

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier.com/locate/mehy

medical hypothes

Letter to Editors

BCG vaccination and COVID-19: Much ado about nothing?

We read with great interest the article "Relation between BCG coverage rate and COVID-19 infection worldwide" by Macedo et al. [1], which provides a worldwide overview of vaccination programmes and COVID-19 burden in different countries, and postulates that BCG may protect from COVID-19.

By relying on speculation more than on evidence the current scientific debate seems to value the idea of a BCG-related lower susceptibility to COVID-19 [2]. As a *proof of concept*, different authors reported a limited COVID-19 burden in BCG vaccinated countries [2–5]. The hypothesis is certainly supported by a strong immunological rationale. In fact, BCG vaccination may contribute to polarize the physiological immune reaction toward a Th1 pattern and exert an additional protective role against viruses [6].

However, when looking at the different distribution of COVID-19 outbreak worldwide according to BCG coverage, several confounding factors should be considered.

The low temperature facilitates the virus spread. The most affected countries experienced the COVID-19 pandemic during their wintertime [7], which could explain the difference between the northern and southern hemisphere besides BCG vaccination.

Furthermore, depending on the local health care system, case identification resources, including COVID-19 swabs, may vary in different countries, which is relevant when sizing the impact of a viral infection.

In Europe, where the above-mentioned variables are quite homogeneous, COVID-19 outbreak is still lower where BCG vaccination is regularly provided [8]. It is the case of Eastern Countries (except Portugal). However, the population mean age in BCG unvaccinated states is significantly higher in comparison to vaccinated ones (respectively 40.9-SD 3.1- vs 37.8-SD 5.7- years; *t*-test: p = 0.031), as well as the mean life expectancy (respectively 81.6-SD 1.7 vs 75.0-SD 2.6 years; *t*test: p < 0,001) [8]. This evidence is not negligible when considering that most of COVID-19 fatal cases were registered in patients older than 70.

Furthermore, the population's density is significantly higher in BCG unvaccinated countries (median 127.6 [IQR: 83,1 – 230.5] inhabitants/ Km^2 vs 73.7 [IQR: 45.0 –101.0]; Mann- Whitney test: p = 0.003). The difference is remarkable when considering its relevance in facilitating the infection from human to human [9]. The same effect can be exerted by the international commercial exchanges and air traffic, which is much more relevant in European Western Countries, primarily interested by the COVID-19 outbreak.

In the light of the above-mentioned determinants, the hypothetic relevance of BCG-vaccination as a protection from COVID-19, although fascinating, remains quite controversial and further focused research is required besides speculation.

Acknowledgements

Not applicable.

Conflict of interest statement

The authors declare no conflicts of interest.

Funding

No funding to declare.

References

- Macedo A, Febra C. Relation between BCG coverage rate and COVID-19 infection worldwide. Med Hypotheses 2020;142:109816. https://doi.org/10.1016/j.mehy. 2020.109816.
- [2] Curtis N, Sparrow A, Ghebreyesus TA, Netea MG. Considering BCG vaccination to reduce the impact of COVID-19. Lancet 2020;395:1545–6.
- [3] Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study, medRxiv, DOI:10.1101/2020.03.24.20042937.
- [4] Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the spread and severity of COVID-19? Allergy. 2020. Online ahead of print.
- [5] Sala G & Miyagawa T, Association of BCG vaccination policy with prevalence and mortality of COVID-19", medRxiv, DOI:10.1101/2020.03.30.20048165.
- [6] Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020.
- [7] Wu Yu, Jing W, Liu J, Ma Q, Yuan J, Wang Y, Du M, Liu M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci Total Environ 2020;729:139051. https://doi.org/10.1016/j.scitotenv.2020. 139051.
- [8] An official website of the European Union. https://ec.europa.eu/eurostat/web/ products-eurostat-news. Accessed May 18 th, 2020.
- [9] Chandra S, Kassens-Noor E, Kuljanin G, Vertalka J. Int A geographic analysis of population density thresholds in the influenza pandemic of 1918–19. J Health Geogr 2013;20(12):9.

M. Caminati^{a,*}, F. Furci^b, G. Senna^a, G. Delfino^c, A. Poli^d, C. Bovo^e, V. Patella^{c,t}

^a Department of Medicine, Allergy and Clinical Immunology Section, University of Verona and Verona University Hospital, Verona, Italy ^b Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University Hospital G. Martino, University of Messina, Messina, Italy

^c Division of Allergy and Clinical Immunology, Department of Medicine ASL Salerno, "Santa Maria della Speranza" Hospital, Battipaglia, Salerno, Italy ^d Department of Diagnostics and Public Health, Section of Hygiene and

Preventive Medicine, University of Verona, Italy

^e Medical Direction, Verona University Hospital, Verona, Italy

^f Postgraduate Program in Allergy and Clinical Immunology, University of

Naples Federico II, Naples, Italy

E-mail address: marco.caminati@univr.it (M. Caminati).

Letter to Editors

^{*} Corresponding author.