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ABSTRACT
The novel coronavirus disease COVID-19, caused by the virus SARS CoV-2, has exerted a significant unpre-
cedented economic and medical crisis, in addition to its impact on the daily life and health care systems
all over the world. Regrettably, no vaccines or drugs are currently available for this new critical emerging
human disease. Joining the global fight against COVID-19, in this study we aim at identifying a potential
novel inhibitor for SARS COV-2 20-O-methyltransferase (nsp16) which is one of the most attractive targets
in the virus life cycle, responsible for the viral RNA protection via a cap formation process. Firstly, nsp16
enzyme bound to Sinefungin was retrieved from the protein data bank (PDB ID: 6WKQ), then, a 3D
pharmacophore model was constructed to be applied to screen 48 Million drug-like compounds of the
Zinc database. This resulted in only 24 compounds which were subsequently docked into the enzyme.
The best four score-ordered hits from the docking outcome exhibited better scores compared to
Sinefungin. Finally, three molecular dynamics (MD) simulation experiments for 150ns were carried out as
a refinement step for our proposed approach. The MD and MM-PBSA outputs revealed compound 11 as
the best potential nsp16 inhibitor herein identified, as it displayed a better stability and average binding
free energy for the ligand-enzyme complex compared to Sinefungin.
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Introduction

Since 11th March 2020, COVID-19 caused by sever acute respira-
tory syndrome (SARS-COV-2) virus was declared by the WHO as a
pandemic disease. The virus is extremely dangerous affecting
more than 200 countries with 46 202 728 confirmed cases and
1,197,739 deaths by the 31th of October 2020. The available treat-
ment protocol for COVID-19 infection is limited to a few drugs
that at their maximum efficacy may only reduce the symptoms of
the infection1. Thus, it is an urgent need to develop a specific
treatment for the COVID-19 infection using various drug discovery
means. There are many approved direct acting antiviral agents
(DAA), which have significantly reduced or diminished the viral
load and have achieved great therapeutic outcomes in the treat-
ment of viruses such as Hepatitis Virus B, C, or AIDS. Each of these
DAAs has a specific target in the virus life cycle for instance,
Simeprevir acts on HCV NS3 protease while Elvitegravir acts on
HIV integrase2,3. So, developing a specific potent DAA for COVID-
19 infection could be achieved only if full understanding of the
function and structural features of essential targets is provided.

SARS-COV2 transmission could be conveyed through different
modes, e.g. mainly through respiratory droplets, and like other

respiratory viruses when exposing to sneezing or coughing from
COVID-19 patients, through faces, and close contact less than 2
metres4. The crown-like virus has a genome of �30000 nucleoti-
des in length which encodes several proteins. Four of them are
structural proteins namely, Nucleocapsid (N) protein, Membrane
(M) protein, Spike (S) protein and Envelop (E) protein and the rest
of the encoded polyprotein is non-structural proteins (nsp) that
are essentials in the virus replication cycle5,6.

The life cycle of the virus starts after attaching its spike protein
to the human angiotensin converting enzyme 2 (ACE2) receptors
present at the surface of numerous cells like those of lungs and
GIT. Then, the fusion peptide is released after proteolytic clea-
vages of the Spike protein by host proteases. This is followed by a
cascade of cellular processes that end by virus entry into the cyto-
plasm. After that, the virus is uncoated releasing its single-
stranded RNA genome into cytoplasm where the replication and
transcription take place by the aid of the virus several non-struc-
tural proteins. Finally, the resulting proteins from the replication
and transcription processes are assembled into new virions ready
to infect new cells5–7. Many essential targets in the described life
cycle had been proposed as potential for developing specific
DAAs for COVID-19 infection such as the non-structural protein 12
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(nsp12); RNA Dependent RNA Polymerase (RdRp) which is essential
in replicating the virus genome. Also, the 3C-like protease (3CLpro)
and Papin like protease (PLPro) are two important targets that play
a crucial role in the SARS-COV-2 replication cycle by processing
the resulting polyprotein from the transcription stage into func-
tioning subunits. Moreover, many studies had been reported aim-
ing to prevent the virus entry by blocking the attachment
between the Spike protein and the human angiotensin converting
enzyme 2 receptor (ACE2)8–10.

Another promising target that worth detailed mentioning is
the SARS COV-2 20-o-methyltransferase (nsp16), which is an
important enzyme for the virus survival. The role of the SARS
COV-2 20-o-methyltransferase (nsp16) is to protect the viral RNA
from the cellular innate immunity through participation in the for-
mation of a specific arrangement at the 50 end of the RNA mol-
ecule that consists of N-methylated guanosine triphosphate and
C20-O-methyl-ribosyladenine. This arrangement is called RNA cap
that resembles the native mRNA of the host cells, stabilises the
RNA, and ensures effective process of its translation. The cap for-
mation starts when 50-RNA triphosphatase removes a c-phosphate
from a 50-triphosphate end of the nascent RNA. Then, to the
formed 50-diphosphate end of RNA, guanylyltransferase attaches a
guanosine monophosphate (GMP). At last, two steps of methyla-
tion are executed by two distinct enzymes, nsp14 that adds a
methyl group at N-7 of the GTP nucleobase (N-7 methyltransfer-
ase) and nsp16 that adds a methyl group at C20-O of the next
nucleotide11,12. This process is crucial for RNA stability, preventing
its degradation by the host13. The process and importance of cap
formation revels that SARS COV-2 20-O-methyltransferase (nsp16)
is a very promising target and its targeting could result in effect-
ive inhibition of COVID-19 infection13,14. We had successfully
reported the ability of Structure-Based Drug Discovery (SBDD) in
the identification of novel potential inhibitor for SARS-COV-2
Polymerase enzyme15.

Herein in this study, we report the application of Structure-
Based Virtual Screening (SBVS) strategies with the prime goal of
identification of novel potential inhibitors for SARS COV-2 20-O-
methyltransferase (nsp16) utilising integrated Structure-based vir-
tual screening, molecular docking, molecular dynamics simulation
and MM-PBSA approaches, as illustrated in (Figure 1).

Materials and methods

3D Pharmacophore generation

The crystal structure of the SARS COV-2 20-O-methyltransferase
(nsp16) in complex with the pan-methyl-transferase inhibitor
Sinefungin was retrieved from the protein data bank; PDB ID:
6WKQ. The retrieved complex was energy minimised by employ-
ing the steepest descent minimisation algorithm with a maximum
of 50,000 steps and <10.0 kJ/mol force, then the energy mini-
mised complex was equilibrated for 10 ns to elucidate the most
stable conformation and to prepare the complex for further in sil-
ico experiments see Molecular dynamic section. The interaction dia-
gram between Sinefungin and the minimised and equilibrated
SARS COV-2 20-O-methyltransferase (nsp16) was generated by
Discovery Studio Visualiser 2020 to determine the types and num-
ber of the formed interactions, as well as the functional groups in
Sinefungin responsible for those interactions (Figure 2). MOE 2019
was implemented to generate 3D pharmacophore features accord-
ing to the interacting function groups of Sinefungin with its tar-
get16. Thereafter, the generated pharmacophore was used to
screen the ZINC15 database (�48M compounds) aiming to iden-
tify potential potent inhibitors for SARS COV-2 20-O-methyltransfer-
ase (nsp16).

Database generation and optimisation for pharmacophore
screening

The Zinc Drug-like library (nearly 48 million compounds, available
at http://zinc.docking.org) was downloaded as smiles files and
then converted into single database file with extension mdb by
MOE suite (MOE, 2019 (https://www.chemcomp.com)). AMBER14:
EHT force field was used for energy minimisation of the generated
compound library using steepest descent algorithm until RMS gra-
dient of 0.1 Kcal/Mol/A is reached16.

Virtual screening

A two-stage virtual screening approach, combining pharmaco-
phore-based virtual screening and docking-based virtual screening

Figure 1. The virtual screening steps and the implemented protocol for the identification of potential inhibitors for SARS COV-2 20-O-methyltransferase (nsp16).

728 M. A. EL HASSAB ET AL.

http://zinc.docking.org
https://www.chemcomp.com


was employed to identify potential active compounds against
nsp16.

Pharmacophore-based virtual screening

The prepared compounds library of the Zinc database was
screened using the constructed 3D pharmacophore model using
MOE 2015 pharmacophore wizard17,18. After a series of trials; all
the screened compounds were required to match five of the fea-
tures in the pharmacophore hypothesis. The distance matching
tolerance was designated to 2.0 Å. A fitness score was used to
rank the database hits based on their RMSD with the hypothesis
involving site matching, vector alignments and volume terms.
Compounds that passed the pharmacophore filter were further
screened through docking-based virtual screening.

Docking-based virtual screening

This section aims to identify the most potential active compounds
resulting from the pharmacophore search as well as predicting
their possible mode of binding to the SARS COV-2 20-o-methyl-
transferase (nsp16). To provide a rough validation of the docking
protocol used, we performed a pose-retrieval docking experiments
for the X-ray coordinates of Sinefungin in the binding site of
nsp16, for two scenarios, in presence and in absence of water
molecules of the binding site. The calculated RMSD values were
0.53 and 0.25 Å in the NW-docking (docking without water) and
the W-docking (docking with water) respectively, therefore the
water molecules were removed in docking procedure to increase
the diversity of selected compounds 19 (Figure S1, Supplementary
information). AutoDock Vina software was used to conduct the
previous step in addition to the successful candidates from the
pharmacophore search. MGL tools 1.5.7 was implemented to pre-
pare the equilibrated nsp16, Sinefungin and the successful candi-
dates from the pharmacophore search were converted into pdbqt
format; a prerequisite for Vina Autodock software20,21. The active
site was determined by generating a grid box sized 24� 24� 24
A0 surrounding the binding site of Sinefungin. The best candi-
dates were selected for further analysis based on the docking and

the interaction diagram generated by Discovery Studio
Visualiser22.

Molecular dynamics

We conducted three molecular dynamic simulations experiments
to support our concept of design and to validate the predicting
binding mode of compound 11. Two experiments were conducted
for SARS COV-2 20-o-methyltransferase (nsp16) complex with
Sinefungin and compound 11, respectively, while another one
was for the free unbound SARS COV-2 nps16. The latest version of
GROningen MAchine for Chemical Simulations (GROMACS 2020.3)
was employed to conduct the entire MD simulation experiments23.
The ligand topologies were obtained by the CHARMM General
Force Field CGENFF server and converted into the desired gro-
macs format using the “cgenff_charmm2gmx_py3_nx2.py” script,
while the receptor topology was obtained by the “pdb2gmx”
script24. The generated ligand topologies were rejoined to the
processed receptor structure to construct the ligand-protein com-
plex. All the processed complexes were energy minimised under
GROMOS96 43a1 force field25. After that, those complexes were
solvated with a single point charge (SPC) water model to add
water molecules to the cubic simulation boxes.

System neutralisation of the net charges was done by adding
counter-ions using the “gmx genion” script. Energy minimisation
of the unbound enzyme and the two complexes was achieved by
employing the steepest descent minimisation algorithm with a
maximum of 50,000 steps and <10.0 kJ/mol force. Then, the sol-
vated energy minimised structures were equilibrated with two
consecutive steps. Firstly, NVT ensemble with constant number of
particles, volume and temperature (310 K) was done for 2 ns fol-
lowed by NPT ensemble with constant number of particles, pres-
sure and temperature for 8 ns. In the two systems, only the
solvent molecules were allowed for free movement to ensure its
equilibration in the system while other atoms were restrained. The
long range electrostatic interactions were obtained by the particle
mesh Eshwald method with a 12Å cut-off and 12Å Fourier spac-
ing26. Finally, the three well-equilibrated systems (one empty pro-
tein and two protein-ligand complexes) were then entered the
production stage without any restrains for 150 ns with a time step
of 2 fs, and after every 10 ps the structural coordinates were saved
to retrieve 15000 frames for each processed complex. The root
mean square deviation (RMSD) was calculated from the generated
trajectories of the MD simulations as well as the distances of the
formed hydrogen bonds between the receptor and the ligands by
various scripts of GROMACS.

MM-PBSA calculation

An important feature of MD simulations and thermodynamic cal-
culations coupling is the ability to measure the binding free
energy of a protein-ligand complex. Combining molecular
Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA) alongside
MD simulations has been reported in successful calculation of the
binding free energy of protein and ligand complexes via the appli-
cation of the following equation:

DGðBindingÞ ¼ GðComplexÞ � GðReceptorÞ � GðLigandÞ

Where, G (complex) is the total free energy of the pro-
tein� ligand complex and G (receptor) and G (ligand) are total
free energies of the isolated protein and ligand in solvent,
respectively. The total free energy of any of the three mentioned
entities (complex or receptor or ligand) could be calculated from

Figure 2. 2D Binding of sinefungine within SARS-COV-2 20-O-methyltransferase
binding site after 10 ns of equilibration.
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its molecular mechanics potential energy plus the energy of solv-
ation. Thus, the “g_mmpbsa”27 package of GROMACS was used
perform MM-PBSA calculations through all the MD trajectories.

Results and discussion

3D Pharmacophore

Analysis of SARS-COV-2 20-O-methyltransferase (nsp16) crystal
structure that contains Sinefungine as a co-crystalized ligand
revealed numerous numbers and types of interactions between
Sinefungine and its corresponding binding domain. Converting all
those interactions to 3D pharmacophore features is practically
inapplicable and the virtual screening will fail to find any ligand
(Figure S2, Supplementary Information). Indeed, not all the formed
interactions between a ligand and its target are responsible dir-
ectly for the ligand activity, otherwise only stable interactions may
have the most significant contribution to the activity. Accordingly,
the crystal structure was energy minimised and equilibrated for
10 ns to elucidate such stable interactions and then convert them
to 3D pharmacophore features. In the equilibrated structure,

Sinefungine was able to maintain strong pattern of interaction
through seven function groups, (Figure 2).

The interacting atoms within each functional group in
Sinefungine, as well as, the interaction types enabled us to gener-
ate a 3D pharmacophore of four features and seven components
(Figure 3). Namely, the pharmacophore model consisted of three
cationic donor features to attract the negative charge on
(Asp6912, Asp6928 and Asp6931), one donor feature to interact
with (Asp6897), two acceptor features to interact with (Gly6879
and Tyr6930), and an aromatic feature to interact with (Met6929).
The generated pharmacophore was used to screen the ZINC15
drug-like database and the successful compounds were required
to match all the features. Unfortunately, no compound was able
to match all the features and the same happened when com-
pounds were required to match six of the seven features. Thus,
compounds were asked to match at least five of the seven fea-
tures and this resulted in 24 potential lead compounds
(Supplementary Information) that may act as SARS COV-2 20-O-
methyltransferase (nsp16) inhibitors. Thereafter, these potential
lead compounds were further evaluated against SARS COV-2 20-O-
methyltransferase (nsp16) via molecular docking studies.

Figure 3. The generated 3D pharmacophore; Blue spheres represent acceptor features, pale pink sphere represents donor features, dark pink spheres represent cationic
donor features and orange sphere represents aromatic feature.
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Docking

In Computer-aided drug design studies, docking strategy stands
out as one of the most important techniques providing many use-
ful applications, including the prediction of the binding mode
between a ligand and its target, ranking a library of compounds

based on their docking scores and correlating those scores with
potential activity. Also, docking has a valuable role in characteris-
ing the effect of certain amino acids mutations on the activity
profile of the ligands. Moreover, visualising the interaction images
resulting from docking software gives insights and guides for the
optimisation of the existing ligands to yield compounds with

Figure 4. Chemical structures for compounds 5, 9, 11 and 24.

Figure 5. 2D interactions of compounds 5 (A), 9 (B), 11 (C) and 24 (D) within SARS-COV-2 20-O-methyltransferase binding site.
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better affinity. In the current study, docking was implemented to
rank the successful 24 candidates from the pharmacophore search,
besides predicting the plausible binding mode with their target.

Based on the results obtained from AutoDock Vina, only four
compounds (5, 9, 11 and 24, Figure 4), among the 24 potential
leads, were able to achieve better docking score (S ¼ �10.1,
�10.3, �10.6 and �9.9 Kcal/mol, respectively) than Sinefungine (S
¼ �8.5 Kcal/mol), and thus were selected for further analysis.

Compounds 5, 9 and 11, with the same scaffold and similar
structures, displayed a similar strong pattern of interaction with
their target, which indicates a valid docking approach. On the
other hand, compound 24 is based on a different scaffold and
thus it was oriented into the receptor in a different manner. In
general, the four compounds (5, 9, 11 and 24) demonstrated a
strong binding affinity with many types of interaction with the
SARS-COV-2 20-O-methyltransferase binding site (Figures 5 and 6).

In particular, methoxy-bearing compounds 9 and 11 achieved
the best docking score (S ¼ �10.3 and �10.6 Kcal/mol, respect-
ively) among the four compounds. They were engaged in two
hydrogen bond interactions via both methoxy (OCH3) and amidic
carbonyl (C¼O) functional groups with Leu6898 and Tyr6930
amino acids, respectively (Figure 5, 6(B–C)). In addition, the pri-
mary amino group (NH2) in compound 9 was involved in a hydro-
gen bond interaction with Lys6844 amino acid, whereas, the
hydroxyl group (OH) in compound 11 was able to establish two
hydrogen bond interactions with Asn6996 and Glu7001 amino
acids.

On the other hand, compound 5 lacks the methoxy group
found in compounds 11 and 9, thus, it was able to form only two
hydrogen bonds with Tyr6930 and Lys6844 via its amidic carbonyl
(C¼O) and primary amino group (NH2) functional groups (Figure
5, 6(A)). Furthermore, compound 24 was involved in three hydro-
gen bond interactions with Gly6871, Asp6873 and Lys6968, yet it

came in the last rank (S ¼ �9.9 Kcal/mol) as it lacks various hydro-
phobic interactions achieved by the other three compounds
(Figure 5, 6(D)). Table 1 summarises all the bonding interactions
and distances for compounds (5, 9, 11 and 24) within SARS-COV-
2 20-O-methyltransferase binding site.

Molecular dynamics

In many computational studies of drug discovery, Molecular
dynamic simulations have provided valuable assessment in identi-
fication of potential inhibitors for promising targets, studying the
nature of macromolecules or interpretations of drug resistan-
ces28–31. To support our protocol so far, and to provide insights
on the stability of the predicted binding mode of compound 11
in the binding site of nsp16, also to identify and study the
dynamic nature of the SARS COV-2 20-O-methyltransferase (nsp16)
and correlate this to the key biological role played by this enzyme
in the virus life cycle, we conducted three molecular dynamic
simulation experiments.

RMSD analysis and hydrogen bond monitoring

The ultimate endeavour for SARS-COV-2 20-O-methyltransferase
(nsp16) is to prevent the degradation of the viral RNA through
the process of Cap formation as previously mentioned. Moreover,
this enzyme should have a high degree of flexibility and dynamic-
ity to deliver its intended function32,33. So, the conducted simula-
tion experiment for the unbound SARS-COV-2 20-O-
methyltransferase aimed to be used as a reference for comparison
with the other two simulation experiments. The calculated RMSD
of all the residues of the unbound enzyme reached 3.70 A�

Figure 6. 3D representation for inhibitors 5 (A), 9 (B), 11 (C) and 24 (D) displaying their interactions within SARS-COV-2 20-O-methyltransferase binding site.
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revealing the high dynamic properties of the SARS-COV-2 20-O-
methyltransferase (nsp16), (Figure 7).

The goal of this section is to provide evidence on the stable
binding of the proposed inhibitors to nsp16. Based on the proven
degrees of flexibility of the binding site of nsp16, simulating the
enzyme-inhibitor complex provides a consistent parameter to
evaluate its stability upon binding. Thus, it was important to
monitor the dynamic behaviour for both SARS-COV-2 20-o-methyl-
transferase (nsp16) complex with Sinefungine, and SARS-COV-2 20-
O-methyltransferase (nsp16) complex with compound 11 through
measuring the RMSD for both complexes.

RMSD values for both compound 11 and Sinefungine reached
at their maximum dynamicity peaks 1.56 A� and 2.25 A�, respect-
ively (Figure 7). This indicates that compound 11 shows better
binding to SARS COV-2 20-O-methyltransferase (nsp16) even more
than Sinefungine. Also, it was worthy to monitor the stability of
the interactions formed between compound 11 and SARS COV-2

20-O-methyltransferase (nsp16) through the entire MD experiment.
GROMACS has built-in commands that were used to measure the
distances of the formed hydrogen bonds between compound 11
and SARS-COV-2 20-O-methyltransferase (nsp16). The distance
between the hydrogen bond donor and the hydrogen bond
acceptor in a valid hydrogen bonding should be always less than
3.5 A�. This criterion was fulfilled in all the formed hydrogen
bonds between compound 11 and its target indicating a stable
and valid mode, (Table 2).

MM-PBSA binding free energy calculations

Another important indicator that gives account for the potential
affinity of a ligand with its target is the binding free energy calcu-
lated using MM-PBSA and MD calculations. In general, complexes
that have lower binding free energy can be considered to be

Table 1. Different bonding types and their distances (in Å) for compounds (5, 9, 11 and 24) within SARS-COV-2 20-O-methyltransfer-
ase binding site

Compound Energy Score (kcal/mol) Interactions Distance

11 –10.6 Hydrogen bond with Leu6898 2.41
Hydrogen bond with Tyr6930 2.33
Hydrogen bond with Asn6996 1.95
Hydrogen bond with Glu7001 3.03
Non-classical carbon Hydrogen bond with Gly6871 3.50
Non-classical carbon Hydrogen bond with Asp6897 3.39
Non-classical carbon Hydrogen bond with Asp6897 2.54
Non-classical carbon Hydrogen bond with Gly6911 3.63
Non-classical carbon Hydrogen bond with Lys6935 2.98
Pi-Alkyl interaction with Leu6898 5.05
Pi-Alkyl interaction with Met6929 4.14
Pi-Pi interaction with Tyr6930 4.82
Pi-Pi interaction with Tyr6930 4.87
Pi-Anion interaction with Glu7001 3.99
Pi-Cation interaction with Lys6935 3.14
Pi-Cation interaction with Lys6996 3.84

9 –10.3 Hydrogen bond with Leu6898 2.45
Hydrogen bond with Tyr6930 2.27
Hydrogen bond with Lys6844 1.88
Non-classical carbon Hydrogen bond with Gly6871 3.56
Non-classical carbon Hydrogen bond with Asp6897 3.39
Non-classical carbon Hydrogen bond with Gly6911 3.68
Non-classical carbon Hydrogen bond with Met6929 2.70
Pi-Alkyl interaction with Leu6898 5.07
Pi-Alkyl interaction with Met6929 4.09
Pi-Pi interaction with Tyr6930 5.50
Pi-Anion interaction with Glu7001 3.44
Pi-Cation interaction with Lys6968 3.17
Pi-Cation interaction with Lys6968 3.79

5 –10.1 Hydrogen bond with Tyr6930 2.27
Hydrogen bond with Lys6844 1.88
Non-classical carbon Hydrogen bond with Gly6871 3.52
Non-classical carbon Hydrogen bond with Asp6897 3.55
Non-classical carbon Hydrogen bond with Met6929 2.70
Pi-Alkyl interaction with Leu6898 4.83
Pi-Alkyl interaction with Met6929 4.21
Pi-Alkyl interaction with Cys6913 5.49
Pi-Pi interaction with Tyr6930 5.5
Pi-Anion interaction with Glu7001 3.44
Pi-Cation interaction with Lys6968 3.79
Pi-Cation interaction with Lys6968 3.12

24 –9.9 zHydrogen bond with Lys6968 2.74
Hydrogen bond with Gly6871 3.34
Hydrogen bond with Asp6873 2.93
Non-classical carbon Hydrogen bond with Glu7001 3.72
Non-classical carbon Hydrogen bond with Tyr6930 3.48
Pi-Alkyl interaction with Leu6898 4.84
Pi-Alkyl interaction with Tyr6930 5.18
Pi-Alkyl interaction with Cys6913 4.84
Pi-Sulfur interaction with Met6929 3.53
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more stable and their ligands are expected to have high activity
and potency. In MD simulation, the binding free energies are cal-
culated for every conformation saved in the trajectory.
Accordingly, the g_mmpbsa package was used to calculate the
MM-PBSA binding free energy for the two complexes of SARS
COV-2 20-O-methyltransferase enzyme with compound 11 and
with Sinefungine by the employment of MmPbSaStat.py python
script. This script brings the package in action to calculate the
total free energy for each component of the complex; i.e. the
energy of the complex, receptor and the ligand, etc.

Furthermore, the free energy for each component could be cal-
culated by the cumulative sum of its molecular mechanics poten-
tial energy in a vacuum and the free energy of solvation. The free
energy of solvation includes the polar solvation energy (electro-
static) and nonpolar solvation energy (non-electrostatic), the last
one is usually by the solvent accessible surface area (SASA) model.
The g_mmpbsa package was used to calculate all those types of
energies along with the values standard deviation and then
summed together to yield the average total free energy of each
component. Finally, the binding free energy could be calculated
by subtracting the total free energy of the receptor and the total
free energy of the ligand from the total free energy of the com-
plex. Table 3 summarises the interaction energies and the binding
free energy for the two complexes.

Generally, compound 11–SARS COV-2 20-O-methyltransferase
complex was better than Sinefungine complex in all the calculated
energy formats except (polar solvation energy). Its average bind-
ing free energy reached �296.95 Kj/mol, while Sinefungine aver-
age binding free energy reached �260.86 Kj/mol. The overall
results of the three dynamic simulations supported our concept of
design and validated the entire virtual screening approach; also,
they emphasised the potential inhibitory effect of compound 11
on SARS COV-2 20-O-methyltransferase.

Conclusion

In the current study we constructed a protocol of structure-based
virtual screening aiming at identifying a novel potential inhibitor
for SARS COV-2 20-O-methyltransferase. We used the crystal struc-
ture of SARS-COV-2 20-O-methyltransferase (PDB ID: 6WKQ) in
complex with Sinefungine. First, the crystal structure was retrieved
from the protein data bank. Then, a 3D pharmacophore model of
4 features and 7 components was constructed based on the bind-
ing interactions of Sinefungin with the enzyme. Thereafter, the
Zinc database containing 48 Million drug-like compounds was
screened through the pharmacophore model. Only 24 compounds
were able to pass the pharmacophore filter and were docked

Figure 7. The RMSD of three dynamic simulation experiments. Green colour represents SARS COV-2 20-O-methyltransferase without a ligand; blue line represents SARS
COV-2 20-O-methyltransferase complex with Sinefungine, and Red line represents SARS COV-2 20-O-methyltransferase complex with compound 11.

Table 2. The average distances of all the hydrogen bonds formed between compound 11 and SARS
COV-2 20-O-methyltransferase (nsp16) through the entire 150 ns MD simulation.

Hydrogen bond name Average distance (A0) ± SD

Hydrogen bond with Leu6898 2.37 ± 0.22
Hydrogen bond with Tyr6930 2.41 ± 0.18
Hydrogen bond with Asn6996 1.98 ± 0.09
Hydrogen bond with Glu7001 3.11 ± 0.11

Table 3. The calculated interaction energies and the binding free energy for compound 11 and Sinefungine complexes with SARS COV-2 20-O-
methyltransferase.

Complex DE binding (kj/mol) DE Electrostatic (kj/mol) DE Vander Waal (kj/mol) DE polar solvation (kj/mol) SASA (kJ/mol)

Compound 11 –296.95 ± 17.53 –102.82 ± 17.45 –263.40 ± 20.09 98.58 ± 14.92 –23.31 ± 0.99
Sinefungin –260.86 ± 16.41 –94.13 ± 15.74 –218.08 ± 19.54 71.68 ± 13.97 –20.33 ± 1.04
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subsequently into the binding site of the enzyme. Compounds (5,
9, 11 and 24), the best score-ordered hits of the docking result,
were selected for further analysis since they exhibited better
scores compared to Sinefungin. As a refinement step, we con-
ducted three molecular dynamic simulation experiments for
150 ns. The MD and MM-PBSA outputs revealed compound 11 as
the best potential nsp16 inhibitor herein identified, as it displayed
a better stability and average binding free energy for the ligand-
enzyme complex compared to Sinefungin.
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