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Prediction of amyloid β PET 
positivity using machine learning 
in patients with suspected cerebral 
amyloid angiopathy markers
Young Hee Jung1,2,3,8, Hyejoo Lee2,3,4,8, Hee Jin Kim2,3,4, Duk L. Na2,3,4,6,7, Hyun Jeong Han1, 
Hyemin Jang2,3,4* & Sang Won Seo2,3,4,5*

Amyloid-β(Aβ) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI 
markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying 
vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and 
appropriate treatment decisions. In this study, we applied two interpretable machine learning 
algorithms, gradient boosting machine (GBM) and random forest (RF), to predict Aβ PET positivity 
in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds 
(CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to 
predict Aβ positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off 
values of the above variables predictive of Aβ positivity were as follows: (1) the number of lobar 
CMBs > 16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes > 7.4(GBM/RF), (4) 
age > 74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances 
based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in 
RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by 
quantifying the relative importance and cutoff values of predictive variables for Aβ positivity in 
patients with suspected CAA markers.

Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease (CSVD) characterized by amyloid β (Aβ) 
deposition in leptomeningeal and cortical  vessels1,2. According to the modified Boston criteria, patients with 
multiple strictly lobar intracranial hemorrhage (ICH)/cerebral microbleeds (CMBs) or cortical superficial sidero-
sis (cSS) on brain magnetic resonance imaging (MRI) are specific for CAA pathology, which leads to a clinico-
radiological diagnosis of probable CAA 3,4.

Recently, the clinical utility of Aβ proton emission tomography (PET) in CAA patients has been widely 
 investigated5–7. Based on previous evidence, Aβ + PET scans in patients with CAA MRI markers may have clinical 
utility in two ways. First, Aβ positivity in CAA patients enables clinicians to predict the prognosis of cognitive 
trajectories. Our previous study showed that Aβ + patients with probable CAA had worse cognitive trajectories 
than their Aβ-  counterparts7. Several studies have emphasized the clinical significance of Aβ + PET scans in 
assessing cognition in neurodegenerative diseases, including  MCI8, AD, and vascular cognitive  impairment9–11. 
Second, Aβ PET positivity may provide insights into the underlying vascular pathology in patients with suspected 
CAA MRI markers; clinicians encounter patients with several lobar CMBs combined with a few deep CMBs 
who cannot be diagnosed as probable CAA based on criteria. However, these patients may have advanced CAA 
pathology, because CAA involvement propagates to deep areas in the later stage according to a pathologic  study12. 
In this population, Aβ positivity may suggest advanced CAA pathology rather than hypertensive angiopathy. This 
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is also supported by the finding of our previous study that Aβ + CAA patients had a greater burden of CAA MRI 
markers and a lower burden of hypertensive angiopathy MRI markers such as  lacunes7. We consider delineating 
the probable underlying pathology important because it enables better prognostic prediction and appropriate 
treatment  decisions13,14. Therefore, predicting Aβ positivity in patients with CAA MRI markers would be clini-
cally useful, because it could help predict prognosis.

Among prediction models, machine learning methods have been getting much attention due to high predic-
tive power and reliable performance. However, lack of the interpretability of the internal processing has become 
a major issue in machine learning research. To overcome this limitation, we chose two tree-based machine 
learning models: gradient boosting machine (GBM)15 and random forest(RF)16. These two methods can effec-
tively quantify the relative importance of variables and provide their cut-off values, which provides clinically 
meaningful insights.

Therefore, we aimed to identify the most important variables (among imaging markers and clinical charac-
teristics) and the optimal cut-off values of them (such as the number of lobar CMBs) to predict Aβ PET positiv-
ity using machine learning based models, in patients with suspected CAA MRI markers. We consider that this 
prediction model is going to help clinicians to easily select patients with poor prognosis, based on clinical and 
imaging findings only.

Results
Baseline characteristics. We recruited 71 participants, of whom 25 participants were Aβ- and remaining 
46 participants were Aβ + . Mean Age (72.1 ± 7.5 vs. 75.0 ± 6.6, p = 0.098) and female ratio (15 vs. 22%, p = 0.327) 
were not different between the two groups. However, the Aβ- group showed a tendency of a higher prevalence of 
hypertension (40 vs. 18%, p = 0.050) and a higher rate of previous stroke (16 vs 9%, p = 0.045) compared with the 
Aβ + group. As a surrogate marker of CSVD, the number of lacunes was significantly higher in the Aβ- groups 
than in the Aβ + group (9.8 ± 13.1 vs 1.7 ± 2.5, p < 0.001). In terms of CAA markers, cSS was more commonly 
found in the Aβ + than in the Aβ- group (43.5 vs. 12%, p = 0.007). Number of lobar CMBs was also higher in the 
Aβ + group than the Aβ- group (26.3 ± 33.2 vs. 62.2 ± 80.4, p = 0.037). Although the number of superficial cer-
ebellar CMBs was not different between the Aβ- and Aβ + groups (1.7 ± 4.4 vs. 1.8 ± 5.0, p = 0.994), the number of 
CMBs in cerebellar dentate nucleus was higher in the Aβ—group than in the Aβ + group (0.6 ± 1.0 vs. 0.2 ± 0.8, 
p = 0.049) (Table 1).

Important predictive variables for Aβ positivity. Among 17 clinical and imaging variables, we com-
puted relative importance using GBM and RF algorithms and selected the most important variables, which were 
similar in both models. The five important variables ranked in GBM model and their relative importance are 
as follows: the number of lobar CMBs (18.6), the number of deep CMBs (8.8), the number of lacunes (5.7), age 
(4.6), and the number of CMBs in dentate nucleus (3.1). On the other hand, RF model chose the six important 
variables as follows: the number of lobar CMBs (60.4), the number of deep CMBs (23.7), the number of lacunes 
(23.3), age (15.4), the absence of diabetes (8.4), and the number of CMBs in the dentate nucleus (6.8) (Fig. 1). 

Table 1.  Clinical characteristics of study participants. *Numbers are presented mean ± standard deviation 
or n (%). Aβ = amyloid β, CMB = cerebral microbleeds, APO E = apolipoprotein E, cSS = cortical superficial 
siderosis, ICH = intracerebral hemorrhage.

Total
N = 71

Aβ ( −)
N = 25

Aβ ( +)
N = 46 P value

Demographics

 Age 74.0 ± 7.0 72.1 ± 7.5 75.0 ± 6.6 0.098

 Female 37 (52.1) 15 (60.0) 22 (47.8) 0.327

 Education years 9.9 ± 5.4 8.6 ± 5.4 10.6 ± 5.4 0.135

 ApoE 4 28 (41.2) 6 (26.1) 22 (48.9) 0.071

 ApoE 2 10 (14.7) 2 (8.7) 8 (17.8) 0.317

 Hypertension 40 (56.3) 18 (72.0) 22 (47.8) 0.050

 Diabetes 15 (21.1) 8 (32.0) 7 (15.2) 0.098

 Dyslipidemia 20 (28.2) 10 (40.0) 10 (21.7) 0.102

 Cardiac disease 5 (7.0) 0 (0.0) 5 (10.9) 0.087

 Previous stroke 16 (22.5) 9 (36.0) 7 (15.2) 0.045

Imaging markers

 Number of lacunes 4.5 ± 8.8 9.8 ± 13.1 1.7 ± 2.5  < 0.001

 Presence of cSS 23 (32.4) 3 (12.0) 20 (43.5) 0.007

 Presence of lobar ICH 22 (31.0) 11 (44.0) 11 (23.9) 0.080

 Number of lobar CMBs 49.5 ± 69.5 26.3 ± 33.2 62.2 ± 80.4 0.037

 Number of deep CMBs 2.9 ± 6.4 4.7 ± 5.9 1.9 ± 6.5 0.075

 Number of superficial cerebellar CMBs 1.8 ± 4.7 1.7 ± 4.4 1.8 ± 5.0 0.944

 Number of CMBs in cerebellar dentate nucleus 0.3 ± 0.5 0.6 ± 1.0 0.2 ± 0.8 0.049
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After adding the lobar CMB/deep CMB ratio as a new variable, the highly ranked variables and their perfor-
mance remained almost the same as the original result. (Supplementary Table S2).

Cut-off values of predictive variables for Aβ positivity. In GBM, the threshold was determined as 
0.7043 when four metrics (F0.5, ACC, MCC, class ACC) were at their maximum values respectively. In RF, 
threshold was determined as 0.6561, when three metrics (F1, accuracy, misclassification) were at their maximum 
values, respectively.(Fig. 2) Using these thresholds obtained as above, we determined cut-off values of important 

Figure 1.  Importance plot of variables in GBM and RF models. GBM = gradient boosting model, RF = random 
forest, CMB = cerebral microbleed, cSS = cortical superficial siderosis, ICH = intracerebral hemorrhage, 
HTN = hypertension, APOE = apolipoprotein E. (A) Among 17 variables which were associated with CAA, the 
five important variables ranked in GBM model (relative importance) are as follows: the number of lobar CMBs 
(18.6), the number of deep CMBs (8.8), the number of lacunes (5.7), age (4.6), the number of CMBs in dentate 
nucleus. (3.1) (B) RF model chose the six important variables (relative importance) are as follows: the number 
of lobar CMBs (60.4), the number of deep CMBs (23.7), the number of lacunes (23.3), age (15.4), The absence of 
diabetes (8.4), and the number of CMBs in dentate nucleus (6.8).

Figure 2.  Detecting optimal threshold in multiple change points in GBM and RF models. GBM = gradient 
boosting model, ACC = accuracy, MCC = misclassification, Class ACC = class per accuracy, F1 = harmonic mean 
of the positive and negative predictive values with equal weights, F0.5 = mean of positive and negative predictive 
values, which gives more weight to PPV than to NPV. (A) In GBM method, the threshold was determined as 
0.7043, when four metrics (F0.5, ACC, MCC, class ACC) are at their maximum values, respectively. (B) In RF 
method, threshold was determined as 0.6561, when three metrics (f1, ACC, MCC) are at their maximum values, 
respectively.
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variables. Cut-off values of variables to predict Aβ positivity were as follows: (1) If the number of lobar CMB is 
more than 16.4 (GBM)/14.3 (RF), (2) If there is no deep CMBs (GBM and RF), (3) If the number of lacunes is 
more than 7.4 (GBM and RF), (4) If age is older than 74.3 (GBM) /64(RF), (5) If there is no CMBs in dentate 
nucleus (Table 2, Fig. 3).

Model performances of GBM and RF based prediction models. Both GBM and RF models showed 
good performances; MSE was 0.14 ± 0.02 in GBM and 0.18 ± 0.06 in RF. RMSE was 0.41 ± 0.08 in GBM and 
0.37 ± 0.03 in RF. Logarithmic loss was 0.47 ± 0.07 in GBM and 0.53 ± 0.17 in RF. Mean per class error was 
0.22 ± 0.06 in GBM and 0.25 ± 0.14 in RF. Gini impurity was 0.65 ± 0.09 in GBM and 0.60 ± 0.24 in RF. AUC was 
0.83 ± 0.04 in GBM and 0.80 ± 0.12 in RF. Precision-recall AUC was 0.86 ± 0.04 in GBM and 0.67 ± 0.18 in RF. 
(Table 3).

Table 2.  Cut-off values of GBM and RF models. GBM = gradient boosting model, CMB = cerebral microbleed.

GBM Random forest

Number of lobar CMBs 16.4 14.0

Number of deep CMBs 0 0

Number of lacunes 7.4 7.4

Age 74.3 63.9

Number of CMBs in dentate nucleus 0 0

Figure 3.  Cut-off values of important variables in GBM and RF models. GBM = gradient boosting machines, 
RF = random forest, CMBs = cerebral microbleeds, In PDP curve (y is threshold of metrics, and x is cut-off 
value), the optimal cut-off value was determined, when the curve passes the threshold which was obtained 
above. (A) Cut-off values of variables to predict Aβ positivity in GBM were as follows: (1) If the number of lobar 
CMB is more than 16.4, (2) if there is no deep CMBs, (3) if the number of lacunes is more than 7.4, (4) if age is 
older than 74.3 (GBM), (5) if there is no CMBs in dentate nucleus. (B) Cut-off values of variables to predict Aβ 
positivity in RF were as follows: (1) If the number of lobar CMB is more than 14.3 , (2) if there is no deep CMBs, 
(3) if the number of lacunes is more than 7.4, (4) if age is older than 64, (5) if there is no CMBs in dentate 
nucleus.
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Discussion
In present study, we developed machine-learning based models to predict Aβ positivity on PET in patients with 
suspected CAA markers. Our first major finding was that GBM and RF algorithms consistently ranked anatomical 
distribution of CMBs, age, the number of lacunes as the most important variables for predicting Aβ PET positiv-
ity. Our second major finding was the suggested cut-off values of these important variables (particularly, lobar 
CMBs higher than at least 14 and lacune number less than 7.4) predicting Aβ PET positivity. Finally, both mod-
els showed good performances, but GBM-based model performance was slightly better than RF-based model.

The first major finding was that both machine learning methods consistently ranked the number of lobar 
CMBs, deep CMBs, lacunes, and dentate nucleus CMBs, and age as the most important variables for prediction 
of Aβ PET positivity. Besides, the ranked orders of variables were similar in two models, although the value of 
relative importance was slightly different. Among selected variables, topographic location of CMBs (high number 
of lobar CMBs and absence of deep CMBs) and old age are well-known CAA predicting features according to 
the modified Boston Criteria. Therefore, it is reasonable that these factors could also predict Aβ PET positivity. 
However, the presence of cSS, which is considered as one of the important imaging parameters of CAA, was not 
highly ranked in our models. Considering that the prevalence of cSS was significantly higher in the Aβ + group 
than Aβ- group in our study, cSS seems to be associated with Aβ positivity, which is also consistent with previous 
 study17. Nevertheless, cSS could be a less important predicative variable than topographic distribution of CMBs, 
number of lacunes, and age, when the model is made by the combination of various features in the memory clinic, 
which might be attributed to small number of patients having cSS in this clinical circumstance.

The second major findings were the cut-off values of important variables to predict Aβ positivity. First, both 
machine learning-based models showed that no CMB in deep structures and cerebellar dentate nucleus was 
predictive of Aβ positivity. We consider that our study finding supports the modified Boston criteria in which 
the presence of deep CMBs is exclusion criteria for probable CAA, even when number of lobar CMBs outweighs 
that of deep CMBs as in our cases; If these cases were advanced CAA as we hypothesized, presence of deep 
CMBs might not lower the possibility of Aβ positivity. This is along the same line with cerebellar dentate nucleus 
involvement. As equivalents of deep CMBs, CMBs in cerebellar dentate nucleus are likely due to hypertensive 
angiopathy as reported in recent  studies18,19. Our prediction models suggested optimal cut-off values of lobar 
CMBs predicting Aβ positivity as 16.4 (GBM) or 14.3 (RF). Although, the modified Boston Criteria proposed 
that at least 2 lobar hemorrhages were enough to be diagnosed with probable CAA, some might argue that only 
two lobar CMBs could be found incidentally without CAA pathology. In addition, the previous study including 
patients with only CMBs reported that higher CMB counts increased specificity for predicting CAA 20. This sug-
gests the additional possibility that likelihood of CAA increases in a proportional relationship with CMBs number 
rather than a sharp threshold at ≥ 2  CMBs20. From this perspective, the cut-off of lobar CMBs (particularly in the 
absence of symptomatic lobar ICHs) for predicting Aβ positivity must be higher than two considering that Aβ 
positivity may relate to advanced CAA pathology. Therefore, machine learning methods derived cut-off values 
of lobar CMBs could be usefully applied to predict Aβ positivity, which is associated with CAA pathology and 
poor clinical prognosis in patients with only multiple CMBs even in the absence of symptomatic lobar ICHs.

Other noteworthy findings were the cut-off values of age and lacunes; The age cut-off for predict Aβ positivity 
were 74.3 (GBM) and 63.9 (RF), which were older than 55 years as presented in the modified Boston criteria. 
Although minimum age at CAA could develop is 55 years old according to the suggested criteria, this result 
shows that an older age increases the possibility of Aβ positivity in patients with CAA MRI markers. Finally, both 
prediction models showed that the number of lacunes lower than 7.4 was predictive of Aβ positivity. We consider 
that lacunes were considered as surrogate marker of hypertensive angiopathy rather than CAA. Therefore, when 
patients have mixed deep and lobar CMBs, the number of lacunes higher than 7.4 is almost always suggestive of 
hypertensive angiopathy, which is more likely to have negative Aβ PET scans. Nevertheless, the cut-off value of 
7.4 was higher than expectation, which we considered was because FLAIR image with axial thickness of 2 mm 
(which is fivefold thinner than usual thickness of 10 mm) enabled sensitive counting of lacunes in study patients.

The final major finding was that both machine learning-based models showed good performance with higher 
than 80% of predictive accuracy, although GBM was slightly better than RF. We selected GBM and RF for the 
following reasons. First, previous large-scale studies have consistently suggested GBM and RF as robust ML 
 algorithms21–23. Second, the generalizability may be ensured by comparing two methods with complementary 
methodological backgrounds. For example, although GBM performed better than RF on the skewed data, it 

Table 3.  The performance of GBM and RF models. *Lower values of mean square error, root mean square 
error, logarithmic loss, mean per class error, and gini impurity means better prediction power, and lower SD 
means higher reliability. GBM = gradient boosting model; SD = standard deviation.

Performance measures (mean ± SD*) GBM Random forest

Mean square error 0.14 ± 0.02 0.18 ± 0.06

Root mean square error 0.37 ± 0.03 0.41 ± 0.08

Logarithmic loss 0.47 ± 0.07 0.53 ± 0.17

Mean per class error 0.22 ± 0.06 0.25 ± 0.14

Gini impurity 0.65 ± 0.09 0.60 ± 0.24

Area under curve 0.83 ± 0.04 0.80 ± 0.12

Precision-recall area under curve 0.86 ± 0.04 0.67 ± 0.18
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could provide misleading outcomes from the noisy data and vice versa. Third, for more reliable predictions, we 
selected tree-based ML models and compared their interpretable predictions. Tree-based models provide the 
same interpretable methods such as relative importance and PDP. Variable importance determines the features 
that influence accurate  classification24. Besides, PDP can estimate whether the variables had a positive or negative 
effect on the prediction using a marginal distribution. Thus, the intersection between the negative and positive 
PDPs provides cut-off values of the variables. In this study, GBM and RF showed similar interpretable results.

Especially, the importance of topographic distribution was reconfirmed by our machine learning methods. 
Particularly, new cut-off values of lobar CMBs and age in present study could be used as a supportive measure to 
predict Aβ positivity in patients with CAA MRI markers. Furthermore, the diagnosis of patients with many lobar 
CMBs combined with a few deep CMBs has been unclear. However, these models enable us to distinguish Aβ 
pathology from hypertensive angiopathy in this population by predicting Aβ positivity. We can also predict Aβ 
positivity using clinical information and MR imaging, which is less expensive and more readily available. Meth-
odologically, the cut-off values have conventionally obtained, using receiver operating characteristic curve with 
only two metrics, sensitivity, and specificity. However, in this study, we obtained cut-off values using five metrics, 
which enabled higher dimensional analyses and consequently better accuracy than the conventional approach.

Our study has its strength in two machine learning based models (GBM and RF) which showed consistent 
and reliable results with good performances, although they independently select important variables and rank the 
important variables in supervised ways. We acknowledge some limitations of this study. There may exist concern 
about the overfitting problem in training models with a relatively small number of data samples. In addition, the 
cutoff values for variables such as age could have been biased due to the small sample size although we considered 
that the demographic data and the imaging features of this study population were reflective of the characteristics 
of patients with CAA markers who visited memory clinics. Therefore, future studies are required to develop more 
generalizable models with a possible external dataset. Also, we used Aβ positivity on PET instead of a pathologic 
confirmation. Nevertheless, prediction for Aβ positivity would be useful for clinicians to understand their clinical 
courses, based on clinical significance of Aβ PET positivity in CAA  patients7. Finally, we used three different Aβ 
PET ligands in this study. However, this limitation may have been overcome, as previous studies demonstrated 
that three different PET uptakes are highly correlated with each  other25–27.

In conclusion, we developed two reliable machine learning-based models to predict Aβ positivity in 71 
patients with suspected CAA MRI markers using various clinical and imaging features, and they suggested useful 
clinical cut-offs for predictive variables. These models may help clinician to predict prognosis of patients with 
suspected CAA markers and to make stratified enrollment in clinical trials, by predicting Aβ PET positivity.

Methods
Participants. We included all 2333 patients who visited our memory clinic (Samsung Medical Center, 
Korea), complaining of cognitive impairment and underwent Aβ PET from September 2008 to June 2018. We 
scrutinized Brain MRI of all patients, and recruited patients who met the following criteria that we developed 
in this study: (1) If patients have at least one lobar ICH or cSS, only one lobar CMB is enough for them to be 
included; (2) If patients do not have either lobar ICH or cSS, 10 or more lobar CMBs are required for them to be 
included; (3) If patients have both lobar and deep CMBs, the number of lobar CMBs should be higher than that 
of deep CMBs. Therefore, we finally included 71 patients (26 PiB PET, 43 florbetaben PET, 2 flutemetamol PET) 
whom we refer to as “patients with suspected CAA markers” in this study.

We excluded patients with the presence of secondary causes of cognitive deficit (e.g. vitamin B12/folate, 
syphilis serology, and/or thyroid dysfunction), or structural lesion except for lobar ICH (e.g. territorial cerebral 
infarctions and brain tumors), or with psychiatric illness such as schizophrenia.

The Institutional Review Board of Samsung Medical Center approved the study protocol and informed con-
sent was obtained from all subjects or, if subjects are under 18, from a parent and/or legal guardian.. This manu-
script does not contain information or image that can lead to identification of a study participant. The methods 
were carried out in accordance with the approved guidelines.

MR image acquisition. All participants underwent brain MRI including T2* GRE and fluid attenuated 
inversion recovery (FLAIR). The following parameters were used for the T2* GRE images: axial slice thickness, 
5.0 mm; inter-slice thickness, 2 mm; repetition time (TR), 669 ms; echo time (TE) 16 ms; flip angle, 18°; matrix 
size, 560 × 560 pixels. The following parameters were used for the 3D FLAIR images: axial slice thickness of 
2 mm; no gap; repetition time of 11 000 ms; echo time of 125 ms; flip angle of 90°; and matrix size of 512 × 512 
pixels.

Assessment of CMB, cSS, lobar ICH and lacunes on MRI. Imaging analysis was carried out by indi-
viduals who were trained in neuroimaging rating and blinded to the participant clinical details. All structural 
imaging markers of CSVD were rated in accordance with consensus  guidelines28,29. Lobar CMBs were defined 
as homogenous and round lesions with signal loss (≤ 10 mm in diameter) on T2* GRE images, with location in 
exclusively lobar (cortex, gray-white matter junction, subcortical white matter) areas. Deep CMBs were defined 
as CMB in basal ganglia gray matter, internal and external capsules, and thalamus, according to brain observer 
microbleed scale (BOMBS)30.Infratentorial CMBs were also classified as deep CMBs. Cerebellar CMBs were 
separately counted and classified into dentate nucleus and superficial cerebellar  CMBs18. cSS was defined as 
linear hypointensities on T2* GRE images consistent with chronic blood residues in the superficial layers of the 
cerebral  cortex31. Lacunes were identified and counted in accordance with STRIVE (STandards for ReportIng 
Vascular changes on nEuroimaging)28.
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Aβ PET imaging acquisition. The mean value of MRI-Aβ PET interval was 8.8 ± 9.8 months. All patients 
underwent Aβ PET using a Discovery STe PET/CT scanner (GE Medical Systems, Milwaukee, WI) in a 3D 
scanning mode that examined 47 slices of 3.3 mm thickness spanning the entire brain. A 16-slice helical CT 
(140 keV, 80 mA; 3.75 mm section width) was performed for attenuation correction. For 11C-PiB PET, a 30-min 
emission static PET scan was performed 60 min after injection into an antecubital vein as a bolus of a mean dose 
of 420 MBq. For 18F-Florbetaben PET, a 20-min emission PET scan with dynamic mode (consisting of 4 × 5 min 
frames) was performed 90 min after injection into an antecubital vein as a bolus of a mean dose of 381 MBq. 
For flutemetamol, 20-min emission static PET scan with dynamic mode (consisting of 4 × 5 min frames) was 
performed 90-min after injection into an antecubital vein as a bolus of a mean dose of 185 MBq.

Aβ PET image preprocessing and definition for Aβ positivity. Both MR and Aβ PET images were 
co-registered with each other using the rigid-body transformation. The T1-weighted MR image of each subject 
was aligned with the MNI-152 template using a non-linear deformation including translation, rotation, scal-
ing and shearing. After standard space registration, we divided grey matter into 116 regions using the Auto-
mated Anatomical Labeling  atlas32. In order to compute standardized uptake value ratios (SUVR) for PiB and 
 florbetaben33, every voxel intensity was normalized by the mean intensity of cerebellum regions. For flutemeta-
mol PET, we computed SUVR by the mean intensity of pons regions as reference value. We defined Aβ positivity 
on each PET as follows: (1) If global PiB SUVR (assessed from the volume-weighted average SUVR of 28 bilat-
eral cerebral cortical VOIs) was greater than 1.5, (2) If visual rating score on florbetaben PET was 2 or 3 on the 
brain Aβ plaque load (BAPL) scoring  system34, or (3) If any one of the brain regions systematically reviewed for 
18F-flutemetamol PET was positive in either  hemisphere34.

Statistical analysis. We compared the demographic and clinical characteristics between the Aβ+ and Aβ− 
groups using Student t-tests for continuous variables and chi-square test for dichotomous variables. Statistical 
analyses were performed using R version 3.5.0.

Potential variables for predicting Aβ positivity. We included all clinical and imaging characteristics as 
potential variables in model development: gender, education year, vascular risk factors (dyslipidemia, diabetes, 
cardiac disease, previous stroke, and hypertension), apolipoprotein E (APOE) genotype, number of CMBs in 
each location (number of lobar CMBs, deep CMBs, dentate nucleus CMBs, and superficial cerebellar CMBs), 
presence of lobar ICH and cSS, and number of lacunes.

For sensitivity analysis, we performed the same analysis with the lobar CMB/deep CMB ratio as an additional 
variable. If the number of deep CMBs was zero, we used the number of lobar CMBs instead of the lobar CMB/
deep CMB ratio.

Model generation for classifying Aβ positivity. Among the tree-based ML models, we selected GBM 
and RF. GBM generates accurate classifiers using linear combinations of the base classifiers adjusted by their 
weights iteratively. The PDP approach was originally introduced by J.H. Friedman in the GBM  paper15. RF cre-
ates multiple decision trees using bootstrap samples and the binning of outliers. RF aggregates their decisions 
by averaging or majority  voting35. GBM and RF analysis were carried out using different combinations of hyper-
parameter settings and varying search criteria in randomly selected trials. In grid search process, the advanced 
computing power enabled searching the entire hyperparameter space.

Twenty repetitions of tenfold cross-validation (CV) were conducted in order to select the optimal  solution36. 
K-fold CV is to divide the data set into non-overlapping k equal partitions. Each data partition is then used as 
the validation set and the remaining K-1 partitions are used as a training set. We selected K = 10 as an empirically 
ideal situation of 10 training sets and 10 validation  sets37. Under the CV procedure, the generalization of predic-
tive power and validation errors were computed. The best parameter setting corresponding to the minimal error 
obtained by CV, was then applied to train the model using a train set and a validation set, which were 70% and 
15% of the entire data set respectively. Remaining 15% data set was used as a test set, and their performance was 
estimated. The whole process was repeated over 20 times in order to evaluate reliable classifier performances.

Although we selected GBM and RF in this study, we compared the performance of other ML methods such 
as logistic  regression38 ,k-nearest neighbors (KNN)39, and support vector machine (SVM)40. Further details on 
the classifiers are provided in Supplementary Method 1. For a fair comparison, the same CV data partitions 
were used across all the ML models, and performance was estimated using the arithmetic means of the outcome. 
Supplementary Table S1 and Supplementary Method 2 provide the details on model performance and additional 
performance measures, respectively.

Interpretable machine learning. For each analysis, the extent to which the variables influenced the accu-
racy of classification was quantified by calculating the relative variable  importance41. In the tree-based model 
such as GBM and RF, when the variable split the tree, relative importance value of that variable was estimated by 
discrepancy of the squared error loss over all tree. A higher relative importance value indicates greater influence 
of the variable in classifying Aβ positivity.

Optimal threshold was estimated in terms of F1 score, F0.5 score, accuracy, misclassification and class accu-
racy which are widely recommended for classification  tasks42.

The cut-off values of the important, numerical variables were determined by partial dependence plot (PDP) 
which is a graphical representation tool describing the relationship between target feature and input features 
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resulting by importance variables. Let x be the space of input variables consisting of a chosen subset space and 
its complemental space,

Then the approximation F̂(x) depend on both subset space.

In PDP curve (y is threshold of metrics, and x is cut-off value), the optimal cut-off value was determined, when 
the curve passes the threshold which was obtained above.

Assessment of model performance. To assess model performance of prediction model, we used six 
measures as follows: mean square error (MSE), root mean square error (RMSE), logarithmic loss, mean per class 
error, area under curve, precision-recall area under curve (AUC), gini impurity. We computed the mean values 
of each measure after 20 iterations.

The MSE of estimator (of a procedure for estimating an unobserved quantity) measures the average of the 
square of the error- that is, the average squared difference between the estimated values and the actual value. 
The less MSE means better prediction. The tracking task was scored by calculating the RMSE between the 
target and response  signals43. Logarithmic loss (related to cross-entropy) increases as the predicted probability 
diverges from the actual label. Mean Per Class Error is the average of the errors of each class in multi-class data 
set, which measures misclassification of the data across the classes. AUC is used to evaluate how well a binary 
classification model can distinguish true positives from false positives. Precision-Recall curves summarize the 
trade-off between the true positive rate and the positive predictive value for a predictive model using different 
probability thresholds especially for imbalanced dataset. Gini impurity is a measure of how often a randomly 
chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribu-
tion of labels in the subset.

Data availability
The data sets generated or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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