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Abstract

West Nile virus (WNV) outbreaks raise the concern of WNV infection in donated blood and blood 

products destined for transfusion. We describe methods we developed to estimate time-dependent 

risk of WNV infection in donated blood, including improvements not previously detailed. The 

methods are then extended for use in estimation of the risk of WNV infection in donated cadaveric 

tissues by introducing stratification and stratum-specific weighting to address novel aspects of 

this application. Data from the WNV outbreak in Colorado in 2003 are used to estimate risk for 

donated cardiac tissue.
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Introduction

Relatively soon after the documentation in 1999 of West Nile virus (WNV) circulation in 

North America, it was recognized that during a WNV outbreak the probability or “risk” 

of WNV infection in blood donors may reach sufficiently high levels to pose a threat to 

the blood supply. In two papers, Biggerstaff and Petersen (2002, 2003) used surveillance 

data for WNV neuroinvasive disease (WNND; e.g., meningitis, encephalitis, acute flaccid 

paralysis) collected by local and state public health agencies and reported to the Centers 

for Disease Control and Prevention (CDC) along with exogenous information on WNV 

viral kinetics in blood, the inapparent-to-apparent infection ratio, and the overall rate of 

asymptomatic infection to estimate the time-dependent risk of donors being WNV-infected 

at donation in regions and during timeframes of WNV epidemic activity. In the flavivirus 

family, WNV is a mosquito-borne virus, infection with which may result in no illness 

(asymptomatic infection), a relatively mild febrile illness, and severe illness involving 

neurological processes that may lead to long-term incapacitation and death. More severe 

outcomes are less common, and severity tends to increase with age. By far the most common 
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route of WNV transmission to humans is from the bite of an infected mosquito. Other 

modes of transmission have been documented, however, including laboratory exposure; from 

mother to baby during pregnancy, delivery, or breast feeding; and via blood transfusion 

or organ donation. Coincidentally, the first documented case of WNV transmission from 

donated, infected blood occurred in 2002, just weeks after the first estimates of such risk 

were published for the 1999 outbreak in Queens, New York City (Biggerstaff and Petersen 

2002; Centers for Disease Control and Prevention 2002; Iwamoto et al. 2003).

Technical details of the initial statistical methods described here were used in the original 

paper for the Queens outbreak were presented in its appendix, with less formal description 

provided in the body of the text. Subsequent applications to other geographic areas, time 

scales, and viruses (Biggerstaff and Petersen 2003; Petersen, Tomashek, and Biggerstaff 

2012; Shang et al. 2007, 2016) introduced improvements, extensions, and simplifications to 

the methods, though none of these papers contained detailed information on these changes 

from the original development. A more recent application (Biggerstaff and Petersen 2020) 

of the general methodological ideas to estimation of the risk of WNV infection in cadaveric 

tissue donations necessitated further methodological enhancements, and the present paper 

collects all of these updates into a single, detailed presentation.

We begin by providing background on the estimation goal and the information needed 

to reach it in Background & information required. Methodological and computational 

development then recapitulates and expands the appendix in the original paper for the 

Queens outbreak (Biggerstaff and Petersen 2002), with extensions to incorporate the 

asymptomatic proportion and uncertainty in this, as well as uncertainty in the inapparent-

to-apparent infection ratio (Biggerstaff and Petersen 2003); and subsequently an extension to 

incorporate multi-year estimation (Petersen, Tomashek, and Biggerstaff 2012). Refinements 

for estimation of WNV in cadaveric tissue donations introduces new refinements to these 

methods to accommodate stratification and differential weighting by stratum to address 

specific characteristics of estimation for WNV infection in cadaveric tissue donations 

(Biggerstaff and Petersen 2020).

In Development using a Poisson process model for the underlying case onset times we 

detail how our resampling implementation can be viewed as assuming an inhomogeneous 

Poisson process model for the underlying WNND case onset times and estimating the 

associated cumulative rate function using nonparametric Gaussian kernel smoothing, which 

we indicated but did not detail in the Discussion of Biggerstaff and Petersen (2002). In 

Application: cardiac tissue, Colorado, 2003 we illustrate the updated methods on a real 

data set, the full analysis for which is reported in Biggerstaff and Petersen (2020). The 

paper closes with a summary of the computational resources used followed by a discussion 

section.

Background & information required

The recognition that the probability or risk of WNV transmission from donated blood may 

be unacceptably high during an active, regional outbreak of WNV was the motivation for 

the original applications discussed here. Because WNV activity is necessarily seasonal in 
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North America, being a mosquito-borne virus, estimation methods were developed to reflect 

this time-dependence. In the United States, WNND cases are reported through established 

public health surveillance to the CDC with accompanying information, including the date 

that the patient first exhibited symptoms. Because WNND is a severe illness, surveillance 

systems capturing its occurrence in the US are thought to be essentially complete, and so 

epidemic curves developed using these data can be used to characterize the population-level 

transmission dynamics in the general population. These WNND case onset data, therefore, 

form the basis for the estimation methods used here. For the example from the WNV 

oubreak in Colorado, 2003, the WNND case onset data can be summarized in a epidemic 

curve, shown in Figure 1 for cases aged 13–55 for the application we present.

Mostashari et al. (2001) reported an estimate of the ratio of the number of WNV infections 

to the number of WNND cases in a population subject to WNV transmission. Since we 

have available the WNND case onset dates from surveillance, we can use this inapparent-to-
apparent infection ratio to estimate the number of infections in the population. This ratio is 

the key parameter in relating the observed surveillance data to population-level infections. 

Original applications used a single inapparent-to-apparent infection ratio for the whole 

population; more recent work (Carson et al. 2012; Williamson et al. 2016) has refined these 

estimates by age group and sex, which we are, therefore, now able to incorporate into our 

analyses, as we show below.

When focusing specifically on estimation for WNV infection in blood and tissue donations, 

we restrict estimates of the number infections in the population in two ways. Because 

transmission of WNV occurs only when a donation contains or is infected with viable virus 

(termed viremic in blood), and because the duration of such infection is transient, estimates 

of when a potential donor was infected are necessary to characterize the risk. Using the 

WNND case onset times as anchor times, we use estimates of the duration from infection to 

symptom onset—the incubation period—and then estimates of the duration of infection to 

do this. Finally, because donors are necessarily asymptomatic—that is, they do not exhibit 

any symptoms of illness—and are screened for symptoms that would require deferral from 

either blood or tissue donation, we account for this using an estimate of the proportion of 

asymptomatic infections (Mostashari et al. 2001).

Methodological and computational development

We develop the methods considering specifically applications to estimation of WNV 

transmission risk via blood or tissue donation. The details, however, are written to be 

able to be applied more generally. The intent in the development, therefore, is that 

whenever densities or distributions or associated parameters are required to be specified, 

the user would specify such in the application under consideration. Whenever possible in 

application, we make distributional assumptions and specifications based on published data. 

For example, below we specify a Weibull distribution for the duration of WNV viremia 

based on data reported in Southam and Moore (1954), but in another application, a different 

distributional assumption for the duration of the pathogen’s duration in blood or tissues may 

be more appropriate. In such case, in the algorithm presented in Estimation algorithm below, 

the reader should utilize the reader’s own distributional model assumptions.
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General approach, motivation, and estimation

For each i = 1, 2, …, n, let Y i be observed WNND case onset times (recorded to the day) in 

chronological order, and set Y 1 = 0 and Y n = T . Further, for each case i, let V 0i be the duration 

from time of infection to symptom onset, and let V 1i be the duration of infection. Assume 

that the timing and duration of infection are independent of symptom onset time, and that 

the V 0i are independent and identically distributed, as are the V 1i; finally assume that the V 0i

are independent of the V 1i.

The case onset dates Y i are recorded to the day, so to reflect the underlying continuous nature 

of the infection process in the environment and population we statistically smooth these 

observations by setting Xi = Y i + ℎεi, where ℎ > 0 is a smoothing parameter and the εi are 

independent standard normal deviates. We refer to “smoothing” here somewhat informally, 

though we note that in computation, generation of a value Xi by adding the scaled noise 

ℎεi for a generated Gaussian deviate εi is equivalent to sampling from a Gaussian kernel 

density smooth of the original Y i . Further, we note that specification of ℎ is important 

and related to the problem of density estimation or Poisson intensity estimation, and we 

expand on this in Development using a Poisson process model for the underlying case onset 

times. We have used the value of Sheather and Jones (1991), though on occasions when this 

value for ℎ was not computable due to insufficient data, we used the rule-of-thumb estimator 

given in Scott (1992). To preserve seasonality for multi-season data, we have estimated ℎ
using within-season information, for example by considering only day-of-year for multi-year 

observations of data with annual cycles, or by computing different ℎ values for each year and 

averaging these or resampling from them.

Viewing the smoothed case onset times Xi as anchor times, the values Xi − V 0i and 

Xi − V 0i + V 1i represent the initial and terminal times of infection, respectively, for case i. 
For a given time, t ∈ 0, T , then, case i is viremic at t whenever Xi − V 0i < t < Xi − V 0i + V 1i. 

We count the number of cases viremic at t using the function

V t =
i = 1

n
I Xi − V 0i, Xi − V 0i + V 1i t

(1)

where IA x = 1 if x ∈ A and IA x = 0 if x ∉ A.

We interpret a particular realization of this random function V t  as representative of such 

realizations, where the random mechanisms are the environmental conditions and personal 

behaviors leading to exposure and subsequent advancement to infection in the population. 

The expected value E V t  is the mean of such a theoretical population and is the basis for 

the quantity we want to estimate.

As we saw, the inapparent-to-apparent infection ratio, ρ, with estimate ρ, provides a means 

to inflate the observed counts of WNND cases to estimate the number of infections in the 

population. In particular, writing u+ for the next integer greater than u, the quantity ρ+V t
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estimates the number of individuals in the population who are viremic at time t. It will 

be convenient below to recast the quantity ρ+V t  as follows. Since V t  counts the number 

of observed cases, V t  is a non-negative integer at each t. (In addition to the desire to 

produce an integer result, the use of ρ+ is expected to provide a conservative estimate, since 

E ρ+ ≤ E ρ +.) Then write ρ+V t  as a simple expansion of the expression in Eq. (1),

ρ+V t =
j = 1

ρ+

i = 1

n
I Xi − V 0i, Xi − V 0i + V 1i t =

j = 1

ρ+

i = 1

n
I Xi

j − V 0i
j , Xi

j − V 0i
j + V 1i

j t

which is just replication of V t  a total of ρ+ times, setting each Xi
(j) = Xi, etc.

Because we are interested in estimating the probability of a donor being viremic, and since 

donors are necessarily asymptomatic, we randomly truncate infection times at symptom 

onset for the proportion of infections expected to develop symptoms. This gives us, finally, 

an estimate of the number of asymptomatic and WNV infected individuals in the population 

at time t by adjusting ρ+V t  to

ρ+V ⋆ t =
j = 1

ρ+

i = 1

n
I Xi

(j) − V 0i
(j), Xi

(j) − Bi
(j) V 0i

(j) − V 1i
(j) t

(2)

where Bi
(j)iid Bernoulli 1 − pa , and pa is the probability that an infection is asymptomatic. 

This expression ρ+V ⋆ t  is the statistic we base inference upon, and its expected value is the 

focus of our inference.

Our computation of an estimate of E ρ+V ⋆ t  proceeds using statistical simulation, using 

both the bootstrap and Monte Carlo integration. (We previously described the Monte Carlo 

integration as akin to imputation, as this approach samples from or imputes values from 

specified densities in computing integrals against these distributions.) The motivation for 

this approach is seen in the following. For each i = 1, 2, …, n, assume that Xi F i
X, for 

cumulative distribution functions (CDF) F i
X. Write F i for the CDF of Y i. Then, assuming 

ρ is a consistent estimator of ρ and is independent of all other random variables (which will 

be the case when estimated from an exogeneous source), with E ρ+ = ρ+,
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E ρ+V ⋆(t) =
i = 1

n
E ρ+ P Xi − V 0i < t < Xi − Bi V 0i − V 1i

=
i = 1

n
ρ+P t + Bi V 0i − V 1i < Xi < t + V 0i

=
i = 1

n
ρ+ P Xi < t + V 0i − P Xi < t + Bi V 0i − V 1i

=
i = 1

n
ρ+

0

∞
F i

X t + v0 fV 0 v0 dv0

−
0

∞

0

∞

b = 0

1
F i

X t + b v0 − v1 pa
b 1 − pa

1 − bfV 0 v0 fV 1 v1 dv0   dv1

= ρ+
0

∞
GX t + v0 fV 0 v0 dv0

−
0

∞

0

∞

b = 0

1
GX t + b v0 − v1 pa

b 1 − pa
1 − bfV 0 v0 fV 1 v1 dv0   dv1

= ρ+
0

∞
GX t + v0 fV 0 v0 dv0

− pa
0

∞

0

∞
GX t + v0 − v1 fV 0 v0 fV 1 v1 dv0   dv1 − 1 − pa GX(t)

(3)

where GX(u) = i = 1
n F i

X u  and noting that ρ+ is computable from the distribution of ρ.

Computation of the integrals in last expression may proceed directly, either analytically or 

numerically, if we assume particular distributions for the F i
X, fV 0, and fV 1 , and values for 

pa and ρ. A sensible, computationally accessible alternative is to couple the bootstrap with 

Monte Carlo integration. We enumerate the computational steps involved after listing our 

distributional assumptions. The estimates for the F i, and so for G, follow from the use of 

smoothed bootstrap resampling of the original onset time observations Y i and subsequent 

smoothing to Xi; a specific motivation for this is detailed in Development using a Poisson 

process model for the underlying case onset times below. In cases when estimates for the 

mean incubation period are unavailable, we assume a quartic density for V 0, so that

fV 0 v0 = 15
8 d − c 1 − 2v0 − c + d

d − c
2 2

I c, d v0

where d > c > 0 are chosen to correspond to the distribution for duration from infection 

to symptom onset. We adopted the quartic density when the only information we had on 

this variable was that the incubation period is roughly c to d days. The density fV 0 is 

symmetric with mean c + d /2 and variance d − c /20. Sampling from the quartic may be 

done using, for example, acceptance-rejection sampling. When more information regarding 

the distribution of V 0 is available, for example if there are published estimates of the mean 

and standard deviation of onset duration, we use a gamma density for fV 0 v0 .

In the original application for WNV transfusion risk via blood transfusion (Biggerstaff and 

Petersen 2002), when considering how to utilize available information for the distribution of 
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V 1 to inform specification of fV 1 v1 , the density representing the duration of WNV infection, 

we resampled from the observed values directly reported in Southam and Moore (1954) 

as representative of the distribution (so we employed bootstrapping). To be able to expand 

our methodology, we subsequently adopted the Weibull density for this duration, and we 

estimated the shape and scale parameters by matching moments. We use the Weibull below, 

noting little difference in our experience when the parameters for the Weilbull are specified 

to match the sample mean and sample variance of the data in Southam and Moore (1954).

Because we use reported estimates pa and ρ, we incorporate uncertainty in these estimates 

directly into the Monte Carlo integration as well. In particular, we assume a beta density for 

pa and a gamma density for ρ.

Estimation algorithm

With the distributional assumptions and approximations given, we compute the estimate of 

E ρ+V ⋆(t)  as follows. For each of j = 1, 2, …, J simulations:

(1) Resample with replacement n values from the originally observed case onset 

dates Y 1, Y 2, …, Y n: write these Y k
j  for k ∈ 1, 2, …, n ; throughout this algorithm, k

indexes the n resampled cases.

(2) Compute the smoothing parameter ℎj using the n values Y k
j .

(3) Generate n independent standard normal deviates, εk
j , and then compute 

Xk
j = Y k

j + ℎjεk
j .

(4) Generate n independent values V 0k
(j) from an assumed distribution fV 0 v0 .

In Biggerstaff and Petersen (2002) we used a quartic density with a = 1 and b = 5 and 

in subsequent applications used a gamma density with mean incubation period, μ0, and 

variance, σ0
2, with these moments the same as for the stated quartic based on references given 

in (Biggerstaff and Petersen 2002). To be conservative, we began to use the a gamma density 

to permit longer incubation periods than permitted by the quartic, which is bounded.

(5) Generate n independent values V 1k
(j) from a specified distribution fV 1 v1 .

We use a Weibull density with mean μ1 and variance σ1
2, where these are specified from 

available estimates.

(6) Generate a value ρ(j) from an assumed distribution fρ(r); round this value up to 

the next integer and write as ρ+
(j).

We use a Weibull density with mean μρ and variance σρ
2, where these are specified from 

available estimates.

(7) Replicate each the resampled case infection time, Xk
(j) − V 0k

(j), Xk
(j) − V 0k

(j) + V 1k
(j) , ρ+

(j)

times; identify these replicates using index r with superscripts j, r  rather than 

j .

(8) Generate a value pa
(j) from an assumed distribution fp(p).
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We use a beta distribution with mean μpa and variance σpa
2 , where these are specified from 

available estimates.

(9) Generate n × ρ+ independent values Bk
(j, r) from the Bernoulli distribution with 

probability 1 − pa
(j). This will allow independent truncation of 100 1 − pa

(j) % of 

the total number of generated “population” infections’ WNV infection times in 

simulation j.

With these values in-hand for each simulation j = 1, 2, …, J, compute on a grid of values 

0 = t1 < t2 < ⋯ < tg < ⋯ < tG = T , for g = 1, 2, …, G,

E ρ+V ⋆ tg = 1
J ∑

j = 1

J
∑

k = 1

n
∑

r = 1

ρ+
I Xk

(j, r) − V 0k
(j, r), Xk

(j, r) − Bk
(j, r) V 0k

(j, r) − V 1k
(j, r) tg = 1

J ∑
j = 1

J
W j tg

This curve is an average of J simulations of step functions, W j tg , where the heights of the 

steps are the estimated number of asymptomatic, viremic indivdiuals in the population at 

each time point, where we “connect” or linearly interpolate values between grid points. For 

simplicity, write E t = E ρ+V ⋆ t .

Confidence bands

We compute confidence bands based on the simultaneous bootstrap-t approach used in 

intensity estimation for Poisson processes, as derived in Cowling, Hall, and Phillips (1996). 

We use the Poisson approximating standard deviation and compute

T j(t) = W j(t) − E(t)
W j(t)

.

for j = 1, 2, …, J. To compute 100 1 − α % simultaneous confidence bands C1 − α over t ∈ 0, T , 

find q1 and q2 such that

P q1 ≤ W j(t) ≤ q2, ∀t ∈ (0, T ) ∣ X = α

and

P W j(t) ≤ q1, ∀t ∈ (0, T ) ∣ X = P W j(t) ≥ q2, ∀t ∈ (0, T ) ∣ X ,

for equal-tailed bands, where X represents all the data and exogeneous information 

available. Given these constraints, set

C1 − α = (t, y): t ∈ (0, T ), max 0, E(t) − q2σ < y < E(t) − q1σ ,

where σ = E(t).
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Finally, the sought-after, time-dependent risk of a WNV-infected donation is computed 

directly as the estimated number of such infections, E t , divided by the population size, N, 

and we write P t = E t /N. Similarly, the confidence bands for the risk are computed as 

C1 − α/N.

Summary measures

As part of the simulation estimation, we also estimate the mean risk over the course of the 

outbreak by computing the average height of the risk curve. We do this by computing, for 

each simulation j, the area under the curve W j t  using Simpson’s Rule, then dividing this 

by the duration of the outbreak, T . The mean of the simulated areas gives the final estimate 

of the average risk, and we use the 2.5th and 97.5th quantiles of these simulated areas as 

95% confidence intervals for the average risk. Lastly, we estimate the maximum risk over 

the course of the outbreak by reading off the maximum height of the estimated curve, along 

with a 95% confidence interval for this maximum from the confidence bands for the curve; 

the location of the maximum gives an estimate of the date of maximum risk.

Refinements for estimation of WNV in cadaveric tissue donations

In certain applications, as with the motivating example here of estimation of WNV infection 

in cadaveric tissues, stratification by variables for which key parameters vary should 

improve estimation. In the present example, the inapparent-to-apparent infection ratio is 

known to vary by age, with symptomatic infection (and severity of illness) more likely 

with increasing age. A straightforward refinement of the methods in Methodological and 

computational development to incorporate this is to use stratification as follows. Assume 

that the population is stratified into S strata of sizes Ns, for s = 1, 2, …, S, and let N = s Ns

be the population size. Indicate case onset times, etc., in stratum S by adding this index 

to the subscript throughout, so write, for example, Y si, Xsi, V s t , V s
⋆(t), ρs, W sj t , Es t , Ps t . 

Stratum-specific estimates Ps t = Es t /Ns are readily computed by restricting the methods of 

Methodological and computational development to strata of interest.

Combining the strata for a population-level estimate of the risk may proceed naturally by 

weighting the stratum-specific estimates by relative population size, Ns/N. This weighting 

provides an overall estimate of the number of asymptomatic and infected donors. In some 

applications, however, further weighting to refine these estimates to individuals who either 

are more likely to donate, if this information is available, or who are actually eligible to 

donate may be warranted. This is the case in the cadaveric tissue donation application, where 

the proportions of asymptomatic and infected individuals are not expected to be the same 

as or even equally proportional among age groups, since donors must be recently deceased. 

Because death rates differ by age and there are available age group-specific inapparent-to-

apparent infection ratio estimates, we are able to include weighting by stratum-specific death 

rates to account for the different probabilities of asymptomatic and infected individuals 

becoming deceased (and so eligible tissue donors). For s = 1, 2, …, S, let δs be the stratum-

specific (age group-specific) annual death rates, and let Δs = T
365δs be the death rates 

adjusted to the observed outbreak time duration of interest (where we have assumed that 
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T  is in days, and note that T
365  will be greater than 1 for multi-year estimates, and we 

can naturally adjust for leap years). For each stratum, then, ΔsEs t  is an estimate of the 

number of asymptomatic, WNV-infected potential cadaveric donors at time t, where we do 

note that the the use of death rates this way is intended to reflect the cumulative death 

rates over the whole of the observed outbreak 0, T , apportioned uniformly over the time 

of interest; time-dependent deaths rates δs t  could be incorporated directly if available. 

The corresponding stratum estimates for the risk of an asymptomatic, viremic donor are 

therefore ΔsEs t /Ns, so that these are combined to the population level, incorporating relative 

population size, as

P (t) = ∑
s = 1

S Ns
N

Δs Es(t)
Ns

= 1
N ∑

s = 1

S
Δs Es(t) = 1

NJ ∑
s = 1

S
∑

j = 1

J
Δs W sj(t)

(4)

where we use for convenience the same number of simulations J for each stratum. From 

the expression (4), we see that the order of computation—by stratum or by simulation

—does not matter, and our implementation is to compute by simulation. Doing this 

facilitates computation of bootstrap confidence bands using P t , which are computed 

as in Methodological and computational development based on the resampled estimates 

W j(t) = s Δs W sj(t).

Development using a Poisson process model for the underlying case onset 

times

In the Monte Carlo evaluation of the integrals in the expression for E ρ+V ⋆(t)  in 

Methodological and computational development, we used Gaussian smoothing of the 

observed Y i and bootstrap resampling (so, effectively, the smoothed bootstrap (Davison and 

Hinkley 1997, § 3.4)) as essentially the estimation of the cumulative distrbution functions 

F i
X, and so of GX(u) = iF i

X(u). On its face, this does not assume a particular distributional 

form for the stochastic process Y i .

We noted without detail in the Discussion section of Biggerstaff and Petersen (2002), 

however, that this approach can be seen as assuming that the process Y i  follows an 

inhomogeneous Poisson process in which a nonparametric, kernel smoothing estimate for 

the cumulative rate function of the process is used. For completeness, we now detail this 

observation here.

Begin by assuming that the WNND case onset dates Y i  (ignoring the rounding of the 

observations to the day) are observations from an inhomogeneous Poisson process with rate 

function λ t  and cumulative rate function Λ (t) = 0
tλ(u)du. For this model, the CDF F i t  of Y i

is (Liao 2014)
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F i(t) = 1 − e−Λ(t)
j = 0

i − 1 [ Λ (t)]j
j! = 1 − Π (i − 1; Λ (t))

introducing the notation Π (x; Λ (t)) for the CDF of a Poisson random variable with rate 

Λ (t). From this it follows that

G(t) =
i = 1

n
F i(t) = n 1 − Π (n − 1; Λ (t)) + Λ (t)

n Π (n − 2; Λ (t))

(5)

Direct estimation of G t , therefore, reduces to estimation of Λ (t). Various options 

are available for this, of course, including parametric regression, nonparametric spline 

regression, and nonparametric kernel smoothing. Employing the last of these and using a 

Gaussian kernel gives

Λ (t) = 1
n i = 1

n 1
uϕ t − Y i

u

for smoothing parameter u > 0 and standard normal density function ϕ ⋅ . Use of Λ (t) in 

Eq. (5), then, provides an estimate of G t , which is Gx t  above after the estimation of Λ (t), 
as included in Eq. (3). In doing this, we then may employ bootstrap resampling of the Y i

for estimation using Λ (t) in the Monte Carlo computations described above, so that Λ (t) is 

computed for each such bootstrap sample. Such sampling is, however, the same as sampling 

from the kernel smoothing estimate Λ (t) and then computing the integral in Eq. (3). Further, 

sampling from a Gaussian-smoothed kernel estimate of the Y i is equivalent to sampling from 

the original data Y i  and adding scaled Gaussian noise, with scale equal to the smoothing 

parameter in the kernel smoothing estimate; this is exactly the smoothed bootstrap (e.g., 

Davison and Hinkley 1997, §3.4).

Operationally, then, using bootstrap resampling and then smoothing the resampled values 

using Gaussian noise and then using this in the Monte Carlo integrations in Eq. (3) is 

equivalent to assuming an inhomogeneous Poisson Process for the Y i  and then estimating 

the cumulative rate function using a Gaussian kernel smoother, then evaluating the integral 

in Eq. (3).

Computer implementation

The methods presented were implemented in mostly purpose-written software using the 

statistical package R (R Core Team 2018) https://www.R-project.org/. Also used in these 

analyses were the boot package (Canty 2017), and the chron package (James 2018) Software 

is available from the author upon request. To implement the methods in other settings, 

data with disease case onset times and summary estimates of the modeling parameters—

incubation period, inapparent-to-apparent infection ratio, viremia duration, asymptomatic 
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rate–are needed as inputs. Stratum-specific information for the case data and modeling 

parameters is required to implement the weighting methods described.

Application: cardiac tissue, Colorado, 2003

We implement the updated methods with the application introduced above, estimation of 

the risk of WNV infected cardiac tissue during the Colorado WNV outbreak in 2003, 

which remains at the high end of state-level WNV outbreak experience (http://www.cdc.gov/

westnile/statsmaps/). Figure 1 shows the number of WNND cases aged 13–55 years by 

date of symptom onset in Colorado in 2003. In this case, a total of 358 WNND cases 

were reported to CDC in this age range, for an outbreak lasting 99 days. Cardiac tissue 

donations are restricted to donors under 56 years of age, and because there were few WNND 

cases aged less than 13 years, these were analyzed separately in Biggerstaff and Petersen 

(2020). The data in Figure 1 therefore provide time-dependent information on the WNV 

transmission activity in Colorado throughout 2003 for potential cardiac tissue donors.

As detailed in Biggerstaff and Petersen (2020), estimates of the inapparent-to-apparent 

infection ratios, ρs, and their standard errors are available by age group stratum (Carson et al. 

2012), as reported in Table 1. Note that these age grouping were selected to reflect available 

data and risk categories used for cardiac tissue by tissue banking industry and regulatory 

agencies. Also shown are the total numbers of WNND cases reported in these age groups, 

the annual death rates for these age groups for Colorado (http://wonder.cdc.gov), and the 

total population for these age groups.

The gamma density was assumed for the incubation period, with mean μ0 = 3 SDσ0 = 4/7
days (Biggerstaff and Petersen 2002). The mean duration of WNV infection in cardiac 

tissue was estimated as μ1 = 9.39 SD   σ1 = 16.68  days based on a Weibull survival model 

fit to data recorded in Southam and Moore (1954) (see Biggerstaff and Petersen 2020). 

Additionally, assuming the asymptomatic rate of μpa = 0.79 SDσpa = 0.13  as estimated in 

Mostashari et al. (2001), we apply the simulation algorithm described above and employ the 

refinements detailed in Refinements for estimation of WNV in cadaveric tissue donations 

using J = 1000 simulations to produce the estimated risk of WNV-infected cardiac tissue 

donations shown in Figure 2. The solid black line is the risk curve, while the black, dashed 

lines are the 95% confidence bands. To illustrate the variability in the simulations, 100 of the 

simulated curves W j t  are shown in gray.

Finally, the average risk of WNV-infected cardiac tissue donations over the duration of this 

outbreak was 6.3 (95% CI 3.1, 9.6) per 10,000 deaths, with a maximum risk of 12.3 (95% CI 

6.8, 20.5) per 10,000 deaths on August 10.

Discussion

While the original methods described here were developed for WNV, the underlying ideas 

were general. Subsequent applications to severe acute respiratory syndrome (SARS) virus 

(Shang et al. 2007), chikungunya virus (Brouard et al. 2008; Liumbruno et al. 2008), 

dengue virus (Seed et al. 2009; Petersen, Tomashek, and Biggerstaff 2012), hepatitis A 
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virus (Perevoscikovs et al. 2010), and Ross River virus (Shang et al. 2016) show that the 

methods may be applied in situations for which sufficient information is available on viral/

pathogen kinetics, symptomatic rates, inapparent-to-apparent infection ratios, and, in some 

cases, surveillance coverage. In at least one application (Seed et al. 2009), the methods were 

applied in real time to guide decisions on suspension and continuance of blood donation 

collection during an outbreak. Most of these applications have been retrospective, so that 

case surveillance has been completed before analysis. In real-time application, time for 

disease progression and reporting delays of identified cases to public health surveillance 

systems can be expected to cause under-representation of real-time disease case counts. 

Using observed counts without correction for this would result in under-estimation, since too 

few cases would be identified in real-time because of these delays. Statistical methods of 

prediction of occured but not yet reported events may be considered in such cases to attempt 

to adjust for this expected downward bias (see, e.g., Lawless 1994).

Application of these methods yields estimates of risks of infected donations before any 

post-donation testing or processing. In the US, for example, blood donations are now 

routinely tested seasonally for WNV, using policies implemented shortly after risk estimates 

were published and WNV transfusion transmission was documented (U. S. Food and Drug 

Administration 2009). Further, donated tissues undergo post-donation processing to reduce 

or eliminate transmission of multiple pathogens. Risk estimates produced using the methods 

developed here are intended to inform applicable industries, public health officials, and 

regulatory agencies concerning these risks to guide requirements for intervention strategies 

and policies. If estimates of the impact of post-processing are available, they may be 

naturally applied to results of the present analyses to characterize post-processing risks.

One assumption we made was that individuals share common distributions for both the 

incubation period and the viral infection duration. This is likely not strictly the case in 

either the donor or the general population, as there may be biological factors that mediate 

these for different individuals or groups of individuals. For WNV there is not currently 

evidence that systematic differences by known factors for these quantities would be on a 

scale to impact the general conclusions drawn from the methods used here, which take 

account of known uncertainties directly in the estimation. Should such become available, 

the estimation framework presented allows direct incorporation of such information in an 

easily implemented way. We also assumed that durations of onset and of infection were 

the same for individuals who remain asymptomatic or who develop symptoms, as there are 

not available separate estimates for these durations between these two groups; should such 

estimates become available, they can be incorporated into the methods presented here easily 

using the stratification mechanism introduced. Further, if any of the parameters differ by 

identifiable strata (say, by sex or by age), then one may naturally incorporate any available 

estimates or information into the framework we introduce here for weighted, stratified 

analyses, as well. In the absence of such detailed information, however, we may view these 

assumptions as reflecting a population average distribution across any such relevant factors.

In our approach we relied on Gausian kernel smoothing to underlie the estimation of time-

dependent risk curves. Naturally, other methods of smoothing, such as spline smoothing, 

semi- or fully parametric regression, or wavelet basis smoothing methods may have been 

Biggerstaff Page 13

Stat Commun Infect Dis. Author manuscript; available in PMC 2024 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used. We adopted the approach we present due to the the direct and ready interpretability 

of the conversion of the initial, discrete observations to continuous “observations” (Y i to Xi) 

and to utilize the bootstrap methods in (Cowling, Hall, and Phillips 1996). Evaluation of 

other methods of smoothing in the risk estimation context considered here may prove an 

interesting future research topic.

The analysis estimating risk of WNV infection in donated cardiac tissue during the Colorado 

outbreak of 2003 was part of a more complete analysis reported in Biggerstaff and 

Petersen (2020). Interested readers may refer there for estimates for blood, and cardiac, 

musculoskeletal, and soft tissues for outbreaks covering the contiguous US, 1999–2014; 

Colorado 2003; and Dallas-Fort Worth 2012.

We have detailed and updated our approach for time-dependent risk estimation for arbovirus 

infection of blood donations, and to address unique aspects of risk estimation for cadaveric 

tissue donations, we expanded the methods to include stratification and weighting. We 

expect that these refinements will provide greater flexibility and increased precision for 

researchers employing this general approach for a general variety of pathogens.
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Figure 1: 
Number of WNND cases aged 13–55 years by date of symptom onset, Colorado, 2003.
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Figure 2: 
Estimated risk of WNV-infected cardiac tissue among potential donations, Colorado, 2003, 

shown as the black, solid line, with 95% confidence bands shown as black, dashed lines. The 

gray lines are a sample of the simulated risk curves, W j t .
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Table 1:

Age group-specific WNND counts for Colorado 2003; inapparent-to-apparent infection ratios, ρ, and their 

standard errors (SE) (Biggerstaff and Petersen 2020); annual death rates, δ, per 1,000 population; and total 

population (Pop).

Age group WNND ρ(SE) δ
13–20 22 742.57 (96.92) 0.58

21–40 134 526.90 (58.39) 1.12

41–55 202 286.23 (19.52) 3.86

Total 358 Pop = 2,911,979
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