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ABSTRACT
To address coronavirus disease (COVID-19), currently, no effective drug or vaccine is available. In this
regard, molecular modeling approaches are highly useful to discover potential inhibitors of the main
protease (Mpro) enzyme of SARS-CoV-2. Since, the Mpro enzyme plays key roles in mediating viral repli-
cation and transcription; therefore, it is considered as an attractive drug target to control SARS-CoV-2
infection. By using structure-based drug design, pharmacophore modeling, and virtual high through-
put drug screening combined with docking and all-atom molecular dynamics simulation approach, we
have identified five potential inhibitors of SARS-CoV-2 Mpro. MD simulation studies revealed that com-
pound 54035018 binds to the Mpro with high affinity (DGbind �37.40 kcal/mol), and the complex is
more stable in comparison with other protein-ligand complexes. We have identified promising leads
to fight COVID-19 infection as these compounds fulfill all drug-likeness properties. However, experi-
mental and clinical validations are required for COVID-19 therapy.
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has emerged as a global pandemic as it has affected
the entire population (Pang et al., 2020). The genome
sequence of SARS-CoV-2 revealed a close similarity to the
coronavirus (CoV) that caused an outbreak of severe acute
respiratory syndrome (SARS) in 2003 (Asrani et al., 2020; Lai
et al., 2020). World Health Organization (WHO) declared
COVID-19 as pandemic because more than 70,000 people
died and about 2.5 million infected (Chang et al., 2020). After
H1N1 (2009), Polio (2014), Ebola in West Africa (2014), Zika
(2016) and again Ebola in the Democratic Republic of Congo
(2019); WHO has declared COVID-19 as the sixth public
health emergency of global distress (Lai et al., 2020). The cur-
rent situation is rapidly advancing; thus, the ultimate extent
and severity of this pandemic remain to be critical. The mor-
tality rate of SARS-CoV-2 is about 3.8% which has been
reported as the lowest than other SARS-CoV (10%) and
Middle East respiratory syndrome coronavirus (MERS-CoV)
(37.1%). However, its infection rate is more than 10 times
higher than these CoVs (Ahn et al., 2020). The most charac-
teristic symptom of COVID-19 patients is a high level of
respiratory distress, which needs immediate intensive care
facility (Lai et al., 2020; Zou et al., 2020). So far, there has

been no effective and accurate treatment to cure COVID-19
(Fatima et al., 2020). Hence, there is an urgent need to make
significant efforts to develop therapeutic interventions and
diagnostic methods to control coronavirus infections (Asrani
et al., 2020).

CoVs belong to the family of Coronaviridae containing a
single-strand of positive-sense RNA viruses. These viruses can
be classified into four genera: alpha, beta, gamma, and delta.
The current SARS-CoV-2 belongs to the beta genus and is
commonly known to infect humans (Menachery et al., 2015;
Ahmed et al., 2020). The genome length of this virus is about
27-32 kb encoding both structural and non-structural pro-
teins (Zhang & Holmes, 2020). Among the structural proteins,
membrane, envelope, nucleocapsid, and spike proteins con-
tribute significantly to virus transmission and its replication
in the host cells (Naqvi et al., 2020; Shanmugaraj et al.,
2020). PLpro and 3CLpro proteases are vital in virus replica-
tion and hence considered a promising drug target.
Structural and mechanistic information will help to design
potent and selective inhibitors of 3CLpro and PLpro that will
eventually be implicated to address COVID-19 as these pro-
teases are indispensable for virus assembly and replication
(Zhang et al. 2020).

The unexpected emergence of COVID-19, have under-
scored the urgent need for effective preventive and
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therapeutic measures for the development of antiviral ther-
apy (Kumari et al., 2020). To address the critical health chal-
lenge of COVID-19, many therapeutic targets for the
development of vaccines and drugs are under the explora-
tive stage (Asrani & Hassan, 2020; Wrapp et al., 2020). COVID-
19 is difficult to control because of heterogeneous member’s
periodical cycle and significant overlap with human and wild
animal ecologies. Currently, there are no approved specific
antiviral therapies available for SARS-CoV-2. Several attempts
have been made using approved antivirals drugs (ribavirin
and lopinavir-ritonavir) and immunomodulators (corticoste-
roids, interferons, etc.) (Grein et al. 2020; Li et al., 2020;
Morse et al., 2020; Wang et al., 2020). However, these
approaches are not much effective in the case of COVID-19
because of significant differences in the surface, structural,
and enzymatic proteins of SARS-COV-2 in comparison to the
SARS-CoV and MERS-CoV (Grein et al. 2020; Kumari et al.,
2020). Design and development of SARS-COV-2-specific dir-
ect-acting antiviral drugs could be potentially obtained by
targeting conserved enzymes such as 3 C-like protease,
papain-like protease, non-structural protein 12 (nsp12), and
RNA-dependent RNA polymerase (Zumla et al., 2016; Tang
et al., 2020).

The main protease (Mpro)is a key enzyme that plays a crit-
ical role in the SARS-CoV-2 life cycle as this enzyme influence
the process of viral replication and transcription (Jin et al.;
Naqvi et al., 2020), making it an attractive target for antiviral
drugs discovery (Ahn et al., 2020). Here, we have used SARS-
CoV-2 Mpro as a target enzyme to facilitate the rapid search
of antiviral compounds with clinical potential in the thera-
peutics of COVID-19. Recently, the three-dimensional struc-
ture of SARS-CoV-2 Mpro has been determined which is
highly similar to that of the SARS-CoV Mpro, with a 96%
sequence identity with the RMS deviation of 0.53 Å (Zhang

et al. 2020). Although, a minor variation in the sequence and
structure of Mpro from both the viruses, a significant differ-
ence was noticed in the binding pattern and inhibition of
Mpro by inhibitors designed for SARS-CoV-2. Hence, approved
protease inhibitors such as disulfiram, lopinavir, and ritonavir
have been reported to be active against SARS and MERS
CoVs, but are ineffective in the case of SARS-CoV-2 (Kandeel
& Al-Nazawi, 2020).

The bound inhibitor showed the formation of several
interactions with the binding pocket residues. The N atom of
lactam moiety, N atom of amide functional group of the
neighboring His164, and O atom of benzyloxy group formed
hydrogen bonds with His163, His164, and Gly143, respect-
ively. The alkyl moiety of leucinamide subunit of N3-ILP is
surrounded by the hydrophobic side chain of His41, Met49,
Tyr54, Met165, and Asp187 of Mpro. The solvent-exposed
area of the Val side chain of the inhibitor indicated that this
site could be substituted by a wide range of functional
groups. The Ala side chain N3-ILP was surrounded by the
side chains of Met165, Leu167, Phe185, Asp192, and Asp189,
which formed a hydrophobic pocket. P5 makes van der
Waals contacts with P168-A and the backbone of residues
190–191, Figure 1.

Here, the structural features of already known peptide-like
N3-ILP inhibitor of SARS-COV-2 Mpro enzyme have been
employed to generate a small library of similar compounds
to gain a short-term and specific solution to treat COVID-19
patients (Shamsi et al., 2020; Ton et al., 2020). To address
this general challenge, we developed an integrated approach
of drug discovery using pharmacophore modelling, screening
of PubChem library, molecular docking, and molecular
dynamics (MD) simulation to find potential preclinical leads
for the therapeutic management of COVID-19 (Mohammad
et al., 2020). This strategy will provide a route-map for

Figure 1. Structural representation of COVID-19 Mpro enzyme in complex with N3-ILP inhibitor; A. Close up view of the binding pocket of Mpro accommodated N3-
ILP, B. Close up view of active residues interacting with the inhibitor.

2 S. KHAN ET AL.



tailoring the antiviral inhibitors that might help in assisting
and developing novel SARS-CoV-2 Mpro lead compounds to
be implicated in the treatment of COVID-19 patients.

2. Methods

2.1. System preparation

The crystal structure of SARS-CoV-2 Mpro in complex with a
peptide-like inhibitor was retrieved from the Protein Data Bank
(PDB ID: 6LU7) (Jin et al., 2020). The structure of the enzyme
was pre-processed, minimized, and refined using the Protein
Preparation Wizard implemented (Madhavi Sastry et al., 2013)
in Schr€odinger suite (Schr€odinger Release 2020-1: Protein
Preparation Wizard; Epik). This involved eliminating crystallo-
graphic waters, missing hydrogens/side-chain atoms were
added to assign appropriate charge and protonation state to
relieve the steric clashes among the residues. The OPLS-2005
force-field was used for the energy minimization using a root
mean square deviation (RMSD) cut-off value of 0.30 Å. The
preparation of the ligand, N3 peptide-like inhibitor (N3-IPL)
and the studied compounds were performed using LigPrep
(Schr€odinger Release 2020-1: LigPrep) module of Schrodinger
Suite which performs addition of hydrogens, adjusting realistic
bond lengths and angles, ionization states, correct chiralities,
stereo chemistries, tautomers, and ring conformations (Fakhar
et al., 2020). Partial charges were assigned to the structures
using the OPLS-2005 (Harder et al., 2016) force-field, and the
resulting structures were subjected to energy minimization
until their average RMSD reached 0.001 Å. Epik ionization tool
(Schr€odinger Release 2020-1: Epik) was used to set the ioniza-
tion state at physiological pH¼ 7.4.

2.2. Preparation of inhibitor-like ligand library

We have filtered and retrieved 409 compounds from the
PubChem database considering Lipinski’s rule of five
(Lipinski, 2004). All the compounds were selected based on
80% structural similarity and the main scaffold of N3-inhibi-
tor and subsequently considered for further virtual screen-
ing analysis.

2.3. Identification of pharmacophore hypotheses

For the structure-based pharmacophore modeling, PHASE
module (Dixon et al., 2006) implemented in Maestro 11.6
was used with the default set of six chemical features: hydro-
gen bond acceptor (A), hydrogen bond donor (D), hydropho-
bic contacts (H), negative ionizable (N), positive ionizable (P),
and aromatic ring (R) to construct the most representative
features of the Mpro active sites. The five 3D-features were
generated using Hypothesis Generation for Energy-Optimized
structure-based pharmacophores considering the excluded
volumes within 5 Å of refined ligand for the enzyme (Loving
et al., 2009; Salam et al., 2009). Pharmacophore features were
selected based on essential interaction contacts with the key
residues of the enzyme accommodated the inhibitor. The
resulted pharmacophore features contain the functional

groups involved in their bioactivity of a targeted enzyme.
The Excluded volumes include all atoms within 5 Å of the
refined ligand for the target.

2.4. Screening of Mpro inhibitors

The obtained five 3D-pharmacophore features were exported
and set as a reference for PHASE-based virtual screening to
screen the library of 409 compounds from the PubChem data-
base which was retrieved and filtered with 80% structural simi-
larity to the known N3-Inhibitor of Mpro enzyme (Dixon et al.,
2006). Out of 409 compounds, 171 were generated based on
the highest PHASE screen score and matched ligand sites. Both
the quantity and quality of a similar feature was taken into
account in the Phase-Screen-Score factor.

2.5. Docking-based virtual screening

Molecular-docking-based virtual screening was performed
using the Glide-Based virtual screening workflow of Maestro
11.6 to identify suitable compounds that strongly bind to Mpro

enzyme (Halgren et al., 2004). The receptor grid was generated
as center coordinates (X ¼ �10.81 Y¼ 12.41 Z¼ 68.93) using
two cubical boxes having a common centroid to organize the
calculations: a larger enclosing and a smaller binding box with
dimensions of 24� 24� 24Å and 32� 32� 32Å, respectively.
The grid box was centered on the centroid of the ligand in the
complex, which was sufficiently large to explore a larger region
of the enzyme structure. The ligands were docked using three
docking protocols which starts with “High throughput Virtual
Screening” (HTVS) followed by “Standard Precision” (SP) and
then by “Extra-Precision” mode (XP). Finally, 171 input com-
pounds were evaluated using Docking-Based Virtual Screening
and filtered to the final 20 compounds based on the docking
scores and XP-GScores.

2.6. Admet properties assessment

The QikProp 5.6 module (QikProp) of Schrodinger was used
to predict absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties of the considered com-
pounds to generate the ADMET related descriptors. This
protocol predicts significant physicochemical and pharmaco-
kinetic-based descriptors of the compounds based on
Lipinski’s rule of five (Lipinski, 2004). ADMET properties of
the top five compounds and N3-Inhibitor were assessed and
analyzed using QikProp 5.6 module and these compounds
were designated for the final molecular dynamic (MD) simu-
lations analysis.

2.7. MD Simulations

To understand the physical basis of the structure and function
of biological macromolecules, MD simulation substantiates to
be an essential approach (Amir et al., 2020; Beg et al., 2019;
Dahiya et al., 2019; Gulzar et al., 2019; Gupta et al., 2019; Gupta
et al., 2019). This technique assists in discovering the structural
dynamics and how it is coupled to the biomolecular function
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of the enzyme (McCammon et al., 1977; Karplus & McCammon,
2002; Arnittali et al., 2019). AMBER 18 package (Case et al.,
2018) was used to execute 100 ns MD simulations on all the
prepared complexes using (Graphics Processing Unit) GPU
accelerated version of Partial Mesh Ewald Molecular Dynamics
(PMEMD) simulations (Lee et al., 2018). The ff99SB (Hornak
et al., 2006) and the general AMBER force fields (GAFF) (Wang
et al., 2006) were employed to parametrize the enzyme and
the considered ligands using LEaP module implemented in
Amber 18 (D.A. Case). The ANTECHAMBER (Wang et al., 2001)
module was used to assign atomic partial charges for the
ligands employed in General Amber Force-Field (GAFF) (Wang
et al., 2004). The system was solvated using the TIP3P (Harrach
& Drossel, 2014) explicit water in a cubic box with an 8Å box
edge. The Naþ counter ions were added randomly to neutral-
ize the complex. The partial Mesh Ewald (PME) (Harvey & De
Fabritiis, 2009) method was used to account for the long-range
electrostatic forces using a cutoff of 12 Å, and the SHAKE algo-
rithm (Ryckaert et al., 1977) was used to constrain all the hydro-
gen atom bonds. Energy minimizations were performed in two
stages with 2500 steps of steepest descent minimization fol-
lowed by 2500 of the conjugated gradient to remove the bad
contacts. The first stage was followed with a harmonic restraint
of 500 kcal mol-1 A-2 on the solute molecule whereas, ions and
water molecules were relaxed. In the second stage of minimiza-
tion, the restraints were removed and the whole system was
relaxed. Each minimized complex was then gradually heated
up from 0K to 300 K for 200 ps to keep the solute using a weak
harmonic restraint of 10 kcalmol-1 A-2. The 50 ps density
equilibration with weak restraints followed by the 500 ps con-
stant pressure equilibration at 300 K were performed at con-
stant pressure using Berendsen barostat (Lin et al., 2017).
Ultimately, the production phase of 100 ns MD simulation was
performed on all the complexes at a constant temperature of
300 K and constant pressure at 1 atm.

2.8. Post-dynamic analyses

The atomic coordinates of enzymes bound with the inhibitors
were further saved after every 1 ps and the trajectory curves
were calculated using the CPPTRAJ module integrated into
AMBER 18 package (Roe & Cheatham, 2013). The root means
square deviation (RMSD) of Ca atoms, root means square fluc-
tuation (RMSF) of each residue in the complex, a radius of gyr-
ation (Rg), solvent accessible surface area (SASA),
intramolecular and intermolecular hydrogen bond formation
and thermodynamic calculations of all the systems were calcu-
lated. Origin software was used for MD trajectories analysis
(Janert, 2009).

2.9. Binding free energy calculations

The relative binding free energies were calculated using
Molecular Mechanics/Generalized Born Surface Area (MM/
GBSA) binding free energy (Wang et al., 2019). All water mol-
ecules and counterions were stripped using the CPPTRAJ
module. The binding free energies (DGbind) were calculated
with the MM/GBSA method for each system as below:

DGbind ¼ Gcomplex � Gprotein � Gligand (1)

The free energy term, DGbind is computed using the fol-
lowing equations:

DGbind ¼ DEgas þ DGsolvation � TDS (2)

Where,

DEgas ¼ Eint þ Evdw þ Eelec (3)

Eint ¼ Ebond þ Eangle þ Etorsion (4)

Gsolvation, GB ¼ GGB þ Gnonopolar, solvation (5)

DGnonpolar ¼ cSASAþ b (6)

The gas-phase energy (DEgas) is the sum of the internal (Eint),
van der Waals (EvdW) and Coulombic (Eelec) energies, (Eq. 4).
The solvation free energy is the combination of polar (GGB) and
nonpolar (Gnonpolar, solvation) contributions (Eq. 5). The polar
solvation GGB contribution was calculated using the
Generalized Born (GB) solvation model with the dielectric con-
stant 1 for solute and 80.0 for the solvent (Onufriev & Case,
2019). However, the nonpolar free energy contribution was
estimated using Eq. 6, where the surface tension proportional-
ity constant, c, and the free energy of nonpolar solvation of a
point solute, b, were set to 0.00542 kcal mol�1Å�2 and 0 kcal
mol�1, respectively. SASA was calculated by a linear combin-
ation of the pairwise overlap (LCPO) model.

3. Result and discussion

3.1. Database screening

The crystal structure of SARS-CoV-2 Mpro (PDB ID: 6LU7) was
extensively analyzed to understand their binding affinity,
mode of binding and interacting residues (Figure 1).
Structure analysis revealed the existence of 8 hydrogen
bonds offered by Gly143, His163, His164, Glu166, Gln189 and
Thr190 of Mpro with the N3-Inhibitor-Like-Peptide (N3-ILP) .
The structure of N3-ILP was selected to screen the PubChem
database. 409 compounds were filtered and collected based
on 80% structural similarity to N3-ILP and Lipinski’s rule of
five (Lipinski, 2004) from the PubChem database (Kim et al.
2016). The screened 409 compounds are listed in Table S1.

3.2. Structure-based pharmacophore modeling

Structure-based pharmacophores derived from the three-
dimensional structure of a target protein provide detailed
and accurate information on ligand binding (Langer, 2010).
The commonly used descriptors in the pharmacophore mod-
eling are H-bond acceptors, H-bond donors, positive and
negative ionizable groups, lipophilic regions and aromatic
rings. The best 3D structure-based e-pharmacophores
(Loving et al., 2009; Salam et al., 2009) were generated using
the receptor-ligand pharmacophore generation protocol
implemented in PHASE (Dixon et al., 2006), based on the
crystal ligand inside the active site and residues involved in
ligand binding. The generated e-pharmacophore of the con-
sidered enzyme showed five main 3D-features including, H-
bond acceptor, H-bond donor, and aromatic rings. In each
pharmacophore model, the red arrows represent hydrogen
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bond acceptor, the blue arrow represents hydrogen bond
donor and the orange spheres represent an aromatic ring.
The 3D pharmacophore features and 2D-chemical structure
of N3-ILP are illustrated in Figure 2 showing five 3-D pharma-
cophore features as three hydrogen-bond donor, one hydro-
gen-bond acceptor and one aromatic ring sphere.

3.3. Screening of compounds library

The obtained structure-based pharmacophore hypotheses
were used to screen the PubChem database to explore new
compounds. These compounds were screened considering
the PHASE screen score and matched ligand site factors. A
total of 409 compounds passed this filter and subsequently,
171 compounds were retrieved based on the created
pharmacophore hypothesis. Molecules that have satisfied all
the features of the pharmacophore model were considered
as potential hits. The virtual screened compounds are pre-
sented in Table S2.

3.4. Docking-based virtual screening analysis

A total of 171 compounds obtained from virtual screening
were docked using the Glide module (Friesner et al., 2006) of
the Schr€odinger package (Schr€odinger Release 2020-1:
Maestro) into the active site of Mpro. A stepwise filtering
protocol was used, in the first stage, compounds were

docked using HTVS where a total of 157 hits were obtained,
Table S3. These compounds were further docked with Glide
SP where a total of 81 hits were obtained (Table S4).
Afterward, the hits from the previous step were subjected to
Glide XP docking and only one pose per ligand was retained.
Finally, a total of 20 hits were obtained as shown in
Table S5.

Among the 20 hit compounds, the known inhibitor N3-ILP
(EC50: 16.77mM) (Figure S1) and top five compounds with
PubChem IDs 54456426, 54152887, 54035018, 91366909,
57076946 with Glide GSCORE (XP SCORE) was estimated as
�4.65 kcal/mol, �9.05 kcal/mol, �9.01 kcal/mol, �8.95 kcal/
mol, �8.80 kcal/mol and �8.70 kcal/mol indicating a strong
binding affinity. The docking based RMSD values for N3-ILP
and other top-five compounds were 2.77 Å, 2.64 Å
(54456426), 2.68 Å (54152887), 2.02 Å (54035018), 2.72 Å
(91366909) and 2.81 Å (57076946) respectively. The criteria
for selecting these top five compounds were based on the
binding scores (above �8.50 kcal/mol), lowest RMSD values
and most promising binding interactions generated after
molecular docking calculations. The theoretical binding affin-
ities of identified hits are better than well-known inhibitor
N3-ILP, indicating potential future clinical use of these pre-
clinical leads. The number of hydrogen-bonded interactions
is a key factor for tighter and specific binding affinity. The
interacting binding residues of Mpro enzyme forming non-
covalent interactions with compounds 54035018, 54152887,

Figure 2 Structure-based pharmacophore modeling based on the analysis of N3-ILP interactions with the Mpro. 3 D pharmacophore features of N3-ILP in complex
with Mpro and its chemical structure surrounded by excluded volumes. Red arrow: Hydrogen bond acceptor, blue arrows: Hydrogen bond donor, orange: aro-
matic ring.
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54456426, 57076946, and 91366909 are illustrated in Figure
3A and B.

Compound 54035018 interacts with the binding site resi-
dues, Ser144, Glu166, Thr190 and Gln192 through four
hydrogen bonds. Compound 54152887-Mpro formed similar
four hydrogen bonds to Ser144, Cys145, Glu166, and Thr190.
It also forms a pi-pi stacking with His41. The complexes
54456426-Mpro, 57076946-Mpro, 91366909-Mpro are stabilized

by H-bonded interactions offered by His41, Leu141, Asn142,
Ser144, Glu166 and His164.

3.5. Admet analysis

Pharmacokinetic and toxicity properties were predicted using
the QikProp module of Schrodinger (QikProp) for N3-ILP,
54035018, 54152887, 54456426, 57076946 and 91366909

Figure 3. A: Docked poses of Mpro enzyme with the proposed inhibitors. Binding mode of and interactions of Mpro enzyme with the compound with PubChem ID
54035018 and 54152887. B: Docked poses of Mpro enzyme with the proposed inhibitors. Binding mode of and interactions of Mpro enzyme with the compound
with PubChem ID 54456426, 57076946 and 91366909.
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compounds. The results of pharmacokinetic and toxicity
properties analysis are presented in Table 1. The selected
properties are representatives of influence metabolism, cell
permeation, bioavailability, and toxicity.

The predicted central nervous system activity (CNS) of all
the molecules depicted as inactive. The recommended bind-
ing to human serum albumin (QPlogKhsa), all compounds
showed in the acceptable range, although the N3-ILP
showed slight out of range. The estimated total solvent
accessible surface area (SASA) of all PubChem compounds
met the acceptable range: 300–1000 whereas the known N3-
ILP showed out of range. The predicted octanol/water parti-
tion coefficient (QPlogPo/w) showed in the acceptable range
from �2 to 6.5. The predicted aqueous solubility (QPlogS)
and predicted brain/blood partition coefficient (QPlogBB) for
all these compounds showed in the acceptable ranges
whereas the known inhibitor was out of range. The percent-
age of human oral absorption for all the compounds met in
the recommended range. Some violations of Lipinski’s rule of
five for all the PubChem compounds significantly satisfied
this rule with zero value than known inhibitor with the rule
of five equal to two.

3.6. Post-dynamics trajectories analysis

Alternations inside the enzyme structure are directly associ-
ated with their biological activities. Any changes or disrup-
tion on enzymes’ structural integrity might have a significant
influence on its activity (Khan et al., 2019). The binding of
small molecule inhibitors affects the mechanism of action of
enzymes that are involved in disease pathways, thus there is
a necessity to calculate the structural dynamics and conform-
ational changes linked with the inhibitory activity of these
inhibitors (Skjaerven et al., 2011). The calculation of a time
variable concerning an RMSD of Ca atoms from produced
trajectories was performed to discover the constancy and
efficacy of the simulated Mpro in complex with N3-ILP and
along with the top five hits. The 2D structure of the top five
PubChem compounds and N3-ILP-inhibitor are presented in
(Figure S2).

The perturbations in the RMSD values as indicated in the
plot (Figure 4A) during simulation time revealed a probable
conformational deviation in the structure of the enzyme

upon inhibitor binding. As Figure 4A revealed, all the sys-
tems were stabilized and achieved convergence after almost
30 ns of the simulation run. 54035018-Mpro exhibited the
lowest average RMSD of 2.03 Å, while 54152887-Mpro and
54456426-Mpro demonstrated the average RMSD of 2.45 Å
and 2.33 Å respectively. The N3-ILP-Mpro indicates a perturb-
ation of 2.50 Å as shown in the plot. This analysis suggests
that any other investigations made on the generated trajec-
tories of all models were reliable. The RMSD plots suggest
that 54035018-Mpro, 54152887-Mpro, and 54456426-Mpro com-
plexes exhibit the lowest divergence of Ca backbone atoms
indicating that binding of these three compounds imposed
higher stability on Mpro enzyme relative to N3-ILP-Mpro com-
plex. This could be implicated that the overall inhibitory
activity of Mpro by 54035018, 54152887, and 54456426 com-
pounds was illustrated by the stabilization of its structural
conformation. The stability of compounds 54035018,
54152887, and 54456426 was further retrieved during the
simulation time as their corresponding activities might
inform the respective interactions that they cause with active
site residues.

To further validate our results, we have calculated Rg
value, a parameter directly associated with the overall con-
formational changes in the structure of the enzyme upon lig-
and binding. It also reveals the structure stability,
compactness and folding behavior (Fakhar et al., 2017). We
measured the compactness of all the selected compounds
and the reference complex by calculating their Rg values.
The average values of Rg for 54035018-Mpro, 54152887-Mpro,
and 54456426-Mpro complexes were noted to be 38.87 Å,
40.39 Å, and 43.68 Å, respectively. Figure 4B plots revealed a
slight alteration in the compactness of the three compounds.
The compound showed the lowest Rg as compared to the
other two complexes and also with the control N3-ILP-Mpro

complex (41.26 Å), thus suggesting increased compactness
and better binding with the Mpro enzyme. All these patterns
of conformational evaluation are indicating greater stability,
flexibility, and compactness of compound 54035018 with the
Mpro enzyme.

After analyzing the conformational binding, we have also
explored SASA to determine the function of hydrophobic
and hydrophilic residues and forces exposed to the solvent
during the simulation time (Khan et al., 2018). The fast and
precise calculation of SASA is very beneficial in the energetic

Table1. In silico ADMET predictions of the selected compounds.

Compounds aCNS bQPlogKhsa cSASA dQPlogPo/w eQPlogS fQPlogBB

g% Human Oral
Absorption

hRule Of
Five

N3-Inhibitor �2 �0.51 1150.17 3.14 �6.68 �3.28 51.17 2
54035018 �2 �0.53 700.82 3.45 �5.10 �2.23 82.74 0
54152887 �2 0.24 758.42 3.67 �5.26 �2.03 87.01 0
54456426 �2 0.37 632.56 0.78 �2.62 �2.60 53.92 0
57076946 �2 0.53 697.02 2.78 �3.42 �1.24 79.13 0
91366909 �2 0.13 668.87 4.14 �5.10 �1.50 96.62 0
aPredicted central nervous system activity from –2 (inactive) to þ2 (active).
bPrediction of binding to human serum albumin (acceptable range: -1.5-1.5).
cTotal Solvent Accessible Surface Area: SASA (acceptable range: 300–1000).
dPredicted octanol/water partition coefficient (acceptable range: �2–6.5).
ePredicted aqueous solubility, S in mol/dm � 3 (acceptable range: �6.5–0.5).
fPredicted brain/blood partition coefficient (acceptable range: –3.0 – 1.2).
gPredicted percentage human oral absorption (<25% is poor and >80% is high).
hNumber of violations of Lipinski’s rule of five, Compounds that satisfy these rules are considered druglike (maximum 4).
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evaluation of biological molecules. The interactions between
the hydrophobic native contacts within the enzyme structure
is a significant intermolecular interaction that influences
enzyme inhibition. Hydrophobic interaction produced among
the non-polar residues confirms the stability of the enzyme
structure in solution by protecting the non-polar residues
inside the hydrophobic core distant from an aqueous solu-
tion (Chen & Panagiotopoulos, 2019; Gupta et al., 2020). As
shown in Figure 5A, an average SASA for all the selected
compounds has been calculated during the 100 ns MD simu-
lation run. The average value of SASA for the compound
54035018-Mpro complex was 13745 Å2 which was exposed to
the solvent system. A total mean of SASA of 14283 Å2 and
14439 Å2 was noted by 54152887-Mpro complex and
54456426-Mpro complexes, respectively. The variations in
SASA values for all the complexes during the simulation time
resemble the folding and unfolding of an enzyme. The over-
all SASA values in the control complex were 14009 Å2, higher
than the 54035018-Mpro complex. The SASA estimation
observed in compound 54035018 bound complex further
confirmed that this compound has increased exposure to

solvent and subsequently preferred the increased inhibitory
activity of compound 54035018 over other complexes.

The flexible or rigid residues of a protein contribute spe-
cifically to the biological function of the target enzyme in
different biological pathways. Thus, the binding of inhibitors
to the enzyme may be analyzed through the change in flexi-
bility in terms of RMSF values (Mart�ınez, 2015). To discover
the rigidity and flexibility of residues in Mpro upon binding of
the selected compounds, RMSF values for Ca atoms were cal-
culated from trajectories generated over 100 ns of MD simu-
lations production run. As shown in Figure 5B and C, the
54035018-Mpro complex exhibited the least fluctuations in
the residues with 11.12 Å. An average RMSF of 15.06 Å and
15.29 Å were noticed in complex 54152887-Mpro and
54456426-Mpro, respectively. The complex, N3-ILP-Mpro

revealed an average of 11.25 Å that is slightly greater than
54035018-Mpro complex, suggesting a better binding in com-
parison to the N3-ILP-Mpro complex. This significant decrease
could be associated with structural inactivation that is
ensured as an outcome of the influential binding of this
compound in the catalytic site of the Mpro enzyme. The

Figure 4. Structural dynamics of Mpro enzyme-ligand complexes. A: C-a backbone RMSD in Å of all the selected compounds bound to Mpro enzyme; B: Rg values
after compound binding.

Figure 5. Showing SASA and fluctuations in the backbone atoms of the Mpro enzyme shows a 100 ns MD simulation period. A: SASA values calculated during the
100 ns of MD trajectories, B. Values of RMSF in Å plotted against residue number for all the selected compounds bound to Mpro enzyme, and C. Fluctuation in the
structure of Mpro enzyme after compound binding.
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limited fluctuation of residues could have preferred Mpro

enzyme inhibition through compound 54035018.

3.7. Hydrogen bond analysis

For the overall conformation and stability of enzyme struc-
ture, we have assessed intramolecular and intermolecular
hydrogen bond analysis (Figure 6). This analysis gives deeper
insights into the binding mechanism of enzyme-ligand with
specific consideration. An average number of intramolecular
hydrogen bonds in 54035018-Mpro and 54152887-Mpro com-
plexes were observed to be 135 and 141, respectively as
shown in Figure 6A. As we have mentioned in the residue
interaction map analysis these complexes contributed greatly
to the binding throughout the simulation period. The num-
ber of intermolecular hydrogen bonds formed in the active
site of the Mpro enzyme noted to be 2 and 3 hydrogen
bonds in 54035018-Mpro and 54152887-Mpro complexes and
between 3-4 hydrogen bonds in 54456426-Mpro and
57076946-Mpro complexes with higher fluctuations Figure 6B.

To understand the intermolecular interactions between
ligand with the active site residues, we have calculated the
ligand interaction maps (Figure 7A and B). Compound
54035018 forms two direct hydrogen bonds with the polar
residues Thr26 and Asn142 with OH and NH group suggest-
ive of a stable interaction. However, hydrogen bond forma-
tion of Asparagine was noted to be absent in other
complexes. Another polar residue Gln192 formed two hydro-
gen bonds with the hydroxyl functional group of compound
54152887. Gln166 also formed a hydrogen bond with the
hydroxyl group of 54152887 compound and residue His41
formed a p-p stacking within the complex. Compounds
54456426 and 57076946 also contributed significantly to the
hydrogen bond network by forming major hydrogen bonds
between the polar (Gln19, Thr26, Thr190), negatively charged
(Gln166) and hydrophobic (Cys145) amino acid residues indi-
cative of a stabilized binding with the enzyme. His41 forms a
p-p stacking in compound 54456426 and 91366909.

Compound 91366909 formed only one hydrogen bond with
the negatively charged Gln166 residue, thus suggestive of
weak binding. The hydrogen bond network plays an import-
ant role in the drug-binding mechanism, thus Thr amino acid
residue contributed notably in the binding of the Mpro

enzyme as shown in Figure 7.

3.8. Secondary structure analysis

Based on the conformational behavior of bound complexes
noted in RMSD, RMSF, and Rg, we have calculated the sec-
ondary structure of 54035018-Mpro complex and apo form of
Mpro enzyme as it is essential to observe the changes in
enzyme structure without the inhibitor (Figure 8). As shown
in Table 2, the average number of structural components are
higher in the inhibitor bound Mpro complex as compared to
the apo form of the Mpro enzyme. A slight increase was
observed in the a-helix of the Mpro apoenzyme. The
b-strands and 310-helix are marginally high in 54035018-Mpro

complex indicative of a stable binding. However, no major
change was observed in the secondary structure of the Mpro

enzyme upon binding of the compound which shows strong
stability, flexibility, and compactness of 54035018-Mpro com-
plex. The secondary structural analysis characterized here
might provide useful conformational information of Mpro

which leads to the development of SARS-CoV-2 Mpro inhibi-
tors. We presume that the design and development of
selective inhibitors of Mpro enzyme using rational approaches
may pave new routes in antiviral therapeutics.

3.9. Mechanistic insights into binding affinity

The thermodynamic energy contribution of an inhibitor to
the overall binding free energy of the complex corresponds
to the structural stability of the inhibitor in the catalytic site
of the enzyme. The intermolecular interactions in the cata-
lytic/allosteric site residues participate considerably in the
stability, binding affinity, and selectivity of the inhibitor.

Figure 6. Hydrogen bond analysis. A. Intramolecular and B. Intermolecular hydrogen bonds in Mpro enzyme with the selected compounds calculated after 100 ns
MD simulation.
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Thus, it was necessary to examine the binding affinity of all
the selected compounds towards Mpro enzyme using MM/
GBSA technique to establish the impact of the studied com-
pounds. The results are presented in Table 3.

As estimated free binding energy (DGbind) of Mpro com-
plex was calculated as the highest energy with an average
value of �37.40 kcal/mol relative to 54152887-Mpro and
54456426-Mpro complexes with total mean values of �37.18
and �24.79 kcal/mol. The overall binding energy of control

complex N3-ILP-Mpro appeared to be lower (-30.89 kcal/mol)
than the 54035018-Mpro complex suggesting a better and
improved binding of compound 54035018 to its target
enzyme. We further estimated other components of the free
binding energy associated with enzyme-inhibitor binding
(Table 3).

We observed that the intermolecular van der Waals and
electrostatic energies in complex 54035018-Mpro were favor-
able with average values of �44.79 and �31.73 kcal/mol

Figure 7. A: Showing H-bonded interaction map of Mpro enzyme with the selected compounds calculated after 100 ns MD simulation. B: Showing H-bonded inter-
action map of Mpro enzyme with the selected compounds calculated after 100 ns MD simulation.
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whereas the gas-phase energy was higher (-56.21 kcal/mol) in
complex 54152887-Mpro. There is a slight difference of
0.22 kcal/mol among the DGbind energies of 54035018-Mpro

and 54152887-Mpro complexes. The DGsolvation contributed to
the unfavorable binding of compound 54035018 as it is the
least energy with a value of 25.01 kcal/mol among all com-
plexes. Although the systematic movement of compound
54035018 and 54152887 from the solvent phase to the active
site of Mpro stimulated van der Waals and electrostatic inter-
actions with the catalytic residues, these interactions are not
enough to contribute fully in the binding of Mpro enzyme as
DGbind contributes to enhanced binding of these com-
pounds. This analysis suggests that compound 54035018
bounds to Mpro enzyme with greater affinity in comparison
with other complexes.

4. Conclusion

The necessity to control the emerging COVID-19 pandemic
made us develop, a strategy to discover lead compounds
that might be used in clinical trials to provide rapid success.
Despite major efforts in the design and development of spe-
cific drugs or vaccines, not much proven to be efficacious
against this SARS-CoV-2 infection. This curiosity leaves us to
explore the drug designing approaches that could serve

valuable to combat this disease. In this report, we have per-
formed structure-based drug designing, virtual drug screen-
ing, and all-atom MD simulation approaches to discover
highly selective compounds that possess significant binding
affinity and presumably inhibition of the SARS-CoV-2 Mpro

enzyme. We have identified the five best compounds, how-
ever, only three have been discussed in detail as they have
shown favorable binding energy against Mpro enzyme.
54035018-Mpro complex exhibited most stable, flexible, and
compact in all the complexes with the highest notable sec-
ondary structure elements and binding energy (DGbind

�37.40 kcal/mol). Based on our overall observations, com-
pound 54035018 could be recommended as a potential lead
for the therapeutic management of COVID-19 patients after
required clinical validations.
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Figure 8. Secondary structure analysis; A: Compounds bound to Mpro enzyme; B: Apo form of Mpro enzyme, calculated after 100 ns MD simulation.

Table 2. Percentage of residues contributing to the secondary structure in the Mpro enzyme.

Motif Percentage of Protein Secondary Structure

System a-Helix b-Strands 310-Helix Turn Bend Other

1-Mpro Complex 22 27 3 20 9 25
Mpro-Apo form 23 26 2 15 7 21

Table 3: MM/GBSA-based binding energy profile of Mpro enzyme in complex with its inhibitors.

Complex DEvdw DEelec DGgas DGpolar DGnopolar DGsolvation DGbind
54035018-Mpro �44.79 �31.73 �43.83 28.63 �5.53 25.01 �37.40
54152887-Mpro �39.09 �25.22 �56.21 30.76 �4.67 26.08 �37.18
54456426-Mpro �32.12 �22.13 �54.25 33.57 �4.11 29.46 �24.79
57076946-Mpro �35.44 �17.12 �67.17 34.25 �4.47 29.77 �18.82
91366909-Mpro �27.24 �16.59 �70.02 38.37 �3.62 32.84 �24.79
N3-ILP-Mpro �47.73 �22.65 �70.38 45.69 �6.19 39.49 �30.89
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