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Abstract: A new type of quasi-distributed sensor system is implemented using an active mode
locking (AML) laser cavity with multiple partially reflecting segments. The mode locking frequency
of the AML laser is linearly proportional to the overall lasing cavity length. To implement multiple
resonators having multiple reflection points installed in a sensing fiber, two types of partial reflectors
(PRs) are implemented for an in-line configuration, one with fiber Bragg grating and the other
with a fiber Fabry–Perot interferometer. Since the laser has oscillated only when the modulation
frequencies for the mode locking frequency match with the corresponding resonator lengths, it is
possible to read the multiple partially reflecting segments along the sensing fiber. The difference
between two corresponding mode locking frequencies is changing proportionally with the segment
length variation between two PRs upon strain application. The segment length change caused by the
applied strain can be successfully measured with a linear sensitivity between mode locking frequency
and displacement, linearity over 0.99, and spatial position resolution below meter order.

Keywords: mode-locked lasers; quasi-distributed sensor; fiber Bragg gratings; Fabry–Perot interferometer

1. Introduction

Fiber optic sensors have been extensively studied for several decades as an alternative to
existing sensor systems. The optical fiber sensor is excellent in terms of corrosion resistance without
electromagnetic interference and operation under high temperature or high pressures environments.
It also has a small weight, making it advantageous in broad-band and long-distance measurement
applications. A point-based sensor along the optical fiber is one of the most popular choices for optical
fiber sensors with various advantages [1–3]. For example, a series of discrete fiber Bragg grating (FBG)
sensing heads can measure the change of the center reflection wavelength of the FBG to detect an
external variation applied to the FBG [4–9]. Interferometer sensing heads can also measure interference
pattern changes due to external environment changes using an interference structure, such as a
Fabry–Perot interferometer (FPI), Michelson interferometer, and Mach–Zehnder interferometer [10–17].
The small length of point-based sensing heads using an FBG sensor or interferometer sensor offers a
high position resolution along optical fiber in addition to the advantages of high sensitivity, geometric
diversity, and rapid response [18]. The discrete sensing position along the optical fiber is determined
by the separated locations of multiple sensing heads. This implies that the optical fiber segments
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between discrete sensing heads are not used for a sensing component, but only for the simple signal
transmission medium. The point-based sensors suffer from an extra cost of each sensing heads and
limited number of discrete sensing positions. The fabrication process of sensing heads can be simplified
when sensing components are based on optical fiber [11].

In order to overcome the limitations of the point-based sensor, including the absence of sensing
head zones along the optical fiber, distributed fiber sensors have been proposed to simultaneously
measure at thousands of sensing positions using a normal unmodified optical fiber as the sensing
component with a low cost. Optical frequency-domain reflectometer (OFDR) and optical time-domain
reflectometer (OTDR) sensors can continuously measure an external variation along the optical fiber
by measuring the back-scattering of light due to Rayleigh, Brillouin, or Raman phenomena in the
optical fiber and partial reflector (PR) [1,2,19–21]. Studies on such distributed fiber sensors have
been actively conducted on various distributed sensing technologies such as Brillouin optical time
domain analysis (BOTDA), Brillouin optical time domain reflectometer (BOTDR) and Rayleigh OFDR.
Both BOTDR and BOTDA have sensing resolutions in meters over long distances of several tens
kilometers [1,22,23], but Rayleigh OFDR has sensing resolution in millimeters at shorter distances over
tens meters [1,24]. These distributed fiber sensors have been recently being studied to continuously
increase the measurement distance and sensing resolution.

In this study, we propose a new type of quasi-distributed sensor system to interrogate the
enhanced back-reflected signals from cascaded multiple partially reflecting segment sensors in the
active-mode-locking (AML) laser cavity configuration. An FBG or fiber FPI was used as a series of PRs
along the optical fiber to enhance the back-reflection signal at specific locations and to suppress the
natural back-scattering of Rayleigh light in the normal optical fiber. Unlike conventional point-based
sensors, the resonant-wavelength information of the FBG or interference pattern of the fiber FPI are
not critical parameters for the utilization of the PR in this system. For example, the available sensing
point number of FBG in a single fiber is limited below 20 from the ratio between the total wavelength
band of light source and individual wavelength band of each FBG [1–9]. Instead, the controllable split
ratio between back-reflected and transmitted signal intensities is more important parameter of PR for
the sensing point number limit of proposed reflectometry because the limit is determined from the
intensity reduction of each additional lasing peak. The precise length tuning of multiple optical fiber
segments between these PRs is interrogated based on the mode locking frequency of the AML laser,
corresponding to the total cavity length produced by each PR. The AML laser oscillates at the specific
modulation frequency that matches to the mode locking frequency of cavity length. It means there
can be multiple mode locking frequencies corresponding to the multiple cavity lengths, respectively.
Thus, it is possible to read the lengths of multiple partially reflecting segments along the sensing
fiber by using the mode locking frequency of the AML laser [25]. By monitoring the AML output
intensity with the scanning of the modulation frequency, the external variation applied to the optical
fiber segment between the PRs can be measured by the linear shift of the mode locking frequency.
Therefore, the measurable length range of the sensing area is determined by the numbers of PRs in
the cavity, the fiber segment between the PRs and the free spectral range (FSR). The available sensing
number of PRs is determined by the reflectivity of the PR, and the fiber segment between the PRs is
affected by the linewidth and FSR of mode locking frequency. For characteristics for the strain sensor,
linear responses of the strain were experimentally analyzed using three FBG-type PRs and four fiber
FPI-type PRs, respectively. It was successfully demonstrated that the AML fiber laser interrogation has
a unique quasi-distributed sensing performance with enough linearity and sensitivity, compared with
the conventional point-based sensor interrogation methods for FBG and fiber FPI sensors.

2. Theory of AML Laser Interrogation

In order to measure the precise length change of multiple optical fiber segments between PRs,
the AML laser principle is applied to the multiple fiber cavity configuration corresponding to multiple
mode locking frequencies. As an external modulation frequency applies to the gain element, the AML
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peak laser output is generated only when the round trip time of light passing through the laser
cavity exactly matches (or an integer multiple of) the period of the modulated frequency. At this
time, the length change of laser cavity affects the round trip time of light and thus the mode locking
frequency is also affected from the change of round trip time of light. This means that the cavity
length can be directly detected by measuring the intensity variation of AML laser output. Therefore,
the changes in cavity length due to external changes, such as temperature and deformation, can be
observed by scanning the modulation frequency.

The multiple partially reflecting segment sensors are formed by the multiple AML laser cavities
with cascaded multiple PRs. The optimal mode locking frequency corresponding to each total cavity
length can be calculated using:

fm =
N × c

n × Lcavity

(
Lcavity = Lmain + 2Lsegment

)
(1)

where fm is the mode locking frequency, N is the order of harmonic mode locking, Lcavity is the total
cavity length, Lmain is the main cavity length including the ring cavity fiber and sensing fiber part up to
PR1, Lsegment is the segment length, which is the spacing between adjacent PRs, c is the speed of light,
and n is the effective group refractive index. According to Equation (1), the change of Lcavity can be
directly obtained by measuring the change of fm. For a smaller total cavity length of the AML laser
system, a larger value of fm can be used to induce a wider variation of fm for the same total-cavity-length
change. The sensing speed is determined by the sweeping rate of the AML laser, which is directly
related with the repetition rate of the function generator and data acquisition (DAQ) speed. Depending
on the multiple total cavity lengths, the modulation of the total cavity gain can be implemented by
the optimal modulation frequency sweeping range of the sinusoidal driving current into the SOA.
For a higher mode locking frequency range, an in-line electro-optic filter can be also used for the
application of the modulation frequency into the laser cavity including a turned-on SOA with a
constant driving current.

Figure 1 shows the schematic of a quasi-distributed AML laser interrogation system using multiple
partially reflecting segment sensors. Both FBG-type and fiber FPI-type PRs are employed for an
enhanced back-reflected signal at specific separated positions between cascaded optical fiber segment
sensors. Light reflected from long optical fiber parts, including cascaded segment sensors through a
3-port circulator, enters the ring cavity consisting of 70% of the 70/30 coupler and the semiconductor
optical amplifier (SOA). The 30% port on the 70/30 coupler is used as the laser output port in Figure 1.
Stage A and Stage B in Figure 1 change the segment length by applying strain between the PRs.
The segment length change of the multiple segment sensors between PRs can be observed by the
scanning of the modulation frequency into the AML laser. The combination of a function generator
and direct-current (DC) supply is used to sweep the modulation frequency. A periodic driving current
into the SOA is optimally controlled with the swept modulation-frequency signal with proper biasing
with a bias-tee. During the modulation-frequency sweeping, the intensity of the laser output collected
by the photodetector is simultaneously measured to detect the multiple peaks corresponding to the
mode-locking conditions. Central control with a computer is performed to synchronize the sweeping
period between the modulation frequency and intensity and interrogate for the sensor monitoring.
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Figure 1. Schematic of a quasi-distributed AML laser interrogation system using multiple partially
reflecting segment sensors.

3. Characterization of the PR

Multiple AML laser cavities along the optical fiber out of the circulator are separated by the
cascaded multiple PRs, which are implemented in this study using two types of PRs (FBG and fiber
FPI). Conventionally, both FBG and fiber FPI have been extensively utilized as an optical fiber sensing
head using their spectral characteristics in the wavelength domain. However, in this study, they are
utilized only as wavelength-independent PRs by controlling their split ratio between back-reflected and
transmitted signal intensities. In this proposed quasi-distributed interrogation system, the large-length
optical fiber segments are affected by external environment changes, instead of point-based PRs
between these segments.

3.1. FBG-Type PR

In general, the principle of Bragg reflection is the basic mechanism of the back-reflected signal for
the FBG sensing head. The center reflection wavelength and its reflectivity can be precisely controlled
according to the design parameters of the refractive-index variation in the optical fiber core and creation
of a one-dimensional periodic structure using an intense ultraviolet (UV) beam. The center reflection
wavelength of the FBG is directly related with the period spacing. When temperature or strain cause
an external change of the FBG lattice spacing, this change can be linearly monitored through the
center-wavelength change of the reflection spectrum. For cascaded multiple FBGs as a point-based
sensor system, the conventional FBG interrogation methods based on the wavelength-domain
information required a strong, narrow, and non-overlapped reflection spectrum of the FBG [9].
This implies that the strong and narrow reflection of the FBG requires a high power and long time for
the UV beam, and the non-overlapped reflection of the FBG spectra requires a complex fabrication
process with differentiated periodic refractive index structures.

However, for the proposed AML laser interrogation system, the FBG does not work as a
point-based sensing head, but rather serves as just a point PR for quasi-distributed large-length
optical fiber segment sensors. This implies that an FBG having a weak, broad, and overlapped
reflection spectrum can be useful as a PR successfully if it provides a relatively higher back-reflected
signal from a specific location compared to the Rayleigh back-scattering signal from elsewhere.
This identical-wavelength and weak-reflection FBG array has a few advantages including a lower
power and short time of UV fabrication, fixed grating period, and low manufacturing cost. It is also
expected to produce identical-wavelength and weak-reflection FBGs more easily during the drawing
process of optical fiber considering the UV pulse energy and drawing speed.

We employed identical-wavelength and weak-reflection FBGs, which has a center reflection
wavelength of 1312.5 nm and reflectivity of 5.6%. As shown in Figure 2 with the reflection and
transmission spectra, the transmission loss of the FBG used in the experiment was measured to be
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about 0.3 dB. The resulting small transmission loss at 1312.5 nm is helpful to cascade the series of
many identical FBGs to increase the measurable length range along the sensing fiber part. Therefore,
the FBG PRs in this AML laser interrogation system could overcome the limitations on the available
number of cascaded sensing parts and measurable distance of conventional FBG sensor system.
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Figure 2. Reflection and transmission spectra of FBG.

3.2. Fiber FPI-Type PR

The PR for the AML laser interrogation system can be also implemented with a fiber FPI structure
as it is required to induce a controllable split ratio between back-reflected and transmitted signal
intensities without considering the wavelength spectral information. Conventional point-based FPI
sensing heads have measured the shift of the interference fringe pattern of the inner FPI cavity due to
the external change. Therefore, wavelength-domain interrogation is required for the monitoring of the
interference change, and a highly sensitive receiver is required to detect the small back-reflected signal.
In this study, a fiber FPI-type PR could be used to easily detect the location change of the back-reflected
signal, instead of the challenging detection of the interference fringe pattern change.

Figure 3 shows a schematic of the fiber FPI structure. The ends of the two optical fibers were cut
at 90◦; ∆S is the spacing between the two cutting surfaces, and the cutting surface is fixed to the tube
at various ∆S. On each cut plane, reflections R1 and R2 occur owing to the refractive-index difference
between the glass and air. As R1 and R2 interfere with each other owing to the path difference of
the inner FPI cavity, interference fringes are generated depending on ∆S for both back-reflected and
transmitted signal spectra.
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Figure 4 shows measurement results of interference fringes depending on ∆S for both reflection
and transmission spectra. The interference pattern is dependent on the increment of the interval ∆S.
The conventional wavelength-domain interrogation method measures interferograms to measure
changes in ∆S due to the external environment.
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transmission spectra.

Therefore, in this study, we focused on the intensity change of the reflected light according to
the increment of ∆S, instead of counting the number of interference pattern fringes in the wavelength
domain. The intensity of the reflected signal is directly affected by ∆S; it can be described by
Equation (2) [10]. The total reflected signal in the fiber FPI PR is a superposition of two reflected
signals, expressed by Equation (2):

I = A2

[
1 +

(
2ta

a + 2∆S tan(sin−1(NA))

)
cos
(

4π∆S
λ

)
+

(
ta

a + 2∆S tan(sin−1(NA))

)2
]

(2)

where a is the fiber core radius, t is the transmission coefficient of air–glass of approximately 0.98, ∆S is
the spacing between fibers, and NA is the numerical aperture of the fiber.

If the constants are substituted in Equation (2), the intensity of the reflectance corresponding to a
specific ∆S can be calculated for each condition.

Figure 5a–e show FPI reflection spectrum according to ∆S and Figure 5f Graph of the relationship
between ∆S and wavenumber variation ∆k. The ∆S was measured while varying the range of
20–100 µm (one step at 20 µm). In the graph of Figure 5f, the linearity of ∆S and ∆k is more than 0.999.



Sensors 2018, 18, 4128 7 of 16
Sensors 2018, 18, x FOR PEER REVIEW  7 of 16 

 

 

Figure 5. (a–e) FPI reflection spectrum according to ΔS, (f) Relationship between ΔS and wavenumber 
variation Δk. 

Figure 6 shows experimental measurements of intensity variation of reflected and transmitted 
light according to ΔS of optical fiber FPI using the amplified spontaneous emission (ASE) of SOA 
with the center wavelength of 1310 nm. Both transmitted and reflected light intensities are affected 
to oscillate to maintain the mutual intensity total summation upon the change of ΔS. When ΔS 
becomes larger than a certain distance, the transmitted light intensity rapidly decreases; however, the 
reflected light intensity converges to a certain value for a constant reflected signal from the R1 surface. 
Figure 6 shows that the reflected light intensity is distributed in the range of 0–13%, which implies 
that a desired reflected signal can be inexpensively implemented by precisely changing ΔS with 
normal optical fibers. We fabricated an FPI structure with reflectivity between 7–9% and used it in 
the experiment.  
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Figure 6 shows experimental measurements of intensity variation of reflected and transmitted
light according to ∆S of optical fiber FPI using the amplified spontaneous emission (ASE) of SOA
with the center wavelength of 1310 nm. Both transmitted and reflected light intensities are affected to
oscillate to maintain the mutual intensity total summation upon the change of ∆S. When ∆S becomes
larger than a certain distance, the transmitted light intensity rapidly decreases; however, the reflected
light intensity converges to a certain value for a constant reflected signal from the R1 surface. Figure 6
shows that the reflected light intensity is distributed in the range of 0–13%, which implies that a desired
reflected signal can be inexpensively implemented by precisely changing ∆S with normal optical fibers.
We fabricated an FPI structure with reflectivity between 7–9% and used it in the experiment.
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4. Interrogation of the Multiple Segment Sensor

4.1. FBG-Type Partially Reflecting Segment Sensors

Two types of PRs were used to construct the AML laser interrogation system to demonstrate the
feasibility of the quasi-distributed large-length optical fiber segment sensors. First, three FBG-type
PRs were used to obtain two segments of quasi-distributed optical fiber sensors between these three
positions. As shown in Figure 1, the AML laser cavity oscillates at the mode locking frequency
corresponding to each FBG-type PR (PR1, PR2, and PR3). This implies that two segments, PR1–PR2
and PR2–PR3, can be used to obtain an external strain force in the distribution. The monitoring of the
peak intensity time during synchronized and repeated scanning of the modulation frequency period is
a simple method to reveal the position changes of PR1, PR2, and PR3 and changes of the PR1–PR2 and
PR2–PR3 segment lengths.

Figure 7 shows the experimental results for the peak intensity monitoring by sweeping the
modulation frequency when an external strain is applied to the PR2–PR3 segment (Stage B in Figure 1).
Since the main cavity length, including the ring cavity and sensing part up to PR1, is 16.657 m up to
PR1, it corresponds to a mode locking frequency of PR1 is 12.2712 MHz. The mode locking frequencies
of PR2 and PR3 are also measured to be 9.8751 and 6.8128 MHz, respectively. It means that the
segment length between PR1 and PR2 is 2.021 m, and that between PR2 and PR3 is 4.652 m. Two fiber
holders are attached on the sensing piece with a length of 0.75 m in the center region of the PR2–PR3
segment; this sensing piece is stretched from 0 to 1.4 mm with step increments of 0.2 mm. The stretched
sensing piece length of 1.4 mm corresponds to the applied strain of 1867 µε. Figure 7a shows the AML
intensity distribution of initial mode locking frequencies before applying strain. Each peak time for
the corresponding mode locking frequency matches well with the numerical expectation based on the
total cavity length. Figure 7b,c show a dB scale spectrum along modulation frequency domain to show
signal to noise ratio (SNR) and a linear scale spectrum along cavity length domain to show the distance
linewidth, respectively. Most of three peaks have a high SNRs of 54 dB or more and narrow distance
linewidths of 13.381, 10.149 and 4.604 cm, corresponding to PR1, PR2 and PR3 peaks, respectively.
Because the distance linewidth determines the minimum spacing of the PR segments to distinguish
the neighbor peaks during sweeping the modulation frequency, the minimum spacing distance of the
PR segments corresponds to the spatial resolution of the given quasi distributed sensor. Therefore,
there is requirement that the minimum distance between the PR segments of the experiment set up is
11.765 cm for the PR1–PR2 segment and 7.377 cm for the PR2–PR3 segment, respectively.
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Figure 7. (a) The modulation frequency spectrum of PR1, PR2, and PR3 at the initial stage before the
strain applies. (b) dB scale spectrum along modulation frequency domain to show signal to noise ratio.
(c) linear scale spectrum along cavity length domain to show the distance linewidth. (d–f) modulation
frequency spectra of PR1, PR2, and PR3, respectively, according to the change of the PR2–PR3 segment
length (stage B in Figure 1).

Figure 7d,e show the modulation frequency spectrum of PR1 and PR2, respectively, which did not
change within a negligible measurement error as the length of the PR1–PR2 segment did not change.
Figure 7f shows the spectral change of PR3 along modulation frequency domain when the segment
length increases from 0 to 1.4 mm.

The relationship between the PR3 mode locking frequency shift and PR2–PR3 segment length
increment is linearly shown in Figure 8. The sensitivity of the PR3 mode locking frequency shift
with respect to the PR2–PR3 segment length increment is 594 Hz/mm, with a linearity R2 value of
0.9946. Based on the distance between fiber holders in the center region of the segment of 0.75 m,
this sensitivity of length change is corresponding to the sensitivity of applied strain with 445.5 Hz/mε.
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Figure 9a,b show the length measured stability of PR1 and PR2. Since the positions of PR1 and
PR2 and the cavity length between them did not change during the measurement experiment for
160 minutes, the results in Figure 9 show the stability of the sensor system and the corresponding
minimum measurable length. The standard deviation of PR1 was measured to about 4.4 µm, and that
of PR2 was about 4.5 µm. It means that the minimum measurable length change of the sensor system
is limited to about 4.5 µm. Since a SNR of three is generally accepted for estimating limit of detection
(LOD) and SNR of ten is used for estimating and limit of quantification (LOQ) [26], it can be expected
that the minimum measurable length change of the sensor system can be limited to more than about
45 µm.
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Figure 10 shows the peak intensity monitoring along the modulation frequency when the length of
the PR1–PR2 segment (Stage A in Figure 1) is changed, instead of changing the PR2–PR3 segment length
(Figure 7). Unlike to the case of Figures 7 and 8, the applied strain on the PR1–PR2 segment affects not
only the total cavity length of PR2 but also that of PR3, both mode locking frequencies of PR2 and PR3
are simultaneously affected by the increase of the PR1–PR2 segment length. When the main cavity
length of PR1 is 17.003 m, its corresponding mode locking frequency is measured to be 12.0215 MHz.
As the segment lengths between PR1 and PR2, and PR2 and PR3 are 4.652 m and 2.021 m, respectively,
the mode locking frequencies of PR2 and PR3 are 7.7698 MHz and 6.7348 MHz, respectively.

Figure 10a shows the modulation frequency spectrum before applying strain. Figure 10b,c show a
dB scale spectrum along modulation frequency domain to show SNR and a linear scale spectrum along
cavity length domain to show the distance linewidth, respectively. Most of three peaks have a high
SNRs of 54 dB or more and narrow distance linewidths of 12.848, 6.013, and 4.352 cm, corresponding
to PR1, PR2 and PR3 peaks, respectively. Therefore, the spatial resolution of the PR1-PR2 segment
is 9.431 cm and the spatial resolution of the PR2-PR3 segment is 5.1825 cm. The initial length of the
sensing length in the PR1–PR2 segment was 0.75 m; the sensing length was stretched from 0 to 1.4 mm
at increments of 0.2 mm, similar to the previous experiment in Figures 7 and 8. It is noted that the total
cavity length increased by twice the physical segment length change.

Figure 10d shows the change of the PR1 mode locking frequency, revealing that no considerable
change in the mode locking frequency was observed, with a negligible measurement error. Figure 10e,f
show the shifts of the mode locking frequencies upon the total cavity length changes of PR2 and PR3,
respectively. With the increase of the PR1–PR2 segment length, the total cavity length of PR2 and PR3
located after the PR1–PR2 segment changes together and the corresponding mode locking frequency
changes due to the total cavity length.
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Figure 10. (a) The modulation frequency spectrum of PR1, PR2, and PR3 before the strain applies. (b)
dB scale spectrum along modulation frequency domain to show signal to noise ratio. (c) Linear scale
spectrum along cavity length domain to show the distance linewidth. (d–f) Changes of the modulation
frequency spectra of PR1, PR2, and PR3, respectively, according to the change of the PR1–PR2 segment
length (stage A in Figure 1).

Figure 11 shows the relationships between the PR2 and PR3 mode locking frequency shifts and
strain, obtained upon the increase of the PR1–PR2 segment length. The sensitivity of the PR2 mode
locking frequency shift to the PR1–PR2 segment length increment is 461 Hz/mm; the sensitivity with
respect to PR3 is 594 Hz/mm. The R2 values for both graphs are larger than 0.999. Based on the
distance between fiber holders in the center region of the segment of 0.75 m, this sensitivity of length
change is corresponding to the sensitivity of applied strain with 345.75 Hz/mε.
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Figure 11. Linear relationships between the mode locking frequencies of (a) PR2 and (b) PR3 and the
change in length of the PR1–PR2 segment (stage A in Figure 1).

Figure 11a,b show the both mode locking frequencies of PR2 and PR3 changes together with the
single increment of PR1-PR2 segment length. Since the variation of the mode locking frequency of
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PR2 and PR3 is the same in the graphs of Figure 11a,b, it can be interpreted that the PR2-PR3 segment
length was not changed and PR3 was not affected.

Figure 12 shows the length measurement stability of PR1 when the position of PR1 did not change
for 160 min and the stability of the sensor system was measured to have a standard deviation of about
10.2 µm, which corresponds to the minimum measurable length change of more than about 102 µm
from the LOQ of the ten times of standard deviation.
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In this research, the sensing positions were experimentally implemented using three FBGs of
PRs. To calculate the limit of sensing point numbers, the intensity reduction of each additional lasing
peak is monitored and it is measured to about 0.3 dB per added FBG-PR as shown in Figures 7 and 10.
It means that more than 80 FBG-PR can be cascaded in the single sensing port for multiple reflection
points assuming the undistinguished SNR level of multiple lasing spectra of 48 dB. The minimum
distance of the PR segment can be determined based on the distance linewidth from the modulation
frequency peak since the modulation frequency peaks of the PR segments must be distinguished
without overlapping each other. In addition, since the sensor system measures the change in the length
of the PR segment, the minimum distance of the PR segment can be used to determine the spatial
position resolution along optical fiber.

4.2. Fiber FPI-Type Partially Reflecting Segment Sensors

The quasi-distributed large-length optical fiber segment sensor was also constructed using the
fiber FPI as PRs in the Figure 1. To show a potential and characteristics of the additional multiple
segment sensing, four fiber-FPI-type PRs were used to measure the characteristics of the three segment
sensors. The main cavity length of the ring cavity fiber and sensing fiber part up to PR1 is 26.001 m,
which corresponds to a mode locking frequency of 7.8612 MHz. As the PR1–PR2 segment length is 2 m,
the PR2–PR3 segment length is 3.424 m, PR3–PR4 segment length is 1.348 m, it can be simply measured
that the next mode locking frequency for PR2 is 6.813 MHz, that of PR3 is 5.5468 MHz, and that of PR4
is 5.1688 MHz. The mode locking frequency shift was measured when a 0.55-m-long sensing length in
the middle of PR2–PR3 segment (Stage B in Figure 1) was stretched up to 1.0 mm with increments of
0.2 mm. Figure 13 shows the variation of the mode locking frequency according to the initial mode
locking frequencies from PR1 to PR4 caused by the single change of the PR2–PR3 segment length only.

Figure 13a shows the mode locking frequency distribution of the fiber FPI-type PRs before
applying strain. Figure 13b,c show a dB scale spectrum along modulation frequency domain to
show SNR and a linear scale spectrum along cavity length domain to show the distance linewidth,
respectively. Most of three peaks have a high SNRs of 25 dB or more and narrow distance linewidths
of 38.659, 38.655, 41.254 and 40.465 cm, corresponding to PR1, PR2, PR3 and PR4 peaks, respectively.
Therefore, the spatial resolutions of PR1–PR2 segment, PR2–PR3 segment and PR3-PR4 segment are
38.657, 39.955 and 40.86 cm, respectively. Figure 13d,e show that the mode locking frequencies of PR1



Sensors 2018, 18, 4128 13 of 16

and PR2 are unchanged, i.e., unaffected by the change of the PR2–PR3 segment length. Figure 13f,g
show the variations of the mode locking frequencies of the PR3 and PR4, installed the far location
after the PR2–PR3 segment, respectively. The mode locking frequencies of PR3 and PR4 vary with the
length of the PR2–PR3 segment, as the segment length affects the total cavity length according to the
mode locking frequency formula.
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Figure 14 shows the correlations between the mode locking frequencies of PR3 and PR4 and the
change of PR2–PR3 segment length.
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The strain sensitivities of the PR3 and PR4 mode locking frequencies were 330 Hz/mm and
315 Hz/mm, while the R2 values corresponding to very linear relationships were 0.9955 and 0.9957,
respectively. Based on the distance between fiber holders in the center region of the segment of 0.55 m,
this sensitivity of length change is corresponding to the sensitivity of applied strain with 173.25 Hz/mε.
Since the graphs of Figure 14a,b shows that the linear change of PR3 and PR4 are simultaneously
shifted, it means that PR3 and PR4 were affected by single change origin of PR2–PR3 segment length
only, not from that of PR3–PR4 segment length.

Figure 15a,b show the length measured stability of PR1 and PR2. Since position of PR1 and PR2
did not change for 120 min, the results in Figure 15 show the stability of the sensor system and the
corresponding minimum measurable length. The standard deviations of PR1 and PR2 were about
10.6 µm and 9.2 µm, respectively. Thus, the minimum measurable length change of the sensor system
is estimated to more than about 106 µm based on the LOQ with the SNR of ten.
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5. Conclusions 

We have demonstrated a quasi-distributed sensor system is implemented using an AML cavity 
with multiple partially reflecting segments. To implement multiple resonators having a multiple 
reflection points installed in a sensing fiber, two types of PRs of FBG and FPI are implemented for an 
in-line configuration. Most of PRs have a good linearity of R2 higher than about 0.99 and a mode 
locking frequency sensitivity to displacement of 330 Hz/mm or higher, a signal to noise ratio of 24 dB 
or higher and a spatial resolution of 40.86 cm or less. Owing to the principle of total-cavity-length 
detection of the AML laser, PRs with small reflectivity can be useful to differentiate the border of 
multiple segments and distinguish the sequence of each segment. We demonstrated that it can 
overcome the limitations on the available number of sensing positions and wavelength-domain 
information of ordinary FBG and interferometer sensing heads. The quasi-distributed sensor system 
proposed in this study will be useful various applications, such as structure health monitoring and 
multiple location strain sensing, to combine the advantages of a high sensitivity of the conventional 
point sensor and wide measurement range of the distributed sensor. 
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Figure 15. Length measurement stability results of (a) PR1 and (b) PR2.

5. Conclusions

We have demonstrated a quasi-distributed sensor system is implemented using an AML cavity
with multiple partially reflecting segments. To implement multiple resonators having a multiple
reflection points installed in a sensing fiber, two types of PRs of FBG and FPI are implemented for an
in-line configuration. Most of PRs have a good linearity of R2 higher than about 0.99 and a mode locking
frequency sensitivity to displacement of 330 Hz/mm or higher, a signal to noise ratio of 24 dB or higher
and a spatial resolution of 40.86 cm or less. Owing to the principle of total-cavity-length detection
of the AML laser, PRs with small reflectivity can be useful to differentiate the border of multiple
segments and distinguish the sequence of each segment. We demonstrated that it can overcome the
limitations on the available number of sensing positions and wavelength-domain information of
ordinary FBG and interferometer sensing heads. The quasi-distributed sensor system proposed in this
study will be useful various applications, such as structure health monitoring and multiple location
strain sensing, to combine the advantages of a high sensitivity of the conventional point sensor and
wide measurement range of the distributed sensor.
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