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Abstract: Neighborhood walkability can influence physical activity. We evaluated the 
validity of Walk Score® for assessing neighborhood walkability based on GIS (objective) 
indicators of neighborhood walkability with addresses from four US metropolitan areas with 
several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data 
come from the YMCA-Harvard After School Food and Fitness Project, an obesity 
prevention intervention involving children aged 5–11 years and their families participating 
in YMCA-administered, after-school programs located in four geographically diverse 
metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective 
indicators of neighborhood walkability. Walk Scores were also obtained for the participant’s 
residential addresses. Spearman correlations between Walk Scores and the GIS 
neighborhood walkability indicators were calculated as well as Spearman correlations 
accounting for spatial autocorrelation. There were many significant moderate correlations 
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between Walk Scores and the GIS neighborhood walkability indicators such as density of 
retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS 
indicator of neighborhood walkability. Correlations generally became stronger with a larger 
spatial scale, and there were some geographic differences. Walk Score® is free and publicly 
available for public health researchers and practitioners. Results from our study suggest that 
Walk Score® is a valid measure of estimating certain aspects of neighborhood walkability, 
particularly at the 1600-meter buffer. As such, our study confirms and extends the 
generalizability of previous findings demonstrating that Walk Score is a valid measure  
of estimating neighborhood walkability in multiple geographic locations and at multiple  
spatial scales. 

Keywords: neighborhood walkability; GIS; Walk Score®; validity; multi-city 
 

1. Introduction 

Physical activity is associated with numerous well-documented health benefits [1-3]. However, 
most Americans do not meet national physical activity guidelines [4]. An important goal of public 
health, therefore, is to promote physical activity. 

A large amount of research shows that environmental features of neighborhoods can influence 
physical activity among children, adolescents and adults [5-12]. Collectively, these features that 
promote various forms of physical activity (such as walking) can be referred to as ‘neighborhood 
walkability’ and often include access to walking destinations such as retail stores and parks, and 
community design features such as street connectivity and sidewalk access [13]. Metrics used to assess 
neighborhood walkability vary considerably, including use of self-reported information and use of 
systematic field observation, also known as environmental audits [14]. Self-reported measures of 
neighborhood walkability can be implicated in same-source bias [15], and there are other noteworthy 
problems common in survey research, including issues with reliability, validity, low response rates and 
a biased sample of respondents [16]. Systematic field observations are well-known to be very 
laborious (i.e., time-intensive and have multiple logistical constraints), often can require significant 
specialized training and are notorious for being very costly. Geographic information systems (GIS) 
data, increasingly, is used to evaluate neighborhood walkability [17]. While GIS data can be useful for 
measuring neighborhood walkability, a caveat is that using GIS also requires specialized expertise and 
also can be time-intensive [17]. In addition, GIS data layers might not be readily accessible for certain 
geographic regions and can be expensive to acquire.  

Walk Score has become increasingly recognized in the study of walkability due to its accessibility, 
international scale and use of dynamic (or up-to-date) data that is constantly being corrected. This 
popular tool allows a user to enter any query location into the online interface on the Walk Score 
publicly available website (www.walkscore.com) and receive the Walk Score assigned to that location, 
free of charge. The Walk Score algorithm, which produces a score of 0 to 100, calculates a score of 
walkability based on distance to various categories of amenities (e.g., schools, stores, parks and 
libraries) that are weighted equally and summed. To date, there is a very limited amount of research 

http://www.walkscore.com/
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that has examined the validity of Walk Score to measure aspects of neighborhood walkablity [18,19]. 
These studies are useful and indicate that Walk Score can validly measure walkable amenities such as 
retail stores [19] and several community design features such as street connectivity [18]. However, to 
our knowledge, the existing published research examining the validity of Walk Score were conducted 
in a single location (i.e., Providence, RI, US). It is possible that the validity of Walk Score might vary 
by geographic locations, limiting the generalizablity of the previous research. Additionally, previous 
research has evaluated Walk Score compared to GIS-derived walkablity indicators based on a 1-mile 
buffer only [18,19]. However, neighborhoods are defined variously in neighborhood health effects 
research and Walk Score might not be a useful assessment of neighborhood walkability for certain 
populations. To illustrate, smaller spatial scales (e.g., 400- and 800-meters) may be particularly salient 
to children and the elderly who may have limited neighborhood mobility and thus the finite Walk 
Score algorithm (which is calibrated to a 1-mile neighborhood definition) might not be relevant to 
these populations. This all highlights the importance of understanding the validity of Walk Score at 
multiple spatial scales.  

The purpose of this study was to evaluate the validity of Walk Score for assessing neighborhood 
walkability based on several GIS (objective) indicators of neighborhood walkability for a relatively 
large number of addresses from four US metropolitan areas. We conducted our analysis overall and  
for each of the metropolitan areas with several street network buffer distances (i.e., 400- , 800-, and 
1600-meter buffers).  

2. Methods  

2.1. Address Data 

This study used address data collected as part of the YMCA-Harvard After School Food and Fitness 
Project, a multi-site, quasi-experimental, after-school obesity prevention intervention targeting 
children aged 5–11 years and their families [20]. The intervention focused on changing after-school 
environments to promote physical activity and healthy eating as well as to reduce television and 
computer time and to foster social connectedness. It was delivered to after-school programs, 
administered by the YMCA and located in four geographically diverse metropolitan areas in the US. 
The four metropolitan areas consisted of YMCAs that self-selected to participate in the intervention; 
there were 32 program sites across the metropolitan areas. The metropolitan areas varied in size and in 
degree of urbanicity (program sites were both in urban and suburban areas). For anonymity, we discuss 
the metropolitan areas by general geographic region only: the Pacific Northwest (n = 180), the 
Midwest (n = 170), the South (n = 238) and the East (n = 166). Thus, there were 754 full baseline 
addresses collected from parents of children in the after-school sites. Baseline data were collected in 
the fall of 2006, and the follow-up was in the spring of 2007. The analyses for the present study 
include full baseline addresses collected from the parents of children in the after-school sites who have 
geocodable addresses (n = 733), not just those who actually participated in various intervention 
activities. Although the sample is families of children who participated in the YMCA after-school 
programs, the geocoded families’ residential addresses represent neighborhoods across the 
metropolitan areas (the participants live in urban, suburban and even some rural areas). 
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2.2. Address Geocoding 

We geocoded the participants with full baseline street address information (i.e., street address, city, 
state, zone improvement plan [ZIP] code) collected from the parents of children in the after-school 
sites. Our geocoding methods have been described in detail elsewhere [21]. All addresses were 
preprocessed before geocoding by cleaning them to improve their quality. First, we removed any 
address that had PO boxes. We then reviewed the data for misspelled address information using 
Google Maps and remedied incorrect home addresses (e.g., incorrect street names). In addition, we 
removed all extraneous geographic characteristics (e.g., apartment numbers) and standardized the 
spelling to the United States Postal Service format (e.g., we changed ‘Street’ to ‘St’, ‘Avenue’ to 
‘Ave’, and ‘Circle’ to ‘Cir’). Addresses were then geocoded to the street level and assigned longitude 
and latitude coordinates, using the Tele Atlas US street address locator via the ArcGIS Online World 
Geocoding service with ArcGIS version 9.3 (Environmental Systems Research Institute, Redlands, 
CA, USA). Addresses were matched automatically using a minimum match score of 65, spelling 
sensitivity of 60 and side offset of 10 feet—the default settings of ArcGIS. We then manually 
restricted addresses in this analysis to those with a match score ≥80. For all addresses with candidate 
ties that had match scores ≥80 (n = 9), we performed interactive rematching in ArcGIS, which resulted 
in one address change. In the final step, we used Google Earth Pro to geocode the addresses with 
match scores below 80 and those that ArcGIS were unable to geocode. This study includes  
700 addresses geocoded by ArcGIS and 33 by Google Earth Pro.  

2.3. Neighborhood Walkability Assessment using Geographic Information Systems 

Objective neighborhood walkability indicators were created via geographic information systems 
(GIS) using ArcGIS 9.3. GIS data were analyzed using the North American Datum (NAD) 1983 state 
plane coordinate system for each of the four metropolitan areas. This study includes total retail 
walking destinations (e.g., clothing stores, pharmacy/drug stores, bookstores) per square kilometer, 
total service walking destinations (e.g., post offices, banks, credit unions) per square kilometer, total 
cultural/educational walking destinations (e.g., movie theaters, schools, libraries) per square kilometer, 
parks per square kilometer, median pedestrian route directness (median of the ratio of distance 
between one point and another via the street network and straight-line distance between the two points; 
values closer to 1.00 represent a more direct route or a more connected network), intersection density 
(the number of street intersections per square kilometer; intersections are defined as street network 
nodes with three or more associated street segments excluding highways), count of cul de sacs (based 
on nodes associated with only one street segment), average speed limit (miles per hour), highway 
density (percentage of area that is highway traveled right of way; class 1 and 2 highways were used), 
residential density (US census block group occupied housing units per square kilometer were weighted 
proportionally for the child’s defined neighborhood) and population density (US census block group 
total population per square kilometer were weighted proportionally for the child’s defined 
neighborhood). We limited the retail, service and cultural/educational walking destinations to locations 
with fewer than 250 employees to filter out large businesses (e.g., Costco, Home Depot) as business 
with greater than 250 employees can take away from the walkability of a neighborhood (e.g., by 
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having large parking lots) [22]. Retail, service and cultural/educational walking destinations data come 
from ESRI Business Analysis InfoUSA Business Locations 2006. ESRI Data and Maps information, 
from ESRI, has spatial datasets representing several built environment features. InfoUSA 
(http://infousa.com) is a company that provides listings of private and public businesses (verified 
yearly by telephone), with 6-digit NAICS codes as well as numbers of employees. Locations of these 
businesses had been geocoded and were available as a spatial dataset through the ESRI Business 
Analyst Extension. Data on parks, intersection density, cul de sacs, average speed limit, and highway 
density come from ESRI Data and Maps 2006; median pedestrian route directness data are derived 
from ESRI Business Analyst Info USA Business Locations 2006. Residential density and population 
density data as previously described come from 2000 US Census. This geospatial dataset includes 
GIS-derived walkability indicators for neighborhoods defined as 400-, 800- and 1600-meter street 
network buffers. We specifically selected 400- and 800-meters for our small spatial scales  
because these distances are considered a proximal neighborhood environment for children and  
adolescents [23,24], among other populations such as older adults [25-28]. The 1600-meter buffer was 
used because it is approximately 1-mile, which is consistent with the Walk Score algorithm. The street 
network buffers were created from StreetMap streets excluding highways and ramps using the ArcGIS 
Network Analyst Extension. The street network buffers consisted of 50-meter buffers around  
street center lines that extend along the network 400-, 800- and 1600-meters from the geocoded  
home addresses.  

2.4. Neighborhood Walkability Assessment using Walk Score  

Walk Score® (www.walkscore.com) is a publicly available large-scale method for calculating 
walkability. Walk Score was developed by Front Seat Management (www.frontseat.org), a software 
development company based in Seattle, WA, which focuses on software with civic applications. Walk 
Score uses publicly available data to assign a score to a location based on the distance to and variety of 
nearby commercial and public frequently-visited facilities. Data sources used by Walk Score include 
Google, Education.com, Open Street Map and Localeze. Facilities are divided into five  
categories: educational (e.g., schools), retail (e.g., grocery, drug, convenience and bookstores), food  
(e.g., restaurants), recreational (e.g., parks and gyms) and entertainment (e.g., movie theaters). The 
Walk Score algorithm then calculates the distance to the closest of each of the five facilities, using 
straight-line distances, and calculates a linear combination of these distances weighted both by facility 
type priority and a distance decay function [29]. The result is normalized to fit a 0 to 100 scale, with  
0 being the lowest (lowest walkability/car dependent) and 100 being the highest (most walkable). If 
one of each of the five facilities is within a quarter-mile radius from the input location, that location 
receives a perfect 100 score. If no facilities are within a one-mile radius of the input location, that 
location will be assigned a score of zero. The location can be entered as geographic coordinates, or as 
an address which is then geolocated using Google Geolocation [30]. Front Seat provides an application 
programming interface (API), which can be used to query the Walk Score database through URL calls, 
eliminating the need to use the website interface [31]. In order to use the Walk Score API, the user 
must first obtain a key number, which can be requested on the Walk Score website. This unique key is 
used in all API calls, and has a limit on the number of uses per 24 hours. Using a scripting language, 

http://infousa.com/
http://www.google.com/
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the user is able to paste a set of geographic coordinates along with the key number into an API call to 
quickly retrieve a Walk Score for each location. For this study, a program was created within the R 
programming language (R Foundation for Statistical Computing, Vienna, Austria), which queries the 
Walk Score database for each address used in the study. The script then scans the API response, which 
is in the form of an HTML page, and extracts the corresponding Walk Score. We obtained  
the walkability scores from Walk Score in mid May of 2011 using the Walk Score API and the  
geographic coordinates.  

2.5. Statistical Analysis 

First, we conducted descriptive statistics (e.g., means, standard deviations, ranges) for the 
neighborhood walkability metrics assessed via GIS and Walk Score. We then computed  
non-parametric Spearman product correlations between the GIS neighborhood walkability indicators 
and the Walk Score values because the neighborhood walkability data had a nonnormal distribution. 
We recognize the features of the built environments often cluster, indicating the presence of spatial 
autocorrelation. The presence of spatial autocorrelation violates the assumption of independent 
observations which can impact the findings (e.g., the presence of spatial autocorrelation can result in 
inflated degrees of freedom in the conventional correlation tests of the significance which can lead to 
overestimation of significance of effects) [32,33]. We evaluated the presence of spatial autocorrelation 
via the Global Moran’s I statistic, with a k nearest neighbor of four spatial weights matrix and  
999 Monte Carlo simulations were used to compute a pseudo p-value [34,35]. The Clifford and 
Richardson adjustment method was used to account for spatial autocorrelation, with six spatial lags 
used in generating correlation matrices and also the four nearest neighbor weights matrix [32]. In this 
methodology, the sample size is adjusted to account for the spatial dependence between observations. 
The corresponding t-statistics and p-values will change based on the adjusted sample size. All analyses 
were conducted for the data overall and for each of the four metropolitan areas, and for our three 
different neighborhood definitions. We report both rS-values and significance values. A significance 
level of 0.05 was selected for all analyses. Descriptive statistics and a-spatial statistical analyses were 
conducted in SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). Spatial analyses were conducted 
using the R statistical program version 2.13 with the spdep package [36].  

3. Results  

3.1. Descriptive Statistics of Walk Score and GIS Neighborhood Walkability Indicators 

Descriptive statistics of the Walk Score and GIS neighborhood walkability indicators are  
presented in Table 1 and Table 2, respectively. The mean Walk Score for the overall data was 38.84  
(SD = 23.81). There was a large range in Walk Scores for the overall data with a minimum Walk Score 
of 0 and a maximum of 97. GIS neighborhood walkability indicators and Walk Scores varied by 
metropolitan area. The metropolitan area in the East had a mean Walk Score of 53.01, while 26.19 was 
the Walk Score mean for the metropolitan area in the Midwest. 



Int. J. Environ. Res. Public Health 2011, 8 4166 
 

 

Table 1. Descriptive statistics of Walk Scores, including all data and for each  
geographic region. 

 M (SD) Range 
Overall (n = 733) 38.84 (23.81) 0–97 

Pacific Northwest (n = 172) 45.39 (24.50) 0–97 
Midwest (n = 167) 26.19 (19.80) 0–74 

South (n = 230) 33.02 (17.86) 0–91 
East (n = 164) 53.01 (24.70) 0–91 

Abbreviations: SD, Standard Deviation; M, Mean. 

3.2. Correlation between Walk Scores and GIS Neighborhood Walkability Indicators 

Table 3 shows the conventional Spearman correlation between Walk Scores and GIS neighborhood 
walkability indicators as well as their p-values, including all data and for each geographic region at 
various spatial scales. For the overall data (n = 733 addresses) for the 400-meter buffer, significant 
correlations were found for total retail walking destinations per square kilometer (rS = 0.53,  
p < 0.0001), total service walking destinations per square kilometer (rS = 0.27, p < 0.0001), total 
cultural/educational walking destinations per square kilometer (rS = 0.44, p < 0.0001), parks per square 
kilometer (rS = 0.24, p < 0.0001), median pedestrian route directness (rS = 0.24, p < 0.0001), 
intersection density (rS = 0.51, p < 0.0001), average speed limit (rS = 0.47, p < 0.0001), highway 
density (rS = 0.33, p < 0.0001), residential density (rS = 0.65, p < 0.0001) and population density  
(rS = 0.64, p < 0.0001). No statistically significant correlation was found for count of cul de sacs  
(rS = 0.01, p = 0.7024).  

For the 800-meter buffer for the overall data, significant correlations were found for total retail 
walking destinations per square kilometer (rS = 0.67, p < 0.0001), total service walking destinations per 
square kilometer (rS = 0.53, p < 0.0001), total cultural/educational walking destinations per square 
kilometer (rS = 0.53, p < 0.0001), parks per square kilometer (rS = 0.37, p < 0.0001), intersection 
density (rS = 0.59, p < 0.0001), count of cul de sacs (rS = 0.14, p = 0.0002), average speed limit  
(rS = 0.53, p < 0.0001), highway density (rS = 0.39, p < 0.0001), residential density (rS = 0.65,  
p < 0.0001) and population density (rS = 0.64, p < 0.0001); there was not a statistically significant 
correlation found for median pedestrian route directness (rS = -0.01, p = 0.7908). 

For the overall data using the 1600-meter buffer, significant correlations were found for total retail 
walking destinations per square kilometer (rS = 0.80, p < 0.0001), total service walking destinations per 
square kilometer (rS = 0.67, p < 0.0001), total cultural/educational walking destinations per square 
kilometer (rS = 0.69, p < 0.0001), parks per square kilometer (rS = 0.51, p < 0.0001), intersection 
density (rS = 0.65, p < 0.0001), count of cul de sacs (rS = 0.37, p < 0.0001), average speed limit  
(rS = 0.47, p < 0.0001), highway density (rS = 0.43, p < 0.0001), residential density (rS = 0.65,  
p < 0.0001) and population density (rS = 0.64, p < 0.0001). However, there was no statistically 
significant correlation for median pedestrian route directness (rS = -0.05, p = 0.2166). 
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Table 2. Descriptive statistics of GIS Neighborhood Walkability Indicators, including all data and for each geographic region.  

  400-meter Network Buffer 800-meter Network Buffer  1600-meter Network Buffer 
  M (SD) Range M (SD) Range M (SD) Range 
Overall (n = 733)             
Retail destinations (density) 5.08 (12.18) 0–107.84 5.11 (9.35) 0–118.79 5.42 (6.13) 0–55.55 
Service destinations (density) 0.89 (4.20) 0–60.27 0.88 (2.53) 0–33.80 1.06 (1.59) 0–16.27 
Cultural/educational destinations (density) 3.27 (6.33) 0–50.97 3.73 (4.98) 0–24.63 3.84 (4.11) 0–26.19 
Parks (density) 0.97 (2.81) 0–19.97 0.60 (1.24) 0–8.34 0.48 (0.68) 0–3.88 
Median pedestrian route directness 1.31 (0.67) 1–12.04 1.39 (0.47) 1–6.95 1.37 (0.31) 1–4.56 
Intersection density 60.59 (30.87) 0–200.26 54.83 (24.83) 0–152.69 50.64 (21.91) 6.57–137.16 
Cul de sacs (count) 2.85 (2.42) 0–13.00 9.23 (6.51) 0–42.00 34.94 (21.16) 1–111.00 
Average speed limit (mph) 26.92 (2.47) 21.67–41.18 27.07 (2.01) 22.27–35.94 27.32 (1.59) 22.86–35.37 
Highway density 25.96 (84.01) 0–676.04 31.89 (71.60) 0–621.70 38.38 (60.12) 0–400.15 
Residential density 76.95 (67.52) 0.11–373.94 75.84 (63.86) 0.11–343.05 73.02 (58.36) 0.22–382.55 
Population density 1,470 (1,438) 1.85–8,346 1,451 (1,377) 1.85–7,172 1,384 (1,229) 5.06–6,020 
Pacific Northwest (n = 172)             
Retail destinations (density) 5.83 (13.58) 0–73.49 6.07 (13.00) 0–118.79 6.38 (8.71) 0–55.55 
Service destinations (density) 1.07 (5.27) 0–60.27 1.00 (3.19) 0–33.80 1.27 (2.23) 0–16.27 
Cultural/educational destinations (density) 2.69 (6.14) 0–32.09 3.30 (4.90) 0–24.22 3.52 (4.41) 0–26.19 
Parks (density) 2.90 (4.68) 0–19.97 1.68 (1.86) 0–8.34 1.21 (0.87) 0–3.88 
Median pedestrian route directness 1.43 (1.27) 1–12.04 1.43 (0.65) 1–6.95 1.41 (0.32) 1–2.83 
Intersection density 63.56 (26.74) 0–149.13 58.49 (20.07) 6.51–109.74 52.80 (16.48) 9.47–100.16 
Cul de sacs (count) 3.55 (2.64) 0–12.00 11.86 (7.63) 0–42.00 46.40 (24.60) 3.00–111.00 
Average speed limit (mph) 27.08 (2.44) 22.60–35.93 27.17 (1.82) 23.41–33.16 26.95 (1.26) 23.72–31.59 
Highway density 19.44 (77.91) 0–481.67 20.75 (50.39) 0–328.65 18.18 (28.65) 0–150.37 
Residential density 76.63 (60.15) 0.11–319.02 74.59 (57.43) 0.11–343.05 71.67 (56.54) 0.22–382.55 
Population density 1,472 (1,056) 1.85–6,055 1,445 (1,020) 1.85–6,670 1,408 (966.17) 5.06–5,850 
Midwest (n = 167)             
Retail destinations (density) 3.42 (13.77) 0–107.84 3.33 (8.77) 0–57.59 3.80 (4.97) 0–21.44 
Service destinations (density) 0.85 (4.33) 0–33.18 0.70 (2.09) 0–11.56 0.79 (1.41) 0–7.61 
Cultural/educational destinations (density) 1.77 (3.85) 0–19.80 1.95 (2.46) 0–11.31 2.45 (1.66) 0–8.66 
Parks (density) 0.21 (1.20) 0–7.65 0.13 (0.55) 0–3.42 0.08 (0.18) 0–0.90 
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Table 2. Cont.  

  400-meter Network Buffer 800-meter Network Buffer  1600-meter Network Buffer 
  M (SD) Range M (SD) Range M (SD) Range 
Median pedestrian route directness 1.32 (0.58) 1–3.78 1.42 (0.57) 1–6.08 1.41 (0.33) 1–2.83 
Intersection density 44.39 (15.17) 0–82.00 40.96 (10.26) 0–71.29 38.59 (7.79) 6.57–53.39 
Cul de sacs (count) 1.93 (1.55) 0–7.00 6.13 (4.41) 0–23.00 21.75 (10.77) 1–53.00 
Average speed limit (mph) 25.70 (1.62) 21.67–32.14 25.79 (1.60) 22.27–33.50 26.33 (1.46) 22.86–33.38 
Highway density 5.77 (41.32) 0–366.94 13.63 (54.00) 0–441.36 24.67 (49.45) 0–268.08 
Residential density 30.68 (18.77) 1.45–121.37 31.06 (19.03) 1.45–124.38 30.97 (17.54) 1.45–96.77 
Population density 577.51 (339.65) 25.16–1,915 581.16 (330.59) 25.16–1,776 571.51 (293.82) 25.03–1,452 
South (n = 230)             
Retail destinations (density) 3.86 (11.04) 0–63.93 4.04 (7.61) 0–52.32 4.48 (4.58) 0–31.22 
Service destinations (density) 1.17 (4.53) 0–37.88 1.01 (2.93) 0–30.52 1.10 (1.40) 0–6.74 
Cultural/educational destinations (density) 2.71 (6.30) 0–50.97 3.46 (4.56) 0–21.53 3.31 (2.69) 0–16.46 
Parks (density) 0.33 (1.57) 0–13.94 0.24 (0.72) 0–3.86 0.25 (0.38) 0–1.59 
Median pedestrian route directness 1.26 (0.25) 1–2.19 1.42 (0.37) 1–3.10 1.36 (0.27) 1–2.49 
Intersection density 52.17 (21.62) 0–128.59 46.31 (12.66) 9.38–77.97 42.91 (9.31) 7.55–65.15 
Cul de sacs (count) 3.22 (2.64) 0–13.00 10.04 (6.53) 0–32.00 38.41 (21.36) 1–83.00 
Average speed limit (mph) 27.11 (2.81) 25.00–41.18 27.25 (1.86) 25.00–35.94 27.52 (1.19) 25.00–33.45 
Highway density 19.78 (80.49) 0–676.03 23.03 (69.53) 0–621.70 27.12 (53.97) 0–290.40 
Residential density 81.81 (55.92) 2.69–336.25 82.17 (53.67) 2.72–332.16 82.19 (48.45) 3.02–273.75 
Population density 1,264 (715.00) 60.47–3185 1,256 (654.16) 61.05–2,658 1,240 (574.41) 65.34–2493 
East (n = 164)             
Retail destinations (density) 7.68 (9.77) 0–55.63 7.42 (6.69) 0–35.33 7.39 (5.08) 0–18.39 
Service destinations (density) 0.37 (1.33) 0–9.02 0.77 (1.25) 0–5.97 1.08 (1.11) 0–5.87 
Cultural/educational destinations (density) 6.20 (7.59) 0–27.69 6.37 (6.34) 0–24.63 6.35 (5.79) 0–22.32 
Parks (density) 0.62 (1.50) 0–6.17 0.47 (0.73) 0–3.45 0.43 (0.49) 0–1.97 
Median pedestrian route directness 1.28 (0.24) 1–2.32 1.28 (0.20) 1–1.91 1.29 (0.32) 1–4.56 
Intersection density 85.76 (40.28) 10.34–200.26 77.05 (34.69) 9.46–152.69 71.46 (31.83) 14.44–137.16 
Cul de sacs (count) 2.53 (2.21) 0–10.00 8.47 (5.57) 0–27.00 31.46 (16.45) 2–68.00 
Average speed limit (mph) 27.70 (2.26) 23.93–34.69 28.04 (2.12) 22.35–35.26 28.43 (1.74) 23.27–35.37 
Highway density 62.01 (112.50) 0–574.98 74.61 (90.42) 0–389.78 89.33 (73.31) 0–400.15 
Residential density 117.60 (89.66) 5.71–373.94 113.88 (82.88) 5.98–285.51 104.41 (73.53) 6.75–258.73 
Population density 2,666 (2,228) 82.46–8,346 2,617 (2,123) 87.15–7,162 2,386 (1,880) 97.85–6,020 

Abbreviations: SD, Standard Deviation; M, Mean.  
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Table 3. Correlation between Walk Scores and GIS Neighborhood Walkability Indicators, including all data and for each geographic region.  

  400-meter Network Buffer 800-meter Network Buffer 1600-meter Network Buffer 
  rS p-value rS p-value rS p-value 
Overall (n = 733)       
Retail destinations (density) 0.53 <0.0001 0.67 <0.0001 0.80 <0.0001 
Service destinations (density) 0.27 <0.0001 0.53 <0.0001 0.67 <0.0001 
Cultural/educational destinations (density) 0.44 <0.0001 0.53 <0.0001 0.69 <0.0001 
Parks (density) 0.24 <0.0001 0.37 <0.0001 0.51 <0.0001 
Median pedestrian route directness 0.24 <0.0001 -0.01 0.7908 -0.05 0.2166 
Intersection density 0.51 <0.0001 0.59 <0.0001 0.65 <0.0001 
Cul de sacs (count) 0.01 0.7024 0.14 0.0002 0.37 <0.0001 
Average speed limit (mph) 0.47 <0.0001 0.53 <0.0001 0.47 <0.0001 
Highway density 0.33 <0.0001 0.39 <0.0001 0.43 <0.0001 
Residential density 0.65 <0.0001 0.65 <0.0001 0.65 <0.0001 
Population density 0.64 <0.0001 0.64 <0.0001 0.64 <0.0001 
Pacific Northwest (n = 172)       
Retail destinations (density) 0.45 <0.0001 0.64 <0.0001 0.78 <0.0001 
Service destinations (density) 0.33 <0.0001 0.60 <0.0001 0.78 <0.0001 
Cultural/educational destinations (density) 0.42 <0.0001 0.53 <0.0001 0.70 <0.0001 
Parks (density) 0.19 0.0146 0.27 0.0003 0.38 <0.0001 
Median pedestrian route directness 0.09 0.4232 -0.02 0.8426 -0.11 0.1496 
Intersection density 0.29 <0.0001 0.42 <0.0001 0.49 <0.0001 
Cul de sacs (count) -0.09 0.2264 -0.02 0.7494 0.24 0.0014 
Average speed limit (mph) 0.34 <0.0001 0.37 <0.0001 0.36 <0.0001 
Highway density 0.23 0.0027 0.19 0.0116 0.32 <0.0001 
Residential density 0.52 <0.0001 0.51 <0.0001 0.50 <0.0001 
Population density 0.43 <0.0001 0.43 <0.0001 0.43 <0.0001 
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Table 3. Cont.  

  400-meter Network Buffer 800-meter Network Buffer 1600-meter Network Buffer 
  rS p-value rS p-value rS p-value 
Midwest (n = 167)       
Retail destinations (density) 0.32 <0.0001 0.49 <0.0001 0.85 <0.0001 
Service destinations (density) 0.34 <0.0001 0.53 <0.0001 0.69 <0.0001 
Cultural/educational destinations (density) 0.27 0.0004 0.40 <0.0001 0.73 <0.0001 
Parks (density) –0.16 0.0382 –0.09 0.2302 0.14 0.0638 
Median pedestrian route directness 0.19 0.1369 0.05 0.6009 0.17 0.0330 
Intersection density 0.29 0.0002 0.12 0.1320 0.28 0.0002 
Cul de sacs (count) –0.13 0.0942 –0.03 0.6556 0.12 0.1115 
Average speed limit (mph) 0.45 <0.0001 0.53 <0.0001 0.58 <0.0001 
Highway density 0.18 0.0201 0.32 <0.0001 0.46 <0.0001 
Residential density 0.74 <0.0001 0.73 <0.0001 0.71 <0.0001 
Population density 0.70 <0.0001 0.68 <0.0001 0.67 <0.0001 
South (n = 230)       
Retail destinations (density) 0.33 <0.0001 0.58 <0.0001 0.70 <0.0001 
Service destinations (density) 0.25 0.0002 0.46 <0.0001 0.57 <0.0001 
Cultural/educational destinations (density) 0.25 0.0002 0.29 <0.0001 0.49 <0.0001 
Parks (density) 0.13 0.0531 0.26 <0.0001 0.35 <0.0001 
Median pedestrian route directness 0.24 0.0185 0.08 0.2724 0.15 0.0259 
Intersection density 0.17 0.0088 0.32 <0.0001 0.40 <0.0001 
Cul de sacs (count) –0.09 0.1979 –0.08 0.2228 0.10 0.1258 
Average speed limit (mph) 0.26 <0.0001 0.34 <0.0001 0.28 <0.0001 
Highway density 0.13 0.0494 0.13 0.0425 0.13 0.0467 
Residential density 0.43 <0.0001 0.41 <0.0001 0.42 <0.0001 
Population density 0.36 <0.0001 0.35 <0.0001 0.33 <0.0001 
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Table 3. Cont.  

  400-meter Network Buffer 800-meter Network Buffer 1600-meter Network Buffer 
  rS p-value rS p-value rS p-value 
East (n = 164)       
Retail destinations (density) 0.56 <0.0001 0.70 <0.0001 0.73 <0.0001 
Service destinations (density) 0.28 0.0003 0.47 <0.0001 0.56 <0.0001 
Cultural/educational destinations (density) 0.60 <0.0001 0.74 <0.0001 0.83 <0.0001 
Parks (density) 0.25 0.0010 0.41 <0.0001 0.69 <0.0001 
Median pedestrian route directness 0.24 0.0099 0.15 0.0820 –0.09 0.2840 
Intersection density 0.75 <0.0001 0.78 <0.0001 0.79 <0.0001 
Cul de sacs (count) 0.09 0.2681 0.32 <0.0001 0.71 <0.0001 
Average speed limit (mph) 0.41 <0.0001 0.39 <0.0001 0.33 <0.0001 
Highway density 0.34 <0.0001 0.36 <0.0001 0.28 0.0003 
Residential density 0.77 <0.0001 0.79 <0.0001 0.80 <0.0001 
Population density 0.75 <0.0001 0.75 <0.0001 0.76 <0.0001 
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The magnitude of the correlation coefficient, significance level and sometimes even direction varied  
by geographic region in these unadjusted Spearman correlations. Notably, we found significant global  
spatial autocorrelation in Walk Scores overall and for each geographic region, as well as significant  
spatial autocorrelation in most GIS built environment indicators across regions and spatial scales. The  
Global Moran’s I for Walk Score overall was 0.79 (p = 0.001) and for the Pacific Northwest, Midwest,  
South and East the Global Moran’s I was 0.70, 0.82, 0.63 and 0.79, respectively (all p = 0.001).  
However, the Spearman correlations accounting for spatial autocorrelation produced similar findings;  
the p-values, although more conservative, did not change the overall findings for most GIS indicators  
(data not shown). Generally then, these analyses demonstrate many significant and moderate  
correlations between Walk Score and the GIS neighborhood walkability indicators, although the  
magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became  
stronger with a large spatial scale, and there were some geographic differences.   

4. Discussion   

While Walk Score uses novel web-based geospatial technologies to estimate neighborhood  
walkability and has emerged as a potential tool to be used in public health, very limited empirical  
evidence exists examining its validity. In order to evaluate the validity of Walk Score, we examined  
correlations between neighborhood walkability metrics as measured via geographic information  
systems compared to the Walk Score algorithm. We found that Walk Score was valid in measuring  
certain aspects of walkability overall, and for each metropolitan area examined in this study. However,  
it is necessary to highlight that the magnitude of the correlations varied by the GIS indicator of  
neighborhood walkability and correlations did vary some by geographic region. In this study, there  
was a major difference in population densities in the four metropolitan areas studied, and it appears  
that the correlations were higher in the high population density regions. While Walk Score was valid at  
each of the neighborhood definitions (i.e., 400-, 800-, and 1600-meter street network buffers) for  
certain aspects of neighborhood walkability, there were higher correlations at the 1600-street network  
buffer. This is not surprising, as the Walk Score algorithm goes until 1-mile, which is approximately   
1600 meters, and this finding suggests that the algorithm works best for the intended neighborhood  
definition. We were surprised there were some geographic differences in correlations across the four  
metropolitan areas. Our study extends previous research because we examined the validity   
of Walk Score for a geospatial dataset from several metropolitan areas and at multiple   
neighborhood definitions.  

Our study compares to the previous research examining the validity of Walk Score in that most  
correlations were significant. In terms of the magnitude, for the 1600-meter buffer, our correlations  
were oftentimes lower than the previous research that used a 1-mile buffer [18,19]. One potential  
reason for this is that the previous research computed Pearson correlations while we computed  
Spearman correlations. Additionally, in this study we examined some features related to neighborhood  
walkability not examined in the previous research (e.g., median pedestrian route directness, cul de sac  
count, average speed limit, and highway density). Although median pedestrian route directness varied  
by geographic locale and spatial scale, for the data overall it was not significantly related to Walk  
Scores for the 1600-meter buffer, which highlights the limited utility of Walk Score for measuring  
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overall walkability, as pedestrian route directness is an important aspect of walkabiltiy. Moreover, the  
correlations between Walk Score and cul de sac count overall were moderate and significant at the  
1600-meter buffer level, which further underscores that Walk Score is not a useful proxy for overall  
neighborhood walkability. We also found significant moderate correlations between Walk Scores and  
average speed limit as well as Walk Scores and highway density overall, which may also hinder one’s  
ability to walk in their neighborhood. Therefore, our findings indicate that Walk Score is a useful  
proxy for only certain neighborhood walkability indicators (e.g., retail destinations, intersection  
density, residential density). Of note, the prior research, to our knowledge, that has examined the  
validity of Walk Score for neighborhood walkability manually retrieved the Walk Scores. There is  
potential for research assistant keystroke error when manually obtaining the Walk Scores. A novel  
aspect of our study is that we retrieved Walk Scores via the Walk Score API, which can overcome the  
key stroke error limitation, because it eliminates the need to enter locations one at a time into the  
website’s interface. Also noteworthy is that obtaining Walk Scores via the Walk Score API was quick  
and therefore is cost-effective. We believe that the Walk Score API is a tremendous tool for retrieving  
mass Walk Score data. Another novel and important difference between our study and the existing  
published studies evaluating the validity of Walk Score is that we examined and accounted for spatial  
autocorrelation. Although the findings for the spatial autocorrelation adjustment were near identical as  
the conventional correlation approach, we believe that computing correlations adjusted for spatial  
autocorrelation is a major strength of the present research because most studies evaluating correlations  
in geospatial data do not examine and if necessary account for potential spatial autocorrelation in   
the data.  

Although walkability is a complex construct that does not have an agreed upon definition [13], it is  
important to have metrics that capture features related to walking because walking is the most  
frequently adopted type of regular physical activity [37] and because some research suggests that  
pedestrian-oriented communities support walking [5-12]. Our findings are useful to public health  
researchers and practitioners because recent research demonstrates that composite walkability metrics  
are more predictive of walking behaviors than single walkability metrics [38] and because Walk Score  
is free, quick and easy to use. Public health researchers, practitioners and policymakers, regardless of  
their level of technical experience in geospatial technologies, can easily utilize the Walk Score  
website. For example, researchers can easily assess the walkability of a person’s neighborhood.  
Practitioners and policymakers can identify and intervene in areas with limited neighborhood  
resources. The website can also be used by community groups for community resource assessment and  
advocacy, potentially advocating for land use policies supportive of multiple types of destinations for  
the purpose of increased walkability but also to economically strengthen neighborhoods. Archived  
Walk Scores over time would be a significant enhancement that can be used for a variety of purposes,  
including allowing researchers to study changes in built environment on walkability and its associated  
impacts on physical activity and overall health. In addition, Walk Score can also be integrated in  
physical activity promotion intervention programs. As noted by previous researchers, for example,  
Walk Score could be used as an intervention tool to inform participants about their access to nearby  
amenities related to physical activity [18]. Previous research suggests low correlations between  
objective and perceived neighborhood features [39-43]. Researchers interested in spatial analysis may  
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be likely to employ spatial sampling techniques [44-46]; Walk Score could be a resource for  
conducting spatial sampling.   

We note that this study is subject to limitations. We recognize that GIS datasets can have   
errors [47-49]. Data from ESRI and other sources used to measure features of the built environment,  
including Walk Score, might have errors of omission, features that no longer exist and positional  
errors. Geospatial datasets need to be used with caution and need to be ground-truthed. However, we  
have no reason to believe that the nature of any potential misclassification is different among the built  
environment data used in this study. Spatio-temporal mismatches between the GIS neighborhood  
walkability indicators and Walk Scores is also a limitation. However, this might not make that much of  
a difference in practice as the built environment likely changes slowly, especially perhaps in  
established metropolitan areas. We acknowledge though that changes in the built environment can  
occur as a result of a recession as well as other circumstances including suburban development and  
gentrification. The spatial autocorrelation usually inherent in built environments and walkability of  
neighborhoods is another important consideration. Although we computed correlation coefficients  
adjusted for spatial autocorrelation, we recognize that there are other approaches to account for spatial  
autocorrelation in correlation analysis and also that the results of spatial approaches can be influenced  
by the spatial weights matrix. We used the Clifford and Richardson adjustment method, which has  
been previously applied [50,51], because it does not require strong assumptions about the form of the  
spatial autocorrelation; e.g., as would a partial correlation adjusted for the geographic coordinates. K  
nearest neighbor was chosen as the structure for spatial relationships because: (a) the number of  
neighbors for each unit is constant with this specification; (b) this specification represents the   
influence of one’s most immediate neighbors; and (c) this specification results in everyone having   
neighbors [52]. We specifically used a k nearest neighbor spatial weights matrix specification of four,  
because it has previously been suggested that a spatial weights matrix specification between four   
and six neighbors is optimal and because it is accepted that applying an under-specified (fewer   
neighbors) rather than an over-specified (extra neighbors) weights matrix is better (e.g., for increased   
power) [53,54].  

Walk Score is a composite measure. The complexities of composite measures may reduce the  
transferability for public health and planning practitioners and policymakers alike, as composite  
measures can minimize the importance of any single neighborhood walkability measure, such as street  
connectivity. However, previous research has shown that composite measures of neighborhood  
walkability are more predictive of walking than a single measure [38]. Additionally, it remains an  
empirical question whether people equally weight all destinations and if the destinations specified in  
the Walk Score® algorithm are salient to people, with varied socio-demographic characteristics such as  
gender and race/ethnicity. However, it is important to note that Walk Score does include a variety of  
desired destinations. Many of the destinations used in the Walk Score® algorithm have been found to  
predict walking [55-57]. The Walk Score algorithm does not consider the size i.e., percentage of a  
given area, of its destinations (such as parks) which may matter for physical activity and overall  
health; it also does not consider the frequency of use of destinations. As walkability is a complex  
construct, the Walk Score algorithm misses certain variables likely to influence active pedestrian  
neighborhood transportation including crime, neighborhood aesthetics, traffic, physical terrain, and  
natural walking barriers such as highways and bodies of water. Additionally, Walk Score calculations  
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are based on straight-line distances between housing units and various destinations. With a grant from  
Robert Wood Johnson Foundation’s Active Living Research Program, however, Walk Score has  
developed a beta version of “Street Smart” Walk Score, which includes features related to pedestrian  
friendliness. The “Street Smart” Walk Score takes into account walking distances, intersection density,  
and average block length when calculating Walk Scores. The Street Smart will calculate “network  
distances” rather than straight-line distances, which would improve the validity of these scores. Further  
research could address some of the limitations in this study, examining the validity of Walk Score with  
other geospatial datasets. Confirmation of these findings in other locations will be important to gaining  
a greater confidence in Walk Scores ability to measure neighborhood walkability, as a the potential for  
spatial bias in the selection and coverage of a diverse set of areas within the metropolitan areas is a  
limitation of our study and therefore our findings might not be generalizeable to other locales. Future  
Walk Score validation research is especially needed using geospatial datasets that vary in degree of  
urbanicity (including rural areas) and done recognizing the global context (including non-US based  
studies). It is not clear how transferable past and our findings are to non-US contexts. Importantly,  
future research can begin to understand the effect of neighborhood walkability derived from Walk  
Score on health and behavior (e.g., physical activity, obesity) among various populations. To date, no  
published studies that we are aware has used neighborhood walkability information captured by Walk  
Score as a predictor of health outcomes. We caution that future studies should choose outcomes that  
are relevant to the Walk Score® algorithm (such as perhaps utilitarian walking as opposed to walking   
for exercise) and perhaps used for only certain populations (such as urban adults who might walk up   
to 1-mile).  

5. Conclusions  

Walk Score, a web-based walkability assessment tool, is free and publicly available for public  
health researchers and practitioners. Results from our study suggest that Walk Score is a valid measure  
of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As  
such, our study confirms and extends the generalizability of previous findings demonstrating that Walk  
Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and  
at multiple spatial scales.  
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