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Abstract
This study evaluates flood susceptibility and risk on Bulk Supply Points in the Greater Accra region (GAR) using a Fre-
quency Ratio model based on 15 flood conditioning factors. The model explores the influence of natural, meteorologi-
cal and anthropogenic factors on flooding occurrences under the Shared Socioeconomic Pathway (SSP) scenarios and 
assesses flood risks at Bulk Supply Points (BSPs). Flood susceptibility mapping was conducted for both current and future 
periods under various SSP scenarios. Results reveal that elevation, slope, soil type, distance from urban areas, and SPI are 
the most influential factors contributing to flooding susceptibility in the region. The current flood map, about 37% of the 
total area of GAR categorized under the moderate flood-susceptible zone category followed by about 30% categorized 
under the low flood-vulnerable zone. However, about 16% was categorized under the very high flood-vulnerable zone. 
The study projects increasing flood susceptibility under the SSP scenarios with intensification under SSP2 and SSP3 sce-
narios. For instance, the areas categorized as high and very high flood susceptibility zones are projected to expand to 
approximately 32% and 26% each by 2055 under SSP3. The study also assesses flood risks at Bulk Supply Points (BSPs), 
highlighting the escalating susceptibility of power assets to flooding under different scenarios. For instance, in the very 
high scenario, flooding is estimated to reach 640 h in 2045 and exceed 800 h in 2055—more than double the 2020 base-
line. The analysis shows the bulk supply points face increasing flood susceptibility, with risks escalating most sharply 
under the severe climate change SSP3 and SSP5 scenarios. Over 75% of BSPs are expected to fall in the low- to medium-
risk categories across SSPs while more than 50% of BSPs are within medium- to high-risk categories in all scenarios except 
SSP1, reflecting the impact of climate change. SSP3 and SSP5 stand out with over 60% of BSPs facing high or very high 
flooding risks by 2055. It indicates moderate resilience with proper adaptation but highlights potential disruptions in 
critical infrastructure, such as BSPs, during persistent flooding. The findings of the study are expected to inform Ghana’s 
contributions towards addressing Sustainable Development Goals (SDGs) 7, 11 and 13 in Ghana.
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1  Introduction

Over the years, various forms of natural and anthropogenically-induced disasters, such as earthquakes, landslides, hur-
ricanes, volcanic eruptions, and floods, amongst others, have occurred [1–3]. Floods are natural disasters caused by an 
overflow of a large volume of water above its usual limits, resulting in temporary inundation of river banks and stagnant 
water [4]. It is one of the most common types of natural/man-made disasters that interrupts anthropogenic activities, 
destroys properties and causes loss of life. Moreover, floods are known to destroy environmental ecosystems, disrupt 
agricultural activities and socio-cultural hereditament [5–9]. Globally, floods are noted to be a tragic and sudden event, 
resulting in huge wealth and health losses.

Sarkar and Mondal [4] noted that from 1963 to 1992, floods had caused about 32% of damage to the environment and 
humans. Currently, floods have resulted in the loss of 100,000 lives globally, affecting approximately 2 billion people and 
causing damages estimated at around $651 billion [10]. The African continent is the second-most vulnerable continent 
to floods after Asia in terms of the frequency of events, magnitude of affected areas and lives lost [11, 12]. Most countries 
in Africa have had a taste of awful flood-related disasters in the recent past. For instance, Mozambique recorded one of 
the most devastating floods in February and March 2000 amongst flood events in the last 50 years [13]. Again, the 2007 
flood event which affected countries such as Togo, Mali, Burkina Faso, Niger, Uganda, Sudan and Ethiopia killed more 
than 500 people while displacing several millions of inhabitants [14].

The UN regional Coordinator in Dakar revealed that the July 2007 flood event in West Africa was the most tragic flood 
event in the last 30 years. As a result of the flood event, more than 210,000 and 785,000 people were killed and displaced, 
respectively. Again, about 600,000 inhabitants were affected after torrential rains in 16 Wwest African countries where 
Ghana, Burkina Faso, Niger and Senegal were the most affected. Aside from this, Nigeria in 2012 recorded one of the 
most catastrophic flood events ever observed, which resulted in the displacement and death of 2.3 million and 363 
people, respectively [15].

The existence of perennial urban flooding in Ghana dates back to 1930 [16]. At least about 18 out of the last 50 years 
have observed substantial flood events where properties and lives have been lost [16–19]. The study of Douglas et al. 
[13] revealed that the occurrence of flood events in the coastal areas of Ghana has increased since 1995, resulting in 
the displacement and death of about 34,076 and 14 people, respectively. This also led to the property losses of about 
$168,289, as estimated by the National Disaster Management Organization (NADMO) [1].

Flooding has a significant impact on power systems. It can lead to long outage times and the destruction of power 
system equipment such as substations, transmission lines, and power plants [20]. In recent years, flooding has had dev-
astating impacts on power infrastructure in many parts of the world, often leaving large populations without electricity 
for extended periods [21–23]. The Greater Accra region of Ghana has experienced several major flood events in the 
past decade, which have damaged key power assets and caused widespread blackouts across the capital city of Accra 
and surrounding areas [1, 24]. With climate change projections indicating increased variability and severity of extreme 
rainfall events in West Africa [7], there are growing concerns about the resilience of Ghana’s power sector infrastructure 
to future flooding.

Flooding is of particular concern for the bulk supply points (BSPs) that deliver electricity from generating plants to 
end users in the Greater Accra region. These facilities, operated by the Ghana Grid Company (GRIDCo), contain vital 
transformers, switching gear and control equipment. Flood damage to BSPs can disrupt the entire downstream supply 
chain, affecting hospitals, businesses, homes, and other critical services. In 2015, major flooding of a GRIDCo substation in 
Achimota left many parts of Accra without power for several days [1]. With a growing population and electricity demand, 
along with the country’s dependence on hydroelectric generation, Ghana’s power sector is vulnerable to increases in 
extreme precipitation and flooding resulting from climate change. Therefore, this article examines the current and future 
flood risks facing the bulk supply point (BSPs) in the Greater Accra region. It assesses the exposure and susceptibility of 
these power infrastructures while exploring potential adaptation strategies to enhance resilience against future climate 
change impacts.

Therefore, mapping flood susceptibility to design management schemes can combat the destruction of BSPsin the 
future and be used to direct governments and policymakers to establish appropriate flood management strategies.
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Geographical information system (GIS) and remote sensing (RS) techniques now have the capacity to support a new 
understanding of the assessment of susceptibility with better justification [4]. The analysis of satellite images through 
GIS and RS offers promising results for flood susceptibility mapping as it reveals flawless information about a specific 
area [25]. Several studies have successfully employed GIS and RS techniques in flood susceptibility assessment with dif-
ferent models [26–28]. The Frequency ratio (FR) model is a widely used technique with high overall accuracy [29]. The 
FR model uses bivariate statistical analysis to assign values to each class of each parameter and estimate its impact on 
flood occurrence [3, 29]. GIS and RS software offers a straightforward approach for mapping flood susceptibility using FR.

Other studies have employed various robust methodologies to map flood susceptibility. For instance, previous studies 
[30–34] utilized the Analytical Hierarchy Process (AHP) effectively in their flood susceptibility mapping efforts. Addition-
ally, the Multi-Criteria Decision Support Approach (MCDA) has been implemented by [31, 35, 36]. Other methodologies 
like Weights of Evidence (WofE) as seen in Rahmati et al. [9], adaptive neuro-fuzzy interface systems such as Sezer et al. 
[37], and artificial neural networks (ANN) like those used by Tiwari & Chatterjee [38] have also been applied in various 
studies. While AHP remains the most commonly utilized approach, it is constrained by uncertainties stemming from 
user-provided information [39]. MCDA, on the other hand, is valued for its utility in flood mapping in data-scarce regions, 
often employed by local planners [40]. ANN attempts to establish relationships between flood conditioning factors and 
outcomes, yet its reliance on user inputs can introduce uncertainties in its predictions [41]. Recently, approaches like 
FR and WofE have emerged in flood susceptibility mapping, although they have predominantly been applied in other 
natural hazard mappings such as landslide studies [9, 42–44].

Several studies have generally mapped flood susceptibility in the Greater Accra region. However, most of these stud-
ies were limited to only the Accra metropolitan area. For example, Dekongmen et al. [45] studied flood vulnerability in 
Accra by analyzing natural factors like elevation, drainage density, and slope. However, their focus was restricted to these 
factors within the Accra metropolis alone, excluding the broader region. Similarly, other studies by [17, 36, 46–48] con-
centrated on flood susceptibility mapping specifically within the Accra metropolitan area. In contrast, Kwang and Osei 
[30], Njomaba et al. [49], and Kumi-Boateng [31] extended their investigations to cover almost the entire Greater Accra 
region, except for the Ada East and West districts. Nevertheless, these studies primarily mapped current flood suscepti-
bility and did not include future flood projections under different climate scenarios, such as the Shared Socioeconomic 
Pathway scenarios (SSP), which remain largely unexplored in the region. Moreover, there are limited or no studies on the 
impacts of floods on bulk power supply points in Ghana’s Greater Accra region. This presents a unique gap to investigate 
the impacts of flooding on BSPs and their related effects on power denial under the shared socio-economic pathway 
(SSP) scenarios. The findings of this study are expected to add knowledge to existing studies on the impacts of flood-
ing in Greater Accra, especially on BSPs. Moreover, the findings of this study are expected to inform future adaptation 
strategies of different organizations, such as electricity distribution companies, NADMO and the various assemblies in 
different districts to manage floods under different scenarios better. Finally, the findings are expected to inform Ghana’s 
contributions towards addressing Sustainable Development Goals (SDGs) 7, 11 and 13 in Ghana.

2 � Materials and methods

2.1 � Description of the study area

Greater Accra spans approximately 3,245 km2 and is home to around 5,455,692 people according to the Ghana Statisti-
cal Service [50]. Positioned between Latitude 5°30′ to 5°53′ North and Longitude 0°03′ to 0°25′ West, this area exhibits 
occasional hills and lowlands, averaging about 20 m above sea level. The terrain generally maintains gentle slopes of 
about 11%, except for specific areas like Abokobi, Kwabenya, and the McCarthy hills, where slopes can exceed 22%. 
The water table in Greater Accra is situated between depths of 4.80 to 70 m below the surface [46]. Within the anoma-
lous dry equatorial climatic region, Greater Accra experiences dual peaks of precipitation and a prolonged dry season, 
occasionally marked by dry Harmattan conditions. February and March are the hottest months, averaging around 27 °C 
monthly [50]. Conversely, the coldest months fall between June and August, with an average monthly temperature of 
approximately 21 °C (Ghana Statistical Service, 2014). Precipitation is characterized by two peaks: a major season from 
March to July and a minor one from September to November, totaling an annual precipitation range of 780–1200 mm 
[51], while the Ghana Meteorological Agency reports an average precipitation of about 812 mm [51]. Vegetation in the 
studied area comprises two primary types: coastal scrub and grasslands, alongside mangrove forests. The coastal scrub 
and grasslands, observed in specific Greater Accra locations, feature intermittent tree patches, including Baobab and 
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Neem trees. Mangrove forests, found in coastal lagoon areas with salty and waterlogged soil, delineate a distinct habitat. 
Figure 1 displays a map of the studied area.

In the Greater Accra region, flooding is a recurring concern, particularly in low-lying areas and zones with poor drain-
age systems. Heavy rainfall during the peak seasons, compounded by the region’s topography and land use, often leads 
to inundation and waterlogging. The lack of adequate infrastructure and urban planning exacerbates this issue, making 
some areas prone to flash floods and subsequent damage to property and livelihoods. Additionally, the encroachment 
on waterways and wetlands further contributes to the region’s susceptibility to flooding incidents. Addressing these 
challenges requires comprehensive flood mitigation strategies, improved drainage systems, and sustainable urban devel-
opment practices to minimize the impact of flooding in Greater Accra.

2.2 � Data sources and flood conditioning factors

The detailed specifications of the datasets used in the study are presented in Table 1, showing various types and sources. 
These datasets were used in generating layers of flood conditioning factors utilized in the FR model. Future precipitation 
data for different SSP scenarios in Greater Accra was sourced from the study of Siabi et al. [51]. Land use and land cover 
(LULC) changes under SSP scenarios were modeled using the GeoSOS-FLUS [52] software, based on the 2020 LULC map 
for Greater Accra. GeoSOS-FLUS integrates natural and human influences for simulating multi-type land use scenarios. 
Urban data, both current and future under SSP scenarios, were extracted from the respective LULC maps. Stream data 
was derived from the Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) data, while road data 

Fig. 1   Study area map
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Table 1   Sources and type of 
data used

Description of data Data type/
resolution

Year Source

Landsat 8 LULC map 30 m 2020 Author generated
Future LULC 30 m 2020–2055 Author generated
SRTM DEM 90 m 2020 USGS
Stream Raster 2020 Extracted from DEM
Geology Raster 2020 Ghana Geological Survey Authority
Road Raster 2020 Extracted from Google open street
Precipitation Raster 2020 GMet
Future precipitation Raster 2020–2055 Siabi et al. [51]
Urban data Raster 2020 Retrieved from LULC map 2020
Future Urban data Raster 2020–2055 Retrieved from LULC maps 2020–2055
Flood inventory data Vector 2015–2019 NADMO/Literature/field survey [14, 17–19, 46, 55]

Fig. 2   Flood conditioning factors used for the study



Vol:.(1234567890)

Research	 Discover Water            (2024) 4:76  | https://doi.org/10.1007/s43832-024-00140-7

was obtained from Google Open Street Maps [53]. Elevation, slope, and topographic wetness index (TWI) were extracted 
from the SRTM DEM [54]. These datasets collectively formed the flood conditioning factors (Fig. 2).

2.2.1 � Elevation

Elevation is a key factor affecting flooding, with lower elevations generally experiencing a higher risk of flooding [54]. 
The study area, with elevations ranging from − 21 to 398 m above mean sea level (MSL), was divided into five elevation 
classes. Analysis of the elevation map indicates that the region predominantly consists of very low-lying areas within 
this range (Fig. 2). The predominance of these low elevations significantly contributes to the flood risk in the study area.

2.2.2 � Slope

Slope is a crucial factor in hydrology, with a direct relationship to surface runoff and a significant impact on flooding [55]. 
The slope of the study area, measured in degrees from the processed DEM, was reclassified accordingly. Typically, areas 
with low elevation feature gentle or flat slopes, making them more prone to flooding and waterlogging (Fig. 2). Steeper 
slopes, on the other hand, increase water velocity, leading to faster runoff. Conversely, flat or gently sloping terrain allows 
runoff to disperse more gradually [56]. As a result, low-gradient slopes in lower elevations are more susceptible to flood-
ing compared to steeper, high-gradient areas. The elevation and resulting slope exhibit minimal spatial variation due to 
historical changes in the study area.

2.2.3 � Curvature

Curvature offers important insights into the terrain’s geomorphological characteristics [57]. Plan curvature data, extracted 
from the DEM, was classified into three categories: concave, flat, and convex (Fig. 2). In the study area, 19.19% of the land 
has a concave curvature, 48.63% is flat, and 32.16% is convex.

2.2.4 � TWI (Topographic Wetness Index) and SPI (Stream Power Index)

TWI and SPI are critical hydrological factors commonly used in flood studies. TWI (Topographic Wetness Index) maps the 
spatial distribution of moisture, influencing surface runoff patterns [40], whereas SPI (Stream Power Index) measures the 
erosive potential of surface runoff [58].

2.2.5 � Soil type/Geology

In this study, geology is regarded as a key conditioning factor due to its direct impact on the ground’s water absorption 
capacity [59]. Geological data for the region was sourced from the Ghana Geological Survey Authority. The study area 
includes five distinct geological units (Fig. 2), with Accranian geology being the most prevalent. Terrains with this geo-
logical composition are susceptible to rapid runoff, which heightens the risk of severe flooding downstream, especially 
during heavy rainfall events.

2.2.6 � Land use land cover

In susceptibility mapping, understanding the spatial distribution of Land Use and Land Cover (LULC) is crucial for iden-
tifying which land use types and activities are most affected by frequent flooding. Different LULC categories, such as 
croplands, bare lands, and built-up areas, particularly in low-lying regions, can significantly influence flood occurrence 
and severity. For instance, areas with extensive croplands may experience increased runoff due to soil disruption, while 
bare lands offer minimal absorption and can lead to heightened surface runoff. Built-up areas, especially in flood-prone 
zones, often have impervious surfaces that exacerbate flooding by preventing natural water absorption [3]. The LULC 
information for the study area, which highlights these factors, is detailed in Fig. 2. This information is vital for assessing 
flood risk and implementing effective land management strategies.
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2.2.7 � Distance from stream and drainage density

Proximity to natural drainage is a critical conditioning factor due to its substantial impact on flooding. Areas located 
near natural drainage systems, such as streams and rivers, are more prone to flooding because these water bodies 
can quickly convey excess water during heavy rainfall. The distance from streams is an important aspect to consider; 
regions closer to streams are at a higher risk of flooding compared to those further away. This is because the closer 
proximity allows for less time for water to dissipate, leading to quicker accumulation and higher flood risks in these 
areas. Drainage density, which measures the extent of stream networks within the study area, also plays a crucial role 
in flood events. A higher drainage density, with numerous and densely packed streams, can exacerbate flooding by 
increasing the volume and speed of surface runoff. Areas with a high drainage density often experience more frequent 
and severe floods due to the efficient and rapid channeling of water from rainfall into streams and rivers. Figure 2 
provides a detailed map showing both the distances from streams and the drainage density across the region. This 
information is essential for understanding how proximity to natural drainage and drainage density contribute to 
flood risk, aiding in the development of effective flood management strategies.

2.2.8 � Distance from urban and roads

The distance from urban areas and roads is a vital factor in assessing flood susceptibility in the Greater Accra region 
of Ghana. Urbanization significantly alters the region’s hydrological dynamics, influencing its susceptibility to flood-
ing. Analyzing how proximity to urban centers and transportation networks affects flood risk is essential for effective 
flood risk management and mitigation. Urbanization tends to increase flood risks through multiple mechanisms. 
The expansion of built-up areas does not only result in more impervious surfaces, but also lead to issues such as 
improper solid waste disposal into drainage systems, which can clog and impair their functionality, construction 
activities, especially in or near waterways, can further disrupt natural water flow and exacerbate flooding as well as 
informal activities in unplanned urban areas—such as unauthorized encroachments, and illegal dumping can severely 
affect drainage systems and water flow patterns. These activities can redirect or concentrate runoff towards areas 
not adequately prepared for high volumes of water, increasing the likelihood of severe flooding. Figure 2 shows the 
spatial distribution of distances from urban areas and roads.

2.2.9 � NDVI

In evaluating flood susceptibility, the Normalized Difference Vegetation Index (NDVI) is crucial for assessing land cover 
and land use changes. NDVI values range from − 1 to 1, with higher values reflecting healthier and denser vegetation 
(Fig. 2). Healthy vegetation, indicated by elevated NDVI values, enhances soil stability through root systems that bind 
the soil, reduce erosion, and improve water absorption. In flood-prone areas, robust vegetation can help mitigate 
the effects of heavy rainfall by promoting natural drainage and reducing surface runoff. NDVI is also instrumental 
in identifying and delineating floodplains. Areas with lower NDVI values, such as barren land or urbanized regions, 
typically exhibit reduced vegetation density and may be more vulnerable to flooding. By incorporating NDVI data 
into floodplain mapping, authorities can better identify high-risk areas and implement targeted flood mitigation 
strategies. This integration supports more effective flood management by highlighting areas where vegetation can 
play a critical role in flood prevention and management.

2.2.10 � Aspect

The aspect, or the direction a slope faces, is a key factor in flood susceptibility within the region of Ghana (Fig. 2). 
Analyzing the aspect of terrain offers important understandings into water runoff patterns and their impact on 
flooding risk and also identify how different slope orientations affect water accumulation and runoff behavior. For 
example, low-lying areas with certain slope aspects may be more prone to water accumulation, especially during 
heavy rainfall. Conversely, slopes oriented in directions that facilitate rapid runoff can increase the likelihood of flash 
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floods in downstream areas. Therefore, evaluating aspect data is crucial for identifying areas at greater risk of flood-
ing and for implementing appropriate flood management strategies.

2.3 � Flood inventory

For flood susceptibility mapping, it is imperative to consider historical flood occurrence data that is scientifically justified 
to forecast future floods [60]. The accuracy and reliability of the forecasted flood susceptibility rely on the correctness of 
historical flooding events [4]. Flood inventory data from 2015 to 2019 was obtained from the field survey, NADMO and 
literature [14, 17–19, 46, 61]. The study used a sum of 384 flood points. These points were randomly divided into training 
and validation of the developed flood model; 70% and 30% of the flood points were used for training and testing the 
final model, respectively. Several studies have employed this same structure in the training and authentication of their 
models [8, 9, 60]. However, there are no specific rules for defining how flood points are divided into training and valida-
tion [29]. Figure 3 presents the flood inventory map of the Greater Accra region.

2.4 � Frequency ratio model

The evaluation of flood susceptibility is relevant to discover the conditioning factors of floods. The association between 
the occurrence of flooding and the related conditioning factors can be detected based on historical flooding events and 
their causative factors. The study utilizes the FR model in generating the flood susceptibility maps for Greater Accra under 
the SSP scenarios. The FR model is a bivariate statistical analysis technique that critically analyzes the contribution of each 

Fig. 3   Greater Accra Flood inventory map



Vol.:(0123456789)

Discover Water            (2024) 4:76  | https://doi.org/10.1007/s43832-024-00140-7	 Research

class of each flood conditioning factor on future flooding [30]. FR (see Eq. 1) is estimated by analyzing the association 
between flood events and the contributing factors. Therefore, FR [62, 63] is given as:

where Npix(Xi) = number of flood points in class i of variable X; Npix(Xj) = the number of pixels in variable Xj ; m = total classes 
in the variable Xi ; n = total factors of the study area.

An FR value greater than 1 indicates significant parameters that strongly contribute to flooding. Conversely, an FR 
value less than 1 signifies an inverse relationship between flood occurrence and the conditioning factors [41, 64–67].

After the estimation of the FR for every class, all values for each conditioning factor are summed for generating the 
final flood susceptibility map. The formula for the final flood susceptibility index (FSI) (see Eq. 2) is given as:

The FR approach has been successfully applied for flood susceptibility mapping globally [4, 8, 9, 26].
However, prediction rate is calculated as

where RF = relative frequency and defined as the FR value per class divided by the sum of FR values for an input param-
eter; Max RFi = the Maximum relative frequency value of ith parameter; Min RFi = the Minimum relative frequency value 
of ith parameter; Q = the lowest difference (MaxRFi −MinRFi) attained by an input parameter compared to all other 
parameters.

2.5 � Model validation

The receiver operating characteristic (ROC) curve [68] was used to validate the baseline flood susceptibility map. The ROC 
curve is a scientific and general technique of assessing the accuracy of a model. In the ROC curve, the X and Y axes show 
the false and true positive rates, respectively. To substantiate the prediction of models, the area under the curve (AUC) 
is considered. An AUC value of less than 0.50 is considered unsatisfactory for flood susceptibility mapping. A perfect 
model is attained when the AUC is 1. Therefore, the model is defined as poor when the AUC is between 0.5 and 0.6. The 
model is good when the AUC is between 0.7 and 0.8, and the model is very good and excellent when AUC is between 
0.8–0.9 and 0.9–1, respectively.

2.6 � Methodological roadmap for the flood susceptibility mapping

Figure 4 shows the methodological roadmap for generating current and future flood susceptibility maps of Greater Accra. 
The flood conditioning factors were categorized into natural and anthropogenic factors. The preprocessing stage initially 
involved clipping and reclassifying all datasets to the study area into five subclasses. Subsequently, thematic layers were 
created for each factor, all standardized to a spatial resolution of 30 m, consistent with the LULC data resolution. A flood 
inventory map was developed using historical flood data sourced from field surveys, NADMO, and literature (Table 1). 
This, combined with future layers such as distance from urban areas, precipitation, and LULC under SSP scenarios, con-
stituted the input data for the FR model (see Fig. 2). The baseline flood susceptibility map generated by the FR model 
was validated and assessed for performance using Receiver Operating Characteristic-Area under the curve (ROC-AUC). 
If the model performed well, future flood susceptibility maps were produced. If performance was inadequate, the model 
underwent recalibration until satisfactory validation scores were achieved. For forecasting future floods under SSP sce-
narios, all flood conditioning factors were kept constant except for variable factors like precipitation, LULC changes, and 
distance from urban areas (Table 1).

(1)FR =

�

Npix(Xi)
∑m

i=1
Xi

�

�

Npix(Xj)
∑n

j=1
Npix(Xj)

�

(2)FSI =

n
∑

j=1

FR

= (Max RFi −Min RFi) − Q
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2.7 � Flood exposure analysis

Historical precipitation data from 1991 to 2020 was obtained from the World Climate Guide to determine average 
monthly rainfall days in Accra [69]. A typical 8-h flooding duration from a heavy rainfall event was estimated based 
on prior hydrologic analysis by Ansah et al. [70]. This 8-h duration was adjusted by ± 2 h to represent moderate and 
very heavy rainfall events, respectively, according to USGS rainfall intensity classifications [71].

Future rainfall intensification under each SSP scenario was quantified using the prediction rates of influential 
flood conditioning factors (precipitation, land cover, and distance from urban areas) from the frequency ratio flood 

Fig. 4   Methodological flowchart for flood susceptibility mapping
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model results. The relative increase in these factors compared to 2020 baseline levels was used to scale the typical 
8-h flooding duration each month and estimate future flood duration hours through to 2055.

2.8 � Annual electricity supply potential

The locations of 45 electricity bulk supply points (BSPs) in Greater Accra were mapped in GIS software using data obtained 
from GRIDCo and the Electricity Company of Ghana (ECG), as presented in Appendix 3. The capacity and average annual 
availability of each BSP facility were compiled based on information from the electricity distribution companies. Avail-
ability factors of 0.85 accounting for maintenance downtime were applied to estimate each BSP’s annual electricity 
supply potential in MWh based on its capacity in MW.

2.9 � Power denial estimation

We define power denial in this context to mean power not available to consumers due to the shutdown of a flooded 
BSP. Flood susceptibility maps were used to identify BSP susceptibility to flood which is crucial for a comprehensive risk 
assessment. While flood depth and duration are primary factors in determining potential inundation, the use of flood 
susceptibility maps provided additional critical insights by incorporating multiple flood conditioning factors such as 
elevation, land cover, and drainage density. This multidimensional approach enhanced the predictive accuracy of flood 
risks, which informs strategic planning for infrastructure resilience under different climate scenarios. The flood duration 
estimated each month per SSP scenario were assumed to represent BSP outage times during an extreme flooding event 
to quantify power denial in Eq. (4). The outage time was multiplied by the capacity to estimate power denial in MWh for 
each BSP (see Appendix 3). Results were summed across all BSPs to determine total power denial in Greater Accra under 
each future flooding scenario.

3 � Results

3.1 � FR values for flood conditioning factors

Table 2 presents the weights of the various sub-classes of the 16 flood conditioning factors used in the FR model. FR 
values for flood conditioning factors, such as elevation, slope, precipitation, TWI, STI, SPI, and drainage density, have 
been estimated using the FR model (see Appendix 1). High SPI values between 0.21–0.04 and 0.03 – 1.57 had FR values 
that are considerably greater than one (Table 2). This implies that, the higher SPI the higher the probability of occurrence 
of flood. Similarly, FR values tend to increase as precipitation increases. For instance, precipitation subclasses between 
948–1018 mm (FR = 1.13) and 1018–1137 mm (FR = 1.06) recorded FR values that are greater than one (see Table 2). This 
signifies high probability of flood occurrence in high rainfall areas of the region.

For distance from stream, areas with distance between 0.0024 and 0.0053 m to stream recorded an FR value of 1.34. 
This signifies that as the distance decreases from a stream, the FR value increases leading to a high probability of flood-
ing in these areas. Likewise, FR values tend to increase as distance from urban areas decreases. For instance, areas with 
distance between 1–72.56 and 72.56–141.87 m from urban recorded 1.08 and 1.33 FR values, respectively, showing a 
high probability of flooding in these areas (Table 2). Distance from urbanization is one of the major contributors of flood-
ing events. Urban areas are known for their concretization, which prevents rainwater from seeping into the ground; as 
a result, surface runoff is accelerated, leading to flooding in areas where draining systems are not big enough to handle 
the flow accumulation.

From Table 2, the FR values are more than one where NDVI is between − 0.14 and 0.15, signifying no or unhealthy 
vegetation with higher chances of flooding (see Table 2). NDVI, which shows the health of vegetation, may contribute 
to flooding since areas where there is no or unhealthy vegetation has a greater chance for flooding. Moreover, LULC 
sub-classes such as water (FR = 1.94), cropland (1.04) and bareland (2.03) had FR values that is more than 1, compared to 

(3)Supply(MWh) = Capacity(MW) × Operating time(h) × Availability factor(%)

(4)Power denied (MWh) = Capacity (MW) × Outage time (h)
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Table 2   Features and FR results of flood factors

Factors Classes Total pixel (km2) % of area Total flood 
pixel (km2)

% of area FR

Stream Power Index (SPI) − 4.74 to 1.42 1049 0.261 4 0.004 0.016
− 1.42 to 0.61 4990 1.239 55 0.057 0.046
0.61–0.21 41,711 10.360 6798 7.089 0.684
0.21–0.04 179,819 44.664 45,555 47.508 1.064
0.03–1.57 175,033 43.475 43,478 45.342 1.043

Precipitation (mm) 623.88–762.91 30,324 7.067 13,758 3.471 0.491
762.91–861.64 45,998 10.720 11,769 9.024 0.842
861.64–948.28 67,467 15.724 14,759 15.481 0.985
948.28–1018.80 98,925 23.055 28,333 26.172 1.135
1018.80–1137.67 186,369 43.434 39,638 45.852 1.056

Distance from stream (m) 0.022–0.042 6266 1.657 1975 1.090 0.658
0.015–0.022 41,034 10.848 5695 6.366 0.587
0.01–0.015 81,857 21.641 13,274 14.838 0.686
0.0053–0.01 110,640 29.251 24,687 28.713 0.982
0.0024–0.0053 138,449 36.603 43,829 48.993 1.338

Distance from urban (m) 281.91–359.71 15,045 3.505 46 0.042 0.012
209.77–281.91 26,932 6.274 714 0.658 0.105
141.87–209.77 46,273 10.780 9189 8.471 0.786
72.56–141.87 89,163 20.773 29,993 27.649 1.331
1–72.56 251,818 58.667 68,537 63.180 1.077

Normalized Difference Vegetation 
Index (NDVI)

0.264–0.436 47,654 11.107 3962 3.649 0.329
0.203–0.264 133,523 31.120 21,658 19.948 0.641
0.150–0.203 141,812 33.052 45,587 41.987 1.270
0.094–0.150 91,856 21.409 30,034 27.662 1.292
– 0.14 to 0.09 14,208 3.311 7334 6.755 2.040

Landuse Land cover (LULC) 2020 Water 16,604 3.871 8153 7.517 1.942
Forest 24,147 5.630 2402 2.215 0.393
Cropland 225,280 52.525 59,228 54.608 1.040
Bareland 2824 0.658 1447 1.334 2.026
Built-up 160,047 37.316 37,230 34.326 0.920

Drainage density 59.06–99.74 89,984 20.980 16,781 15.576 0.742
41.46–59.06 118,472 27.622 23,931 22.213 0.804
26.99–41.46 101,969 23.774 25,596 23.758 0.999
13.3–26.99 81,719 19.053 28,457 26.414 1.386
0.001–13.3 36,765 8.572 12,970 12.039 1.404

Slope 16.03–43.54 1450 0.356 3 0.003 0.008
8.40–16.07 5748 1.410 42 0.041 0.029
3.62–8.40 16,065 3.940 456 0.450 0.114
1.23–3.62 140,607 34.483 24,432 24.129 0.700
0.036–1.23 243,887 59.812 76,324 75.377 1.260

Curvature – 13 to 2.02 6032 1.447 3 0.003 0.002
– 2.02 to 1.04 18,463 4.432 4 0.004 0.016
– 1.04 to 0.04 62,533 14.709 20,765 19.199 1.003
0.04–1.02 209,269 49.456 52,594 48.635 1.024
1.02–12 126,849 29.956 34,778 32.159 0.983
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forested area (0.39). LULC of an area is important to identify flood-prone areas in a river catchment. For instance, forest 
may act as natural resistance to flood prevention in an area. However, open fields and unprotected areas, such as water, 
crop and bare lands may be susceptible to flooding. Again, concretization in built-up areas results in an insignificant 
amount of groundwater percolation while aiding high surface runoff.

Concerning drainage density, areas with low drainage density have higher chances of flooding. For instance, areas 
with lower drainage density (< 27) in Greater Accra observed about 38% of historical flooding as FR values for subclasses 
between 0.001–13.3 and 13.3–26.99 were all above one (see Table 2). This reveals the susceptibility of these areas. Table 2 
shows that areas between 0.036° and 1.23° slope subclass are prone to flooding as the FR value (1.26) is more than one. 
The slope of an area controls the occurrence of flooding, as low-lying areas have a significant relationship with flooding 
conditions in the rainy season. High numbers of flood events occur in lower slope regions as the water cannot discharge 
rapidly. Furthermore, curvature between − 1.04–0.04 and 0.04–1.02 produced FR values greater than 1. This shows that 
areas within these two classes are susceptible to flooding. Likewise, areas with Aspect between − 1 and 73.56 producing 
FR values greater than one.

The TWI and elevation are also important flood conditioning factors. Flood probability tends to increase where TWI 
increases. For instance, all the subclasses (except the first subclass) had FR values greater than one (see Table 2). However, 
flood probability increases when elevation decreases. Thus, FR values decrease when altitude increases and vice versa. 

Table 2   (continued)

Factors Classes Total pixel (km2) % of area Total flood 
pixel (km2)

% of area FR

Aspect –1 to 73.56 68,811 16.700 14,819 14.141 1.141

72.56–141.87 81,012 19.662 21,456 20.474 0.814

141.87–209.77 87,322 21.193 24,747 23.615 0.847

209.77–281.91 96,054 23.312 24,183 23.077 0.990

281.91–359.71 78,833 19.133 19,589 18.693 0.977
Topographic Wetness Index (TWI) – 6.71 to 2.97 129,318 31.714 20,276 20.024 0.631

– 2.97 to 1.43 157,432 38.609 41,979 41.458 1.074
– 1.43 to 0.64 74,951 18.381 23,861 23.565 1.282
0.64–3.58 33,695 8.264 10,523 10.392 1.258
3.58–10.33 12,361 3.031 4618 4.561 1.504

Elevation (m) 194.53–437 6032 1.449 3 0.003 0.002
113.71–194.53 18,463 4.434 6 0.006 0.001
74.19–113.71 92,909 22.315 11 0.011 0.000
47.25–74.19 168,402 40.447 7212 6.902 0.171
21–47.25 130,544 31.354 97,260 93.079 2.969

Soil Togo series 40,875 9.569 8899 8.286 0.866
Tertially 48,469 11.347 5046 4.698 0.414
Dahomeyan 80,320 18.803 6614 5.227 0.278
Accraian 186,125 43.573 46,010 43.771 1.005
Recent 71,372 16.708 40,830 38.017 2.275

Distance to road (m) 6033.04–9876.52 9836 2.533 67 0.070 0.028
3621.44–6033.04 22,102 5.691 901 0.938 0.165
2038.83–3621.44 51,748 13.325 12,120 12.624 0.947
946.08–2038.83 111,092 28.605 29,550 30.779 1.076
267.81–946.08 193,585 49.846 53,369 55.589 1.115

Sediment Transport Index (STI) 0–2.83 208,729 96.171 50,072 94.638 0.984
2.83–12.24 6684 3.080 2018 3.814 1.238
12.24–30.61 1208 0.557 532 1.006 1.807
30.61–64.04 341 0.157 212 0.401 2.550
64.04–120.08 77 0.035 75 0.142 3.996
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For instance, the FR value obtained for the lower elevated areas (21–47 m above sea level) recorded high FR value of 2.97. 
This reveals a significant impact of elevation on flood occurrence in the Greater Accra region. For soil, the Recent and 
Accranian soil types were found to influence the occurrence of flooding by producing FR values of 2.27 and 1 respec-
tively. Moreover, Furthermore, the distance to a road between 267–946 m and 946–2038 m produced FR values of 1.12 
and 1.08, respectively. This suggests that proximity to a road increases flood susceptibility in Greater Accra. Finally, all 
subclasses of STI, except the first subclass, produced FR values above one.

3.2 � Mapping of flood susceptibility in Greater Accra

For preparing the flood-vulnerable maps, layers were created for all—15 flood conditioning factors and prediction rates 
estimated respectively. The prediction rate, which curbs issues of drawback and considers the mutual interrelationship 
among independent factors was estimated. The prediction rate reveals the sensitivity of individual flood conditioning 
factors with the training data. All the flood conditioning factors were combined for the baseline and future periods 
to generate flood susceptibility maps for the baseline period and under the SSP scenarios. For preparing the flood-
vulnerable map for the baseline period, the results were categorized into 5 subclasses ranging from very low to very 
high. Figure 5 present the final flood susceptibility map. The prediction rate of flood conditioning factors (left) and 
percentage of flood vulnerable zones (right) are presented in Fig. 6. Elevation, slope, soil, distance from urban, and SPI 
were the first five most sensitive parameters that supported flooding in the Greater Accra region, with elevation being 
the most sensitive parameter (Fig. 6). About 37% of the total area of Greater Accra is categorized under the moderate 

Fig. 5   Flood susceptibility map of Greater Accra region for the year 2020
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flood-vulnerable zone category (Fig. 6, right). This followed by about 30% categorized under the low flood-vulnerable 
zone. However, about 15.5% was categorized under the very high flood-vulnerable zone (Fig. 6, right). Districts such as Ga 
South, Accra Metropolis, La Dade-Kotopon, Ledzokuku-Krowor, Kpone Katamanso, Ningo Prampram, Ada West and Ada 
East had parts located in the very high flood susceptibility zone (see Fig. 5). All these areas are very low-lying and along 

Fig. 6   Prediction rate of flood conditioning factors used in the FR model (left) and percentage of flood susceptibility zones (right)

Fig. 7   ROC curve of the FR model
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the coastal regions of Greater Accra (Fig. 5). This reveals the susceptibility of low-lying and coastal areas to flooding. The 
present study attained an AUC value of 0.83 (see Fig. 7), which shows that the model is very good and accurate for flood 
susceptibility mapping for Greater Accra. It also shows the usefulness of the FR model in flood susceptibility mapping.

3.3 � Future flood susceptibility projections under the SSP scenarios

Figure 8 compares the flood susceptibility zones in the baseline in 2020 and SSP scenarios in 2055. Likewise the baseline, 
the coastal and low-lying areas are expected to be more vulnerable to flooding under all SSP scenarios (Fig. 8). However, 
the FSI differs across scenarios with intensification under the SSP2 and SSP3 (Fig. 8). For instance, Fig. 9 reveals a reduc-
tion in the low and moderate flood-susceptible zones under the SSP1 scenario compared to the baseline. The highest 
area expected to be covered by the moderate flood zone is about 33% under the SSP1 scenario compared to 37% in the 
baseline period. Also, very low flood- susceptible zones are expected to increase to about 14% of the total area compared 
to about 7% in the baseline. Generally, flood susceptibility is expected to be moderate under the SSP1 scenario (Fig. 9). 
However, very high susceptibility zones are expected to slightly increase under the SSP1 scenario compared to the base-
line. Between 2020 and 2040 under SSP1, the primary drivers expected to influence flooding occurrence are elevation, 
slope, distance from urban areas, soil type, and SPI, as detailed in Appendix 1. Notably, by 2045, precipitation replaces 
SPI as the fifth parameter. Moreover, within the same scenario, precipitation subsequently supplants soil type/geology 
as the fourth parameter in 2050 and 2055, as indicated in Appendix 1. For the percentage change in flood susceptibility 
zones, the SSP 1 scenario is expected to observe increase in very low flood susceptibility areas (Fig. 10).

Flood susceptibility projections under the SSP2 scenario reveals similar trends as in SSP1, especially from 2020 to 
2035 (see Fig. 10). However, the trend is expected to change from 2040 to 2055. For instance, moderate flood zones 
are expected to increase to about 41.3% and 43.7% in 2040 and 2045, respectively, compared to about 36.9% in the 
baseline (Fig. 9). In 2050 and 2055, the percentage of flood susceptibility zones is expected to move from moderate to 
high zones (about 29.4% and 30.5%, respectively). Again, very high flood susceptibility zones are expected to increase 
in 2050 (24.3%) and 2055 (25%). As such the SSP2 scenario is expected to observe an increase in high (19.4%) and very 
high (8.8%) in 2050 as well as an increase of 20.6% in high and very high (9.5%) flood susceptibility zones in 2055 (Fig. 10).

The flood susceptibility projections in the SSP3 scenario resembled those of the SSP2 scenario, showcasing a preva-
lence of moderate flood susceptibility from 2040 to 2045. Nevertheless, under the SSP3, there’s an anticipated rise in 

Fig. 8   Flood susceptibility zones under the SSP scenarios in 2055 relative to the baseline
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Fig. 9   Percentage of flood susceptibility zones under the SSP scenarios

Fig. 10   Percentage change in flood susceptibility zones under the SSP scenarios relative to the baseline scenario
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the extent of high and very high flood susceptibility zones compared to the SSP2. Specifically, the areas categorized as 
high and very high flood susceptibility zones are projected to expand to approximately 31.4% and 26% respectively by 
2050, compared to the respective percentages of 29.4% and 24.3% under SSP2, and are expected to maintain similar 
increments by 2055 (Fig. 9). This is expected to cause an increase in very high flood susceptibility zones by about 21.5% 
and 22.3% in 2050 and 2055 respectively.

Elevation, slope, proximity to urban areas, soil type/geology, and SPI are anticipated to serve as the primary influen-
tial factors driving flooding occurrences within the SSP2 and SSP3 scenarios, as outlined in Appendix 1. However, the 
upward movement of distance from urban in the prediction rate, together with other drivers, shifted the dominant flood 
susceptibility index from moderate to high (see Appendix 1). This is evident in the 2055 of SSP2 and SSP3 where distance 
from urban became the second most significant flood conditioning factor (see Appendix 1).

For SSP5, flood susceptibility projections reveal a similar trend as SSP1 across all the years under study (see Fig. 10). 
However, the severity of flood susceptibility differs under the SSP5. Flood susceptibility is generally expected to be in the 
moderate flood susceptibility zone. However, the moderate flood susceptibility zones are expected to increase especially 
from 2040 to 2055 (see Fig. 10). For instance, the moderate flood susceptibility zones in 2050 and 2055 are expected to 
be about 44.41% and 44.47%, respectively, compared to 37% in the baseline year (Fig. 9). The primary influential fac-
tors include altitude, incline, proximity to urban areas, soil composition, and rainfall (Appendix 1). The SSP5 scenario is 
expected to observe increase in moderate and very high flood susceptibility zones especially from 2040 to 2055 (Fig. 10). 
See Appendix 2 for the spatio-temporal distribution of flood susceptibility zones under the SSPs in Greater Accra.

3.4 � Flood duration

Figure 11 illustrates a clear trend of increasing flood duration hours in Accra across all modeled rainfall intensity scenarios 
and future years. Under the moderate flooding scenario, flood duration is projected to rise from a baseline of 320 h per 
year in 2020 to over 500 h in 2055. The increase is most pronounced in the high rainfall months of March to October. 
This reflects intensification of precipitation expected under climate change. The high and very high rainfall scenarios, 
representing more extreme events, show even greater flood duration increases. In the very high scenario, flooding 
is estimated to reach 640 h in 2045 and exceed 800 h in 2055—more than double the 2020 baseline. While flooding 

Fig. 11   Flooding duration for different intensity scenarios
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remains higher in the rainy season, the analysis also highlights the risk of extreme rainfall events occurring in typically 
drier months. December 2055 could see very high rainfall flooding up to 17 h in the month. The results underscore the 
growing threat seasonal and extreme flooding poses to greater Accra across all rainfall scenarios. Adaptation efforts will 
need to consider both typical and maximum potential flood levels.

3.5 � BSP flood risk assessment

The baseline flood susceptibility map in Fig. 12 depicts the locations of bulk supply points, which are labeled with sta-
tion codes in alphabetical order and their localities. Figure 13 is a chart illustrating the flooding susceptibility of each 
station under different SSP scenarios. The susceptibility levels range from very low (green) to very high (red). The chart 
also provides estimates of potential electricity supply curtailed at each station. These estimates are based on the station 
capacities and duration of flooding and do not consider flood defense systems in the baseline scenario.

The analysis shows the bulk supply points face increasing flood susceptibility, with risks escalating most sharply 
under the severe climate change SSP3 and SSP5 scenarios. In the 2025–2035 period, over 75% of BSPs fall in the low- to 
medium-risk categories across SSPs. However, by 2055, more than 50% of BSPs are within medium- to high-risk categories 
in all scenarios except SSP1, reflecting the impact of climate change. SSP3 and SSP5 stand out with over 60% of BSPs 
facing high or very high flooding risks by 2055. Coastal and low-lying BSPs like Tema Siemens, Dawhenya, and Awoshie 
are most vulnerable, with thousands of megawatt-hours denied each year. Persistent failures at these facilities would 
cripple industrial zones and commercial areas. The results highlight the urgent need for flood resilience adaptation, as 
power assets currently lack protection. Without major infrastructure improvements, Accra faces severe electricity service 
disruptions from BSP failures due to flooding, jeopardizing critical facilities and economic functions. Early action under 
SSP1 to limit emissions and upgrade at-risk BSPs could avoid the worst impacts. However, delayed action under SSP3 
and SSP5 could leave Accra’s power system highly susceptible to devastating floods. Proactive resilience investments 
will be essential to ensure BSP operability and energy security for Greater Accra’s growing population.

Fig. 12   2020 flood susceptibility map of the BSPs



Vol:.(1234567890)

Research	 Discover Water            (2024) 4:76  | https://doi.org/10.1007/s43832-024-00140-7

3.6 � Power curtailed due to flooding

The flood risk analysis shows power denied due to outages escalating over time, but with distinct trends across 
scenarios as shown in Fig. 14. SSP1 sees the smallest increases, rising from 112 GWh in 2025 to 279 GWh in 2055—a 
4.2% of the total electricity supply of 3685.77 GWh annually for the BSPs considered. SSP2 and SSP3 follow similar 
growth trajectories, reaching over 300 GWh and 5% supply loss by 2055. However, SSP5 denial remains the second 
lowest, peaking at 284 GWh (4.4%) in 2055. The results indicate that persistent losses of this magnitude would require 
load shedding and blackouts during major flood events. Even SSP1, the best case climate change and socioeconomic 
development scenario, could see significant local outages from flooded BSPs. There is the need to target adaptation 
investments at vulnerable BSPs. Protecting or relocating a few high-risk facilities could maintain electricity access 
for most customers, even if flooding increases.

4 � Discussion

4.1 � Flood projections under the SSP scenarios in the Greater Accra region

The results of the study show high positive correlation between the flood conditioning factors and the occurrence 
of flooding in the Greater Accra region as revealed by the FR values. Elevation, distance from urban, slope, soil, 
SPI and precipitation were the first five most sensitive parameters that is expected to influence flooding in the 

Fig. 13   BSP flood susceptibilities and power denied across SSP scenarios
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Greater Accra region, with SPI and precipitation interchanging positions under the SSP scenarios. Several studies 
have attributed flooding in Greater Accra to non-meteorological factors [70]. For instance, elevation was generally 
found to be the most sensitive flood condition factor in the Greater Accra region as areas between 21 and 47.25 m 
above sea level (especially areas along the coastal line) were found to be highly vulnerable in the historical and 
future periods. The study of Ansah et al. [70] revealed that Accra is a coastal region at low altitude that receives 
run-offs from high altitude, especially in the month of June, which is the peak of the major rainy season over south-
ern Ghana. Consecutive wet days over inland areas and high grounds continually drained off to the sea. Due to 
the low-lying nature of the Greater Accra region, the run-offs accumulate, resulting in stray waters entering urban 
and unprotected areas. While elevation may not fall under meteorological flood conditioning factors, it remains a 
significant natural element in flood occurrence. Given the challenging nature of addressing natural factors, adapta-
tion strategies need to carefully account for additional factors, such as proximity to urban areas, for effective flood 
management in the region.

Again, distance from urban areas is the second-most sensitive flood conditioning factor in the Greater Accra 
region, especially in the future under the SSP scenarios. The SSP2 and SSP3 scenarios are expected to be the worst-
case scenarios where high flood susceptibility zones are expected to generally dominate. This may be attributed 
to the population projections under the SSP2 and SSP3 scenarios. For instance, population is expected to hit 9 and 
12.6 billion by the end of the twenty-first century [72]. These increases are expected to affect urban growth since 
population and urbanization have a proportional relationship. Therefore, as population increases, urbanization 
is expected to also increase, which provides conditions conducive to flooding, especially in an already densely 
populated region like in Greater Accra. As a result, distance from urban was found to have great influence on the 
occurrence of flooding in the Greater Accra region, especially from 2040 to 2055 under SSP2 and SSP3. The pro-
liferation of hardscapes, unplanned settlements in flood-prone areas, poor drainage systems, limited tree plant-
ing, limited roof-top rain harvesting systems, and unplanned settlements and settlements in riparian zones and 
wetlands, coupled with the high generation of solid waste which ends up in drains other areas are associated with 
urban sprawl, which leads to increased run-off in these areas [1, 19, 70, 73]. As a result, even moderate precipita-
tion can trigger floods, posing a significant challenge for city planners, particularly regarding the management of 
infrastructural development in the area [70]. The sensitivity of the flood conditioning factors, such as slope, soil 
type and SPI, persisted consistently across all the SSP scenarios in the Greater Accra region. However, precipitation 
as a meteorological flood conditioning factor was amongst the top flood conditioning factors under the SSP1 and 
SSP5 scenarios. Soil type or geology was identified as one of the most influential factors contributing to flood occur-
rence in the region. Studies indicated that areas within the Accra metropolis characterized by Accranian and Togo 
series rock types experienced more frequent high floods. Geological formations prevalent in the Dahomeyan series 
were observed to channel runoff toward low-lying areas, thereby exacerbating flooding in the region, particularly 
within the Accra metropolis [45].

Fig. 14   Electricity denied forecast (left) and percentage of electricity denied from total BSP supply (right)
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4.2 � Flood resilience measures

The results show Accra’s power system should increase adaptation measures to manage future supply impacts due to 
flooding as persistent flooding of these facilities would paralyze southern Accra’s power supply chain. Key industrial and 
commercial areas could face prolonged blackouts during flood events, and hospitals, water services, and other critical 
infrastructure would be jeopardized.

To enhance resilience, flood defenses should be prioritized at the most vulnerable BSPs, like Achimota, Weija, Ridge, 
Dawhenya, Tema, Awoshie, Afienya, Spintex, Adabraka, Avenor, Tseaddo, Kokomlemle, and and Graphic Road substations. 
Elevating or relocating flood-prone components like transformers could enable them to function during lower-level flood-
ing events [74]. Construction of berms, floodwalls, and raised access roads would shield facilities from extreme flooding. 
This approach has been explored in the context of flood prevention devices for transformer substations, where a baffle 
made of metal material is used to control floodwaters and prevent them from entering the substation [75]. Additionally, 
the concept of flexible transformers has been proposed, which can be used as replacements for different voltage levels 
and have adjustable impedance features to match the requirements of impacted substations [76, 77]. These flexible 
transformers have been proven to be functional and stable in both factory lab and field tests [78]. Furthermore, the use 
of flood monitoring systems with float switches which allows operators to de-energize equipment or substations prior to 
loss of control and eventual damage can be used as an early warning system [75]. In constructing new BSPs in high-risk 
zones should be avoided. Where relocation is infeasible, redundant connections and distributed supply sources, such as 
solar photovoltaic power with battery storage, could maintain power when legacy assets are flooded. Corrosion-resistant 
or galvanized substation equipment, such as bracing, purlins, and exterior panels can also be used where relocation is 
impractical [79]. By implementing these strategies, the impact of flooding on transformer substations can be reduced, 
ensuring a more reliable energy supply.

5 � Conclusion

This study analyzed current and future flood risks and their impacts on electricity bulk supply points in Greater Accra, 
Ghana under different climate change (Shared Socioeconomic Pathway) scenarios. The study used 16 flood conditioning 
factors in simulating current and future flood conditions under the SSP scenarios using the Frequency Ratio (FR) model. 
The performance of the model was evaluated using the Receiver Operating Characteristic (ROC) curve, displaying high 
accuracy (an Area under the curve (AUC) value of 0.83) for flood susceptibility mapping in Greater Accra. Analysis reveals 
elevation, distance from urban areas, slope, soil type, SPI, and precipitation as the primary influential parameters increas-
ing flood susceptibility in the region. Notably, elevation emerges as a critical factor, especially for areas near the coast 
between 21 and 47.25 m above sea level. Moreover, the distance from urban areas, particularly under SSP2 and SSP3 
scenarios, emerges as another significant factor affecting flooding due to population growth and subsequent urbaniza-
tion. Moreover, the study identified vulnerable electricity infrastructure and projected potential impacts on power supply 
for the region under the SSP scenarios. The results illustrate the urgent need to adapt Accra’s power system infrastructure 
to increasing flood hazards driven by climate change. Electricity disruption due to flooding is projected to grow, leaving 
coastal and low-lying bulk supply points at high risk. Persistent flooding of these facilities would cripple Accra’s electricity 
supply chain, jeopardizing key services and economic functions. To enhance resilience, the study recommends prioritiz-
ing upgrades like flood barriers, elevated equipment, and infrastructure hardening at the highest-risk bulk supply points. 
Restricting new development in floodplains is also critical to limit exposure. Collaborative adaptation efforts between 
utilities, government agencies, and communities will be essential to develop tailored resilience strategies. Model cou-
pling with long-term energy system optimization models will also reveal optimal energy planning pathways to mitigate 
flooding impacts in the future, as part of further studies.
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Appendix 1: Prediction rates of flood conditioning factors

2020 2025 2030 2035 2040 2045 2050 2055

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

SSP1
 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000
 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975
 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158
 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211
 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355
 6 18.283 7 19.773 7 19.738 6 18.676 7 19.171 7 17.743 7 16.668 7 15.487
 7 19.630 6 19.988 8 21.024 7 20.168 6 20.773 8 21.024 8 21.024 8 21.024
 8 21.024 8 21.024 6 22.291 8 21.024 8 21.024 9 22.674 9 22.674 9 22.674
 9 22.674 9 22.674 9 22.674 9 22.674 9 22.674 10 24.830 10 24.830 10 24.830
 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830 11 27.108 11 27.108 11 27.108
 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 6 29.182 12 29.552 12 29.552
 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 6 36.855 6 35.850
 13 37.987 13 38.021 13 38.058 13 38.469 13 38.919 13 39.768 13 40.526 13 41.185
 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760
 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800
SSP2
 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000
 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975
 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158
 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211
 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355
 6 18.794 7 19.665 6 18.168 7 18.574 6 15.515 7 16.058 7 14.308 7 13.239
 7 21.024 8 21.024 7 18.795 6 20.518 7 17.508 6 20.816 6 17.041 6 21.001
 8 22.674 9 22.674 8 21.024 8 21.024 8 21.024 8 21.024 8 21.024 8 21.024
 9 24.047 6 23.138 9 22.674 9 22.674 9 22.674 9 22.674 9 22.674 9 22.674

https://zenodo.org/doi/
https://zenodo.org/doi/
https://doi.org/10.5281/zenodo.10631311
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

Fac-
tors

Predic-
tion 
rate

 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830
 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108
 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552
 13 38.435 13 38.010 13 38.320 13 39.111 13 40.049 13 41.221 13 43.052 13 43.760
 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 44.714
 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800
SSP3
 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000
 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975
 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158
 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211
 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355
 6 18.536 7 19.722 6 15.515 7 19.029 7 16.786 7 17.312 7 14.104 7 12.966
 7 18.813 8 21.024 7 19.728 8 21.024 6 17.646 8 21.024 8 21.024 8 21.024
 8 21.024 6 21.845 8 21.024 9 22.674 8 21.024 9 22.674 9 22.674 6 21.936
 9 22.674 9 22.674 9 22.674 6 24.668 9 22.674 10 24.830 6 22.995 9 22.674
 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830 6 25.926 10 24.830 10 24.830
 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108
 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552 12 29.552
 13 38.964 13 38.004 13 37.966 13 38.518 13 39.128 13 40.026 13 42.983 14 43.760
 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 13 44.552
 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800
SSP5
 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000
 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975 2 3.975
 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158 3 9.158
 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211 4 11.211
 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355 5 11.355
 6 17.586 7 19.610 7 19.526 7 18.812 7 18.649 7 17.427 7 16.597 7 15.631
 7 17.816 8 21.024 8 21.024 8 21.024 8 21.024 8 21.024 8 21.024 8 21.024
 8 21.024 9 22.674 9 22.674 9 22.674 9 22.674 9 22.674 6 21.485 9 22.674
 9 22.674 10 24.830 10 24.830 10 24.830 10 24.830 10 24.830 9 22.674 6 24.654
 10 24.830 11 27.108 11 27.108 11 27.108 11 27.108 11 27.108 10 24.830 10 24.830
 11 27.108 6 27.957 12 29.552 12 29.552 6 29.273 6 28.728 11 27.108 11 27.108
 12 29.552 12 29.552 6 36.438 6 32.997 12 29.552 12 29.552 12 29.552 12 29.552
 13 39.810 13 38.019 13 38.083 13 38.513 13 38.957 13 39.812 13 40.554 13 41.294
 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760 14 43.760
 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800 15 69.800

Factors: Curvature = 1, Aspect = 2, Drainage density = 3, TWI = 4, Distance from stream = 5, Precipitation for the respective year = 6, LULC for 
the respective year = 7, STI = 8, NDVI = 9, Distance to road = 10, SPI = 11, soil/geology = 12, Distance from urban for the respective year = 13, 
slope = 14, Elevation = 15.

Appendix 2: Flood vulnerability maps

See Figs. 15, 16, 17 and 18.
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Fig. 15   Spatio-temporal distribution of flood vulnerability zones under the SSP1 scenario

Fig. 16   Spatio-temporal distribution of flood vulnerability zones under the SSP2 scenario



Vol:.(1234567890)

Research	 Discover Water            (2024) 4:76  | https://doi.org/10.1007/s43832-024-00140-7

Fig. 17   Spatio-temporal distribution of flood vulnerability zones under the SSP3 scenario

Fig. 18   Spatio-temporal distribution of flood vulnerability zones under the SSP5 scenario
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Appendix 3: List of substations and their capacities

Code Bulk supply point name Location Capacity (MW)

A Shiashi ECG Substation Legon 9.35
B ECG Sub Station—Exhibition Dansoman Exhibition 9.35
C ECG Substation Teshie Nungua 9.35
D ECG Korle-Bu Korle Bu 9.35
E ECG Substation Tema Tema Steel Works 9.35
F Enclave Power Company substation Tema 9.35
G Electricity Company of Ghana Substation Ofankor 9.35
H GRIDCO ACCRA-EAST SUBSTATION Accra East 28.05
I GRIDCO—ACHIMOTA SUBSTATION Achimota 28.05
J E.C.G. Primary Station [Tokose Station Z] Weija 9.35
K ECG Substation, Airport City Substation Airport 9.35
L Gbawe ECG substation Mallam 9.35
M ECG substation ’AH’ (Ministries) Ridge 9.35
N ECG Transformer Substation Adenta 9.35
O Dawhenya ECG Sub-Station Dawhenya 9.35
P Siemens Power Plant Tema 9.35
Q ECG Power Sub Station Awoshie 9.35
R AFIENYA BSP Afienya 28.05
S ECG Power Station Legon 9.35
T Station AE Kwabenya 9.35
U Makola station G Makola 9.35
V Station Y Bastona Spintex, Batsona 9.35
W GrIdco accra central adabraka 28.05
X Graphic road graphic road 9.35
Y Avenor avenor station 9.35
Z ECG Station R Ridge 9.35
AA AJ Tradefair Tseaddo 9.35
AB Station X Osu Kuku hill 9.35
AC AU Cantoments 9.35
AD A-ECG substation Odorkor 9.35
AE Station L Burma Camp 9.35
AF ECG substation AS Kanda substation 9.35
AG Station K Switchback, cantoments 9.35
AH ECG station SW Sowutuom 9.35
AI Station AP Polo grounds 9.35
AJ Station F Kokomlemle 9.35
AK ECG substation AW Awudome 9.35
AL ECG substation S Kwashieman 9.35
AM ECG substation AL Darkuman 9.35
AN ECG substation A Odorkor 9.35
AO ECG substation AN GIMPA 9.35
AP Station Q Tema—Meridian 9.35
AQ Station A TdC 9.35
AR Station B Comm 12 9.35
AS Station C Comm 25 9.35
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