the final model but was not computable for all
studies due to the lack of data for the CYP3A genotype. We, therefore, performed two
sensitivity analyses by substituting the genetic score with the CYP2C19 phenotype alone
and the CYP2C19 and CYP3A4 phenotypes. A p-value < 0.05 was considered statistically
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significant. All statistical analyses were performed using Jamovi (version 1.1.9) and R
(version 3.6.1).

3. Results
3.1. General Characteristics of Studies

The study selection process is shown in Figure 1. Among the 1793 articles initially
identified, 85 were selected for full-text evaluation. Forty-six articles were selected after
the exclusion of 39 that did not meet the inclusion criteria. Eleven of the 46 corresponding
authors who were approached responded to our emails, resulting in the collection of
individual data from six studies.
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Figure 1. Flow diagram of study selection.

The main characteristics of the studies included in the meta-analysis are summarized
in Table 1. Three studies were on retrospective cohorts [15,19,30], two were prospective
observational studies [26,28], and one a retrospective case-control study [25]. The total
number of included patients was 203 for 754 VRC Cmin values. The genotypes of both
CYP2C19 and CYP3A4/5 were determined for 4/6 studies, corresponding to 136/203
(67.0%) patients. All characteristics of the patients, including the frequency of various
phenotypes for each CYP, are summarized in Table S1. The combined genetic scores of
various CYP2C19 and CYP3A4/5 polymorphisms are presented in Table S2.
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Table 1. Studies included in the meta-analysis.

Study Design Ethnic Origin,
Nationality

Number
of Patients

Number of
VRC Cmin
Determina-

tions

Age (Years) Sex VRC Cmin
(mg/L)

CRP
(mg/L)

Pharmacogenetic
Data

Hardy–
Weinberg

Equilibrium

Gautier-Veyret
et al., 2015 [19]

Retrospective
cohort study

Caucasian,
French 28 255 52.6

(27.9–61.4)
M: 15 (53.6)
F: 13 (46.4)

1.4
(0.1–5.8)

8.0
(3.0–436.0)

CYP2C19
CYP3A4
CYP3A5

Yes

Gautier-Veyret
et al., 2019 [25]

Retrospective
case-control

study

Caucasian,
French 57 * 62 60.1

(21.0–79.3)
M: 30 (52.6)
F: 27 (47.4)

3.8
(0.1–10.3)

96.0
(3.0–364.0)

CYP2C19
CYP3A4
CYP3A5

Yes

Gautier-Veyret
et al., 2020 [26]

Prospective
observational

study

Caucasian,
French 42 150 52.8

(22.3–77.6)
M: 30 (71.4)
F: 12 (28.6)

1.3
(0.1–9.7)

43.0
(3.0–369.0)

CYP2C19
CYP3A4
CYP3A5

Yes

Yamada et al.,
2015 [30]

Retrospective
cohort study

Asian,
Japanese 47 47 70.6

(29.4–83.2)
M: 32 (68.1)
F: 15 (31.9)

2.4
(0.02–9.6)

1.98
(0.01–26.8) CYP2C19 Yes

Lamoureux
et al., 2015 [15]

Retrospective
cohort study

Caucasian,
French 9 21 68.0

(21.0–79.0)
M: 7 (77.8)
F: 2 (22.2)

0.8
(0.2–4.1)

17.0
(5.0–172.0)

CYP2C19
CYP3A4
CYP3A5

Yes

Veringa et al.,
2017 [28]

Prospective
observational

study

Caucasian,
Netherlands 20 219 64.0

(19.0–72.0)
M: 13 (65.0)
F: 7 (35.0)

2.8
(0.2–11.2)

59.0
(1.5–401.0) CYP2C19 Yes

Total / / 203 754 58.6
(19.0–83.2)

M: 127 (63.0)
F: 76 (37.0)

1.8
(0.02–11.2)

27.0
(0.01–436) / /

VRC: voriconazole, Cmin: trough concentration, CRP: C-reactive protein, M: male, F: female. Data are presented as medians (ranges) or numbers (%). * Five patients were included in studies [19,25] with VRC
Cmin determined at different times.
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3.2. Determinants of Voriconazole Trough Concentration

The results of the univariate analysis are presented in Table 2. Weight, liver function,
concomitant treatment by PPI, and CYP3A5 phenotype were not associated with the VRC
Cmin. Conversely, age, VRC daily dose, and CRP levels were significantly associated with
a higher VRC Cmin, whereas oral VRC administration was significantly associated with a
lower VRC Cmin. The phenotypes of CYP2C19 (RM/UM versus EM) and CYP3A4 were
associated with VRC Cmin, even if statistical significance was not reached for CYP3A4.
Similarly, the combined genetic score was associated with VRC Cmin, with a lower VRC
Cmin for a higher combined genetic score.

Table 2. Univariate linear mixed-effect regression analyses.

Covariate Category
Estimate

(95% Confidence
Interval)

p-Value a

Demographics
Age

Weight
Voriconazole treatment

Daily dose
Route of administration

Hepatic function
ASAT
ALAT

Inflammation marker
CRP

Comedication
PPI

Pharmacogenomics
CYP2C19 phenotype b

CYP3A4 phenotype
CYP3A5 phenotype

Combined genetic score c

Per year increase
Per kg increase
Per mg increase

Oral vs. Intravenous
Per U/L increase
Per U/L increase

Per mg/L increase
No PPI vs. PPI
PM/IM vs. EM

RM/UM vs. EM
IM vs. EM

Non-expressor vs.
expressor

Per score point increase

0.016 [0.007–0.025]
0.004 [−0.004–0.013]

0.002 [0.001–0.003]−0.318
[−0.497–−0.138]

5.11*10−5 [−9.61 ×
10−5–1.98 × 10−4]
3.18*10−5 [−1.55 ×
10−4–2.19 × 10−4]
0.005 [0.004–0.006]

−0.078 [−0.329–0.173]
0.104 [−0.197–0.406]

−0.350 [−0.685–−0.014]
0.374 [−0.058–0.807]
0.309 [−0.155–0.772]

−0.558 [−0.853–−0.263]

<0.001
0.336

<0.001
<0.001
0.497
0.739

<0.001
0.542
0.499
0.043
0.093
0.195

<0.001

ASAT: aspartate aminotransferase; ALAT: alanine aminotransferase; Cmin: trough concentration, CYP: cy-
tochrome, IV: intravenous, PPI: proton-pump inhibitor, CRP: C-reactive protein, PM: poor metabolizer, IM:
intermediate metabolizer, EM: extensive metabolizer, RM: rapid metabolizer, UM: ultrarapid metabolizer, vs.:
versus. a Bold values indicate statistical significance. b Based on the classification proposed by Moriyama and
al. [31]. c Proposed by Gautier-Veyret and al. [19].

Results of the multivariate analysis are presented in Table 3, which shows the results
of three different linear mixed-effect models. All three models showed that higher age,
VRC daily dose, and CRP levels were significantly and independently associated with a
higher VRC Cmin. Model 1, based on the largest number of observations, showed the
CYP2C19 phenotype to be significantly associated with variations of VRC Cmin. Model
2, which individually considered each phenotype of CYP2C19 and 3A4, showed that the
phenotypes of both CYPs significantly influence VRC Cmin. Model 3, which considered
the combined genetic score, showed that an increase in the genetic score is significantly
associated with a decrease in the VRC Cmin. An increase of 1 unit of the combined genetic
score was associated with a reduction of 43% of the VRC Cmin, whereas an increase in the
CRP level of 10, 50, or 100 mg/L was associated with respective increases of 6, 35, and 82%.
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Table 3. Multivariate linear mixed-effect regression analyses.

Model (AIC) Numbers of Observations,
Patients, Studies

Estimate
[95% Confidence Interval] p-Value a

Model 1 (AIC = 1805) 754, 203, 6
Age 0.014 [0.006–0.022] <0.001
VRC daily dose 0.002 [0.002–0.003] <0.001
CRP level 0.005 [0.004–0.006] <0.001
CYP2C19 phenotype b 0.016

PM/IM vs. EM 0.168 [−0.105–0.441] 0.231
RM/UM vs. EM −0.322 [−0.627–−0.016] 0.041

Interaction CRP*CYP2C19 phenotype
CRP–PM/IM versus EM
CRP–RM/UM versus EM

−9.81*10−4 [−0.003–0.001]
1.63*10−5 [−0.002–0.002]

0.601
0.340
0.987

Model 2 (AIC = 1183) 488, 136, 4
Age 0.019 [0.009–0.028] <0.001
VRC daily dose 0.003 [0.002–0.004] <0.001
CRP level 0.006 [0.005–0.007] <0.001
CYP2C19 phenotype b 0.012
PM/IM vs. EM 0.183 [−0.157–0.523] 0.294
RM/UM vs. EM −0.366 [−0.691–−0.042] 0.029
CYP3A4 phenotype
IM vs. EM 0.497 [0.128–0.865] 0.009
Interaction CRP*CYP2C19 phenotype 0.019

CRP–PM/IM versus EM −0.003 [−0.006–−5.39*10−4] 0.018
CRP–RM/UM versus EM 7.02*10−4 [−0.002–0.004] 0.645

Model 3 (AIC = 1178) 488, 136, 4
Age 0.018 [0.009–0.028] <0.001
VRC daily dose 0.003 [0.002–0.004] <0.001
CRP level 0.006 [0.005–0.007] <0.001
Genetic score c −0.555 [−0.813–−0.296] <0.001
Interaction CRP*genetic score 0.003 [5.28*10−4–0.006] 0.018

AIC: Akaike information criterion, VRC: voriconazole, CYP: cytochrome P450, CRP: C-reactive protein, PM: poor metabolizer, IM: inter-
mediate metabolizer, EM: extensive metabolizer, RM: rapid metabolizer, UM: ultrarapid metabolizer. a Bold values indicate statistical
significance. b Based on the classification proposed by Moriyama and al [31]. c Proposed by Gautier-Veyret and al [19].

3.3. Impact of Inflammation Modulated by CYP2C19-Mediated Metabolism of VRC

We tested the results of the interaction between inflammation and pharmacogenetic
markers on VRC Cmin in the three multivariate models (Table 3). Significant interactions
were found between CRP and CYP2C19 phenotype in model 2 and between CRP and
genetic score in model 3. The evolution of VRC Cmin according to CRP levels stratified
according to CYP2C19 genotype is shown for model 2 in Figure 2. The effect of inflamma-
tion was reduced for patients with a phenotype of PM/IM, whereas its impact was not
significantly different between EM and RM/UM patients.
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Figure 2. Effects of an increase in CRP levels on the voriconazole (VRC) trough concentration (Cmin)
according to the CYP2C19 phenotype. The figure illustrates the predicted increase in VRC Cmin as a
function of CRP level from mixed-effects model 2. The blue, green, and red curves represent patients
with decreased CYP2C19 metabolic capacity (intermediate (IM) and poor metabolizers (PM)), those
with increased metabolic capacity (rapid (RM) and ultrarapid metabolizers (UM)), and those with
extensive metabolic capacity (extensive metabolizers (EM)), respectively. Cmin: trough concentration;
CRP: C-reactive protein; VRC: voriconazole; CYP: cytochrome P450; EM: extensive metabolizer; IM:
intermediate metabolizer; PM: poor metabolizer; RM: rapid metabolizer; UM: ultrarapid metabolizer.

3.4. Quality Assessment

The assessment of study-specific quality scores from the NOS system is summarized
in Table S3. For those studies for which the criterion did not apply, the indication “not
applicable” (NA) was entered. The overall quality of the included studies was good (all
the studies received a score of 7 or 8 stars).

4. Discussion

This meta-analysis performed on a large number of adult patients and VRC Cmin
determinations show that the VRC Cmin is influenced by the inflammatory status and
genotypes of both CYP2C19 and 3A4, in addition to the age of the patients and the dose
of VRC.

The positive and independent association between CRP levels and VRC Cmin is
in accordance with the results of numerous previous studies [24,26–28] and can be ex-
plained by the phenomenon of inflammation-induced phenoconversion [32,33]. Indeed,
the expression and activity of CYPs are down-regulated during an acute inflammatory
episode, notably under the effects of pro-inflammatory cytokines, such as interleukin-6,
which leads to a reduction in CYP-mediated drug metabolism [32,34]. Such an inhibitory
effect of inflammation was especially demonstrated in vitro for CYP3A4 and CYP2C19 [32],
the main enzymes involved in VRC metabolism in adults [35]. Increases of 10, 50, and
100 mg/L in CRP levels were associated with an increase in the VRC Cmin by 6, 35, and
82%, respectively. For example, an initial VRC Cmin of 1.8 mg/L (median VRC Cmin in
this meta-analysis) would increase to 3.3 mg/L for a 100-mg/L increase in the CRP level.
This factor is of the same order of magnitude as that found in two European studies [23,36]
but larger than that found in a Chinese study that reported an increase in VRC Cmin of
0.6 mg/L [37]. This difference can be explained by different genotypic frequencies between
these studies. Indeed, 15.8% of the Asian population is PM for CYP2C19 versus 2.2% of the
Caucasian population [38] and only 4.4% in this study.

Concerning pharmacogenetic markers, univariate analysis showed that VRC Cmin
tended to be associated with the genotypes of CYP2C19 and 3A4 but was not influenced
by that of CYP3A5. Conversely, the combined genetic score, the determination of which
integrates all these genotypes, was significantly associated with the VRC Cmin. Multi-
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variate analysis demonstrated a significant impact of the CYP2C19 phenotype on VRC
Cmin, without any two-by-two comparisons showing statistical significance, except the
RM/UM versus EM comparisons. This result can be explained by the fact that 78% of the
patients were presumably Caucasian, and the number of patients with the PM CYP2C19
phenotype was low (only 9/203 patients (4.4%)). Concerning CYP3A4, the trend towards
an increased VRC Cmin for IM patients observed in univariate analyses was confirmed
in multivariate model 2, in which significance was reached. This finding is in accordance
with those of previous studies that demonstrated the impact of genetic polymorphisms of
CYP3A4 on VRC exposure [14,19–21]. Conversely, we did not find any association between
the VRC Cmin and CYP3A5 genotype. This result is consistent with those of two previous
studies performed in healthy European volunteers [14,39] but not in agreement with a
Chinese study that highlighted a trend towards a higher frequency of the CYP3A5*1/*3
genotype for patients with a low VRC Cmin [21]. These discrepancies may be related to
different frequencies of the CYP3A5 genotype depending on the study population. Indeed,
the frequency of CYP3A5 expression is relatively low in Europeans, almost 15% (9.9%
in this study), whereas 41% of the patients included in the study of He et al. expressed
CYP3A5 [21]. Further research is needed to elucidate the impact of the CYP3A5 genotype
on VRC exposure.

Two previous studies included in this meta-analysis had suggested that the impact
of inflammation on VRC exposure could be modulated by CYP genotypes [27,28]. We
obtained a similar result in this meta-analysis, with a smaller effect of inflammation
for patients with decreased metabolic capacity for CYP2C19 (IM and PM) in model 2
(significant interaction between inflammation and the CYP2C19 phenotype) than those
with normal (EM) or elevated metabolic capacity (RM and UM) (see Figure 2). A study
conducted in the Chinese population [37] reported a lower magnitude in the increase in
the VRC Cmin in the presence of an inflammatory syndrome than two studies conducted
in the European population [23,36]. Such a finding is consistent with our meta-analysis,
as a higher frequency of PM for CYP2C19 was found in the Asian population than in the
Caucasian population [38].

The fact that VRC exposure appears to be independently influenced by age, inflam-
matory status, and genetic polymorphisms of both CYP2C19 and 3A4 calls into question
the relevance of VRC dose-adjustment strategies based solely on the CYP2C19 geno-
type [11–13]. Although these approaches are useful to reduce the risk of insufficient VRC
Cmin in prophylaxis [11,13], their efficiency could be improved by integrating additional
determinants [14], particularly the CYP3A4 genotype and inflammatory status. In addi-
tion, our findings highlight the fact that interpretation of VRC Cmin measured in routine
care and resulting dose adjustment should account for the inflammatory status of the
patient [32].

This study is the first to analyze the respective impact of inflammation and pharma-
cogenetic markers on such a large number of patients and observations. Nonetheless, it
had certain limitations. First, among the 46 authors contacted by email, 35 (76%) did not
answer, resulting in a still relatively small sample size. In addition, the primary endpoint,
namely the VRC Cmin, is an intermediate endpoint, and the consequences of variations of
VRC Cmin (due to genetic polymorphisms and inflammatory status) on treatment efficacy
and/or adverse effects were not investigated. However, the concentration-effect relation-
ship of VRC is well characterized for both efficacy and toxicity [6], suggesting that any
variation in the VRC Cmin would directly influence the treatment outcome. Moreover, we
assessed VRC exposure by the VRC Cmin, whereas the ideal parameter would have been
the area under the curve of VRC, as recently proposed [14]. Finally, the included studies
were heterogeneous in their methodology, with, for example, the absence of CYP3A4/5
genotypes for two of the six studies (representing 67 patients and 266 VRC Cmin deter-
minations), and most of the patients were presumed to be Caucasian, resulting in a small
number of PM for CYP2C19.
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In conclusion, this meta-analysis demonstrates that VRC exposure is independently
influenced by the dose of VRC, age, inflammatory status, and the genotypes of both
CYP2C19 and 3A4 aggregated in a combined genetic score. Such findings suggest that an a
priori VRC dose-adjustment strategy should consider the CYP2C19 and CYP3A4 genotypes,
as well as the patient’s inflammatory status. More generally, in the era of predictive,
preventive, and personalized medicine, inflammatory markers, already considered to
stratify patients with regard to the risk of non-communicable diseases [40–42], should
be further studied in pharmacokinetics studies. In light of the example of voriconazole,
existing strategies of personalized treatment of narrow therapeutic index drugs based most
often on one or few pharmacogenomic/demographic parameters could be improved by
the integration of additional markers, such as inflammatory markers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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