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Abstract

Myasthenia gravis (MG) is an autoimmune disease. In recent years, considerable evidence

has indicated that Gene Ontology (GO) functions, especially GO-biological processes, have

important effects on the mechanisms and treatments of different diseases. However, the

roles of GO functions in the pathogenesis and treatment of MG have not been well studied.

This study aimed to uncover the potential important roles of risk-related GO functions and to

screen significant candidate drugs related to GO functions for MG. Based on MG risk

genes, 238 risk GO functions and 42 drugs were identified. Through constructing a GO func-

tion network, we discovered that positive regulation of NF-kappaB transcription factor activ-

ity (GO:0051092) may be one of the most important GO functions in the mechanism of MG.

Furthermore, we built a drug-GO function network to help evaluate the latent relationship

between drugs and GO functions. According to the drug-GO function network, 5 candidate

drugs showing promise for treating MG were identified. Indeed, 2 out of 5 candidate drugs

have been investigated to treat MG. Through functional enrichment analysis, we found that

the mechanisms between 5 candidate drugs and associated GO functions may involve two

vital pathways, specifically hsa05332 (graft-versus-host disease) and hsa04940 (type I dia-

betes mellitus). More interestingly, most of the processes in these two pathways were con-

sistent. Our study will not only reveal a new perspective on the mechanisms and novel

treatment strategies of MG, but also will provide strong support for research on GO

functions.

Introduction

Myasthenia gravis (MG) is an autoimmune disease of chronic neuromuscular disorder mainly

caused by the antibodies against nicotinic acetylcholine receptor (AChR) in the postsynaptic

membrane [1]. The primary clinical manifestations of MG include fluctuating muscle
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weakness and fatigue, which can range from mild forms affecting only the eye muscles to

severe generalized forms. Many studies have elucidated the pathogenesis of MG [2,3]. With

improved diagnosis and prolonged survival, the prevalence of MG is growing in recent years

[2,4]. However, the current treatment strategies have different degrees of side effects and none

of them can completely cure MG.

In recent years, researching gene networks has become a focus. Vitali et al. constructed a

protein-protein interaction (PPI) network to explore the genetic underpinnings of wound

healing mechanisms [5]. Many researchers have also developed various algorithms to analyze

or identify the network functions of genes or gene products, such as MTGO [6] and DCAFP

[7], which provided great insight into the research of genes or gene products. Gene ontology

(GO) project provides a set of comprehensive available resources on genes and gene products

[8], which include concepts/classes to describe gene function and annotation. The project

focuses on the following three aspects: molecular function (MF), cellular component (CC) and

biological process (BP). In recent years, GO-biological process (GO-BP) has been the focus of

multiple research projects. For example, while exploring autophagy with GO database, Paul

et al. found that different types of autophagy require specific BP terms [9]. According to a

novel form of network-based gene enrichment, Lena et al. proposed a more effective method

for detecting BPs associated diseases [10], which may help us to better understand the mecha-

nism of different diseases if we can determine the BPs of diseases. Another study has found

that altered genes in bladder neoplasm patients were mainly enriched for two classes of BP

through GO analysis, which suggests that these BPs may participate in the onset of this disease

or worsen the observed phenotype [11]. In addition, Wirapati et al. discovered that the

GO-BPs with high ‘coexpression’ genes could help to reveal the common thread connecting

molecular subtyping and several prognostic signatures of breast cancer [12]. These studies

indicated that GO-BP may have an important role in the initiation and progression of diseases.

However, the potential role of GO-BP in MG is still unclear.

It has been reported that using old drugs for new indications has become an attractive form

of drug discovery [13] that can save time and money compared to developing new drugs. For

example, based on widely functions of miRNA, a miRNA-regulated drug-pathway network

was constructed to recognize new treatment drugs for MG in our previous work [14,15]. How-

ever, a disease may be caused by many abnormally expressed genes, which in turn disturb the

BPs that the genes participated. In addition, drugs can bind to target genes and influence the

BPs in which the target genes are located. For instance, Lee et al. developed an efficient and

useful way to investigate the relationships between BPs and side effects by building a process-

drug-side effect network [16]. It seems that if we can determine abnormal BPs that are affected

by differentially expressed genes, then some drugs that target those genes can be applied to off-

set the anomalies caused by the BPs. This approach will provide a new dimension for the treat-

ment of diseases. Researchers have proposed a method for drug repositioning based on

disease-associated GO-BP [17]. Meanwhile, Porrelloa and Piergentilib identified new potential

therapeutic targets for bladder neoplasm by analyzing BP in which altered genes were enriched

[11], which provided strong support for screening new drugs based on GO-BP. However, no

studies have focused on the association between drugs and GO-BPs in MG.

In this study, as shown in the flowchart (Fig 1), we identified risk-related GO functions and

recognized drugs based on MG risk genes. Then, we constructed GO function network

(GOFN) and drug-GO function network (DGOFN). We found an important immune-related

GO function and revealed several new drug candidates for MG by calculating Z-value between

drugs and MG. Finally, we identified two risk pathways regulated by MG risk genes and drugs,

which might interact with GO functions. These results may provide potential guidance for

identifying the mechanisms and treatments for MG.
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Data sources

Data for human MG risk genes

MG risk gene data were collected in two ways. For one thing, we manually browsed 12,454

items by searching literature published before March 1st, 2018 in PubMed database using the

terms [myasthenia gravis (MeSH Terms) and English (Language)], and then we selected eligi-

ble genes. The selection criteria for an MG risk gene was consistent with our previous studies

published online [18]: the risk gene was significantly differently expressed in at least 5 MG

samples (including blood samples or thymic samples) and was detected using dependable

experimental methods (such as ELISA, RT-PCR and Western Blot). For another thing, we also

obtained MG risk gene data from three current public databases, including Online Mendelian

Inheritance in Man (OMIM) (March 1st, 2017, https://omim.org) [19], the Genetic Associa-

tion Database (GAD) (September 1st, 2014, http://geneticassociationdb.nih.gov) [20] and Dis-

GeNET (version 5.0, http://www.disgenet.org) [21]. Finally, we collected 258 MG risk genes,

including 144 risk genes obtained through a literature search (detailed information in S1

Table) and 114 risk genes compiled from public databases (shown in S2 Table)

Fig 1. Flowchart of methods. Step 1: MG risk genes were collected from current public databases. Step 2: According

to the cumulative hypergeometric distribution, we identified statistically significant GO functions for MG. Step 3:

Based on MG risk genes, we acquired drugs related to MG. Step 4: Based on the cumulative hypergeometric formula,

we obtained statistically significant GO function pairs and constructed a GOFN network. Step 5: According to the

cumulative hypergeometric formula, we obtained statistically significant drug-GO function pairs and constructed a

DGOFN network. Step 6: According to the DGOFN, we calculated the association scores (AS) and the specificity of the

association and dissected the mechanism between candidate drugs and GO functions in pathways.

https://doi.org/10.1371/journal.pone.0214857.g001
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Human gene ontology data

The information for GO annotation was download from GO database (http://www.

geneontology.org), with the species restricted to “Homo sapiens”. Based on the genes we col-

lected, we identified MG related GO functions in GO level 3 (we selected GO-BPs to represent

GO functions) [10,14]. The GO functions with less than 5 MG risk genes were excluded from

this study.

Drugs and drug targets data

The data for drugs and their target genes were downloaded from DrugBank database (version

5.1.1) [22]. The species was limited to “Homo sapiens”. By intersecting MG risk genes we col-

lected with drug targets, we obtained 464 drugs that might target MG. Then, we excluded

drugs with less than 3 target genes from this study. Finally, we obtained 43 drugs that targeted

MG risk genes.

Methods

Human MG risk gene ontology annotation

We performed an enrichment analysis to annotate human MG risk genes using the following

formula:

P ¼ FðxjM;K;NÞ ¼
Xx

i¼0

K

i

 !
M � K

N � i

 !

M

N

 ! ð1Þ

At first, the enrichment analysis was applied for selecting GO functions significantly related

to MG. Using this approach, M denoted the total number for the human whole genome, K

denoted the number of genes in a given GO function, N denoted the total number of MG risk

genes, and x represented the number of overlapping genes between GO function and MG risk

genes. Statistical significance was achieved if the P-value was less than 0.05.

Construction of networks

The enrichment analysis (the formula (1)) was also performed in the construction of networks,

including GO function network (GOFN) and drug-GO function network (DGOFN). First,

when analyzing every two random GO function pairs, M represented the total number of the

human whole genome, N represented the total number of genes in one GO function, K

denoted the number of genes in another GO function, and x was the number of overlapping

genes between two GO functions. The association between each GO function and all other GO

functions was analyzed. Similarly, for each drug-GO function pair, M denoted the total num-

ber of human MG risk genes, K denoted the number of genes in a given GO function, N

denoted the number of target genes of a given drug, and x represented the number of overlap-

ping genes between GO functions and drugs. After calculating the p-value between every ran-

dom GO function pair or drug-GO function pair, we adjusted the p-value using the Benjamini

and Hochberg false discovery rate (FDR) to determine statistical significance. We considered a

GO function pair and a drug-GO function pair to be notably overlapping if the FDR was less

than 0.05 and constructed separately GOFN and DGOFN networks. Next, Cytoscape 3.6.0 was

used to visualize the networks.
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Functional enrichment analysis in pathways

We carried out KEGG pathway enrichment analysis to identify MG risk pathways that

included significant candidate drug targets (MG risk genes) that were enriched using the

functional annotation tools in DAVID [23]. We defined an FDR value less than 0.05 as the

cutoff.

Calculation of degree and betweenness

In the GOFN, the degree of a GO function was the number of the other GO functions which

were connected to the GO function. Similarly, the degree of a GO function (or a drug) was the

number of drugs (or GO functions), which were connected to the GO function (or the drug)

in the DGOFN. For a GO function ‘v’ in GOFN, the betweenness of ‘v’ was the sum of the

numbers of the shortest paths between all pairs of GO functions through the node ‘v’. In this

study, we calculated the node of betweenness by using the package igraph for R and the Net-

work Analysis plugin [24] of Cytoscape was used to analyze the network properties.

Association scores and screening significant drugs for MG

Based on the DGOFN, we calculated the association scores (AS) and the specificity of the asso-

ciation by using the formulas from our previous study [14]. The formulas were as follows:

Sdrugi;MG ¼ � lg
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pdrugi;k � PMG;k

q
ð2Þ

Zdrugi;MG ¼
Sdrugi;k � averageðSrandom;drugiÞ

stdðSrandom;drugiÞ
ð3Þ

In formula (2), Pdrugi,k was the P-value of drug ‘i’ enriched in GO function ‘k’; PMG,k was the P-

value of MG enriched in GO function ‘k’; and ‘k’ was used to represent the most significant

GO function affected by drug ‘i’ targets and MG risk genes. We obtained the S value of each

candidate drug after applying formula (2). Next, to assess the specificity of the association

between drugs and MG, we conducted a permutation of the GO functions and computed the

Z scores of the drugs and MG by using formula (3). We also obtained the random GO function

profiles of the drugs by randomly ranking the GO function 10,000 times. For each random

profile, Srandom,drugi was calculated according to formula (2); the average(Srandom,drugi) repre-

sents the average association score between random cases and drug ‘i’; and std(Srandom,drugi)

represents the standard variation of association between random cases and drug ‘i’. Zdrugi,MG

was the significant score between drug ‘i’ and MG. The higher the Z-value, the more significant

the association between drug and MG was. The drugs can be regarded as candidates for MG

treatment if the Z-value >1.96 (P<0.05).

Validation using GEO dataset

The human microarray dataset GSE85452 [25] was downloaded from the NCBI Gene Expres-

sion Omnibus (www.ncbi.nlm.nih.gov/geo/). The GSE85452 microarray dataset was generated

with the GPL10558 platform (Illumina HumanHT-12 V4.0 expression beadchip) and included

13 MG patients and 12 controls. T-test was applied to identify the differential expressed genes

(P< 0.05, |fold change (FC)| >2). According to a hypergeometric test, the overlap of MG risk

genes and differential expressed genes in GSE85452 data were statistically significant if the P-

value was less than 0.05.
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Results

Identification of MG-related GO functions

A catalog of 258 risk genes was created. In terms of these MG risk genes, 238 risk GO functions

(P<0.05) were identified (the detailed information was summarized in S3 Table). In this study,

we mainly concentrated on immune-related GO functions due to the complex immunological

mechanism of MG [26]. A total of 20 immune-related GO functions (P<0.05) were observed

manually and were shown in Fig 2A. Other types of GO functions, such as cell development,

defense response and tissue homeostasis, were shown in S3 Table. MG has been reported as a

humoral immunity-mediated autoimmune disease. Epstein-Barr virus (EBV) infection was

observed in B cells and plasma cells (PCs) in the thymus of patients with MG, which provided

a possible theoretical basis for the mechanism through which humoral innate immunity

induces autoimmunity in MG [26,27]. In addition, increasing evidence indicated the modula-

tion of immune response and the presence of inflammation could contribute to MG mecha-

nism [28,29] which have shown that these GO functions might exert potential important

effects in the pathogenesis of MG.

Sixty-six MG risk genes were included in the 20 immune-related GO functions. According

to the functional description of MG risk genes enriched in 20 immune-related GO functions,

these genes could be predominantly grouped into 9 categories (Fig 2B). We found that most of

the MG risk genes belonged to cytokines. It has been reported that cytokines were likely to

have major importance in the pathogenesis of MG [30]. At the same time, we also analyzed

Fig 2. Twenty GO functions of myasthenia gravis. Twenty immune-related GO functions enriched by MG risk genes (P<0.05). (B) Functional

classification of MG risk genes in 20 immune-related GO functions. (C) The frequency of MG risk genes in 20 immune-related GO functions.

https://doi.org/10.1371/journal.pone.0214857.g002
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MG risk genes located in 20 immune-related GO functions in a PPI network and obtained a

subnetwork (S1 Fig). The degree distribution of nodes in the subnetwork was displayed in S2

Fig. We found that TGFB1 with the highest degree was part of cytokines in Fig 2B, which sug-

gested that MG risk genes played an important role in the PPI network and GO functions. The

risk genes in the 20 immune-related GO functions which appeared more than once were

shown in Fig 2C. The more frequently a gene appeared, the more widely it participated in GO

functions, such as Toll-like receptor 9 (TLR9) and tumor necrosis factor (TNF). For example,

Cavalcante et al. discovered that TLR9 affected by EBV might cause the onset or maintenance

of the autoimmune response in the intrathymic pathogenesis of MG [31]. These results suggest

that the GO functions we identified may be crucial components of the mechanism of MG and

provide a new direction for studying the pathogenesis of MG.

Construction of GO function network and analysis of the network

properties

Based on the links of the 238 GO functions, we constructed a GOFN (Fig 3A). The network

contained 238 nodes and 5167 interactions.

We analyzed the topological characteristics of the network. First, the degrees of the nodes

in the GOFN were shown in Fig 3B. A small number of GO functions had high connectivity, such

as the GO term of positive regulation of NF-kappaB transcription factor activity (GO:0051092),

which had the highest degree among the immune-related GO functions and meant that it was

highly relevant to the other GO functions it was connected to. Meanwhile, we also calculated the

betweenness of the nodes in GOFN (Fig 3C). The higher the betweenness of the node, the more

important this node was in maintaining tight connectivity in the network. Similarly, the GO term

of GO:0051092 had the highest betweenness in all of the immune-related GO functions, which

illustrated this GO term could have a wide range of functions. It has been found that GO:0051092

might play a core role in the GOFN network based on the analysis of the network properties,

therefore, to figure out the association between the GO term of GO:0051092 and the other GO

functions, a subnetwork was determined (Fig 3D) by dissecting the GO term of GO:0051092 in

depth. As shown, the term was connected to 117 GO functions, and 79 of these GO functions

were connected through MG risk genes, which contained 15 MG risk genes, including TRL9,

TNF, EIF2AK2, IL6, AGER, IL1B, CD40, TNFRSF11A, TGFB1, TLR3, TLR4, KRAS, INS and

NTRK1. It has been reported that NF-kappaB transcription factor can mediate inducible expres-

sion of several genes involved in inflammatory immune responses and many other BPs, which

makes it a critical regulator of the inflammatory immune response [32,33]. Our results were con-

sistent with those of previous studies.

Construction of drug-GO function network and analysis of its topological

features

To understand how drugs (data sources) affect the GO functions, we identified 461 drug-GO

function pairs (FDR value<0.05) and established the DGOFN (Fig 4A). According to the sta-

tistical analysis, 37 MG risk genes were enriched in all the drug-GO function pairs (not shown

in the DGOFN). Meanwhile, 461 significant drug-GO function pairs between 42 drugs and

117 GO functions, which were from 238 risk GO functions, were contained in the network.

To comprehend the topological features of the DGOFN in detail, we characterized its

degree distribution. The degree distribution of all the nodes followed a power law distribution

f(x) = 51.28x−1.16 in the DGOFN (Fig 4B). We also determined the degree distribution of GO

functions and drugs in the DGOFN. The degree distribution of GO functions was displayed in

Fig 4C, the degree of regulation of immune response (GO:0050776) was 20, which was the
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highest degree in all GO functions, i.e., 20 drugs could act on this GO function. In addition,

the GO term of GO:0051092 had the second highest degree of all the immune-related GO

functions. These results indicated that immune-related GO functions may be important poten-

tial therapeutic targets for MG. The degree distribution of drugs was shown in Fig 4D, which

suggested that most of the drugs can influence more than one GO function. Furthermore, we

demonstrated the top 10 drugs and the GO functions associated with these drugs in Fig 4E,

which might provide more options for the target therapy of MG.

MG candidate drugs and associated GO functions

According to the DGOFN, we calculated Z scores of drugs and MG (methods). Five candidate

drugs with Z-value >1.96 (P<0.05) were identified, including Glucosamine, Apremilast,

Fig 3. The associations among GO functions. GO function network (GOFN) in MG. Blue triangles represent GO

functions; the size of the node represents the magnitude of the degree; the edge represents the connection between the

two GO functions. (B) Degree distribution of all the nodes in the GOFN. (C) Node betweenness in the GOFN. (D) The

dissection between the GO function for the positive regulation of NF-kappaB transcription factor activity and its

connected GO functions. Blue triangles represent GO functions; purple circles represent MG risk genes; the

interaction of two GO functions via MG risk genes is shown in the figure.

https://doi.org/10.1371/journal.pone.0214857.g003
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Adalimumab, Etanercept and Polaprezinc. To verify the reliability of our results, we down-

loaded the gene expression profile of MG (GSE85452) from Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo/). By analyzing high-throughput expression pro-

file, we found that 1647 MG genes were differentially expressed (Fig 5A). The overlap of MG

risk genes and differentially expressed MG genes was statistically significant (p<0.05) based

on a hypergeometric test (Fig 5B). Importantly, MG risk gene-FCGR1A, which is the target of

Adalimumab and Etanercept, was shown to be differentially expressed in the expression profile

of GSE85452. In fact, Adalimumab and Etanercept have been investigated to treat MG. These

findings further enhanced that our results were reliable.

Fig 4. The relationship between drugs and GO functions. (A) Drug-GO function network (DGOFN) in MG.

Network organization of drug and GO function associations. Green ‘V’ formations represent drugs; blue triangles

represent GO functions. The size of the node represents the size of the degree; edge represents the connection between

drugs and GO functions. (B) Degree distribution for all nodes in the DGOFN. (C) Degree distribution for the GO

function nodes. (D) Degree distribution for the GO nodes. (E) The top 10 drugs ranked by drug degree (Polaprezinc,

Minocycline, Apremilast, Zinc, Glucosamine, Carvedilol, Pseudoephedrine, Regorafenib, Clenbuterol and

Epinephrine).

https://doi.org/10.1371/journal.pone.0214857.g004
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In principle, the same drug can often be used to treat other diseases that share the affected

BPs. Therefore, we also confirmed the reliability of our candidate drugs by consulting the rele-

vant literature in PubMed. Glucosamine, which is a common dietary supplement, has immu-

nosuppressive effects on autoimmune diseases [34,35]. Chien et al. confirmed Glucosamine

could reduce IL2 downstream signaling through downregulating IL2RA [36], while IL2 and

IL2RA (CD25) were upregulated in patients with MG, and IL2RA might affect the clinical

symptoms of MG [37,38]. These results show that Glucosamine has the potential to be a thera-

peutic target for MG. Apremilast is a novel inhibitor of phosphodiesterase 4 that has led to

great interest in targeted treatments for autoimmune diseases [39] It was reported that Apre-

milast has been approved for psoriasis and psoriatic arthritis [40]. Furthermore, Apremilast

can inhibit the generation of cytokines such as TNF, IL-2, CXCL10 and CCL4 [41], which are

all MG risk genes. These studies suggest that Apremilast is promising for treating MG.

Next, to more intuitively illustrate the relationship among MG risk genes, 5 candidate

drugs and the associated GO functions, we built drug-GO function layered networks. We

divided the GO functions associated with drugs into immune-related functions and immune-

Fig 5. Venn diagram, heatmap and Layered networks. A. Venn diagram of MG risk genes and differentially expressed MG genes; light blue ellipse indicates

differentially expressed MG genes, pink ellipse indicates MG risk genes; purple intersection indicates overlapping genes. B. Heatmap of overlap between MG

risk genes and differentially expressed MG genes; blue rectangles represent control samples, purple rectangles represent MG samples. C. Layered networks,

including Glucosamine-GO functions network, Apremilast-GO functions network, Adalimumab-GO functions network, Etanercept-GO functions network

and Polaprezinc-GO functions network; green round rectangles indicate GO functions; purple ellipses indicate MG risk genes; orange hexagons indicate

candidate drugs.

https://doi.org/10.1371/journal.pone.0214857.g005
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unrelated functions. Then, we selected the immune-related GO functions to build layered net-

works (Fig 5C). Researchers have concluded that targeting NF-kappaB as well as its related sig-

naling pathways could be a potential therapeutic target for cancer treatments [42]. However,

MG is mainly caused by thymoma and may also be related to other kind of cancers, which

implies that GO functions may be key factors for the treatment of MG. We can see that GO

term of GO:0051092 was associated with all of the candidate drugs through TNF. A study

showed that TNF was one of the most important cytokines in the mechanism of MG, and

inhibiting TNF may exert notable clinical efficacy for MG [43], which indicates that TNF may

be a significant therapeutic target in the future. We summarized the information on target

genes among the 5 candidate drugs and immune-unrelated GO functions in S4 Table.

Mechanism dissection of MG candidate drugs and associated GO functions

in pathways

Finally, to investigate the underlying mechanisms between the 5 candidate drugs and the GO

functions affected by these candidate drugs in pathways, we performed KEGG pathway enrich-

ment analysis based on the target genes between the 5 candidate drugs and GO functions. As a

result, we identified 37 MG risk pathways (FDR value<0.05). Among these pathways, we dis-

covered that hsa05332 (graft-versus-host disease) and hsa04940 (type I diabetes mellitus) were

the two most statistically significant pathways (Fig 6). Myasthenic symptoms are frequently

associated with other symptoms of chronic graft-versus-host disease (GVHD) and MG has

been reported as a rare complication of chronic GVHD after allogeneic hematopoietic stem

cell transplantation [44–46]. Additionally, it has been evidenced that the development of type

1 diabetes increases the risk of other autoimmune diseases and is related to genetic susceptibil-

ity for development of these diseases [47]. Consequently, these two pathways are closely related

to the pathogenesis of MG. Forty-two GO functions were involved in the hsa05332 pathway,

whereas 31 GO functions were associated with the hsa04940 pathway. Immune-related GO

functions participating in the two pathways were displayed in Fig 6 (the remaining GO func-

tions were shown in S4 Table). As we can see, TNF, IL2 and INFG are the common genes in

both pathways. Because the two pathways were regulated by the most of the same risk genes,

the candidate drugs and associated GO functions were almost similar. These results demon-

strate that the GO functions we identified are useful for discovering candidate drugs and are

extremely crucial in the mechanism of MG. Meanwhile, our results will provide a new direc-

tion for clarifying the pathogenesis and treatments of MG.

Discussion

In this study, we have identified the potential mechanism of risk GO functions based on the

current knowledge of MG and screened significant candidate drugs for MG for the first time.

Through compiling the MG risk gene catalog, we enriched MG risk GO functions. Further-

more, we constructed the GOFN and demonstrated the importance of GO functions; we also

built the DGOFN and revealed candidate drugs that may affect risk-related GO functions.

Finally, we performed an enrichment analysis in pathways and proposed a potential mecha-

nism between GO functions and drugs.

The GO functions we identified reveal an overview of MG pathogenesis. They also provide

strong support for further investigation of GO functions. MG is an autoimmune disease,

immune-related GO functions may be more closed to the pathogenesis of MG. In the study,

we mainly focused on 20 immune-related GO functions. It has been reported that immune

response played important roles in the mechanism of MG [48,49], which provide the basis for

our study. Several significant GO functions associated with MG were discovered, which may
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contribute to the onset of MG. NF-kappaB was induced during B cells maturation, therefore, it

may have a major role in the activation and the development of B cells [50] while B cells are

critical contributors to the humoral immune response and can produce various antibodies. In

addition, NF-kappaB can activate cells of the innate immune system when inflammation

occurs [51]. Once NF-kappaB is triggered, a series of inflammatory immune responses may

occur that may accompany the production of antibodies, including AChR antibody and thus

induce MG. In addition, the classification of MG risk genes in immune-related GO functions

further highlighted the fundamental characteristics of autoimmune MG.

The GOFN network demonstrated that all of the GO functions were significantly correlated

with some of the remaining GO functions. According to the topological properties of GOFN,

we further implicated the potential significant role of GO:0051092 in MG. NF-kappaB is part

of a complex family of proteins that not only can mediate many crucial biological functions

through innate and adaptive immunity [50,52], but can also influence the expression of genes

Fig 6. Dissection of mechanism between candidate drugs and GO functions in pathways. The rectangle with the red lines indicates hsa05332 (graft-versus-

host disease); the rectangle with the blue lines indicates hsa04940 (type I diabetes mellitus). Yellow rectangles indicate MG risk genes; orange hexagons indicate

drugs; circles indicate GO functions.

https://doi.org/10.1371/journal.pone.0214857.g006
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participating in inflammatory immune responses. For example, miR-26 can downregulate IL6
production through silencing the expression of MALT1 and HMGA1, while MALT1 and

HMGA1 are two proteins with vital functions in NF-kappaB [53]. By dissecting GO:0051092 in

depth, we discovered that this GO term did interact with other GO functions through some

important MG risk genes. Therefore, we speculated that GO:0051092 was one of the most

important GO functions in MG.

While building the GOFN network, we also built the DGOFN network to identify signifi-

cant candidate drugs related to GO functions. The significant candidate drugs we acquired

were related to MG or other autoimmune diseases, supported by related literature. The effects

of such potential discoveries are broad because they might lead to accurate targeted therapeu-

tics and individual treatments. Our previous study considered the pathways that were enriched

by MG risk genes and miRNAs [14], whereas we mainly focused on the GO functions related

MG to identify MG candidate drugs for this study. Starting from a different perspective, we

again recognized several significant candidate drugs for MG. Our results further illuminate

that GO functions may have more prospects for research on MG pathogenesis and for screen-

ing candidate drugs for diseases. However, well-designed experiments are still essential to con-

firm whether these drugs can be used to treat MG. Nonetheless, our research will serve as an

important complement to future experimental studies of GO functions and drugs in MG, par-

ticularly because of the lack of exploration in this field to date.

In conclusion, we compiled a catalog of MG risk genes and identified risk GO functions,

drugs and risk pathways. We constructed a GOFN to help understand the association between

GO functions. We also investigated the complex connection among MG risk genes, drugs and

GO functions by constructing a DGOFN and we identified 5 candidate drugs. Furthermore,

we dissected the regulatory mechanism of candidate drugs and associated GO functions in risk

pathways. Our results may provide strong support and new viewpoint for further research on

the mechanisms and treatments of MG.
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