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Abstract: Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in
many consumer products. Laboratory animal studies have reported the endocrine-disrupting and
reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several
phthalates have been recognized as substances of high concern. Human exposure to phthalates
occurs mainly via dietary sources, dermal absorption, and air inhalation. Phthalates are excreted
as conjugated monoesters in urine, and some phthalates, such as di-2-ethylhexyl phthalate (DEHP),
undergo secondary metabolism, including oxidative transformation, prior to urinary excretion. The
occurrence of phthalates and their metabolites in urine, serum, breast milk, and semen has been widely
reported. Urine has been the preferred matrix in human biomonitoring studies, and concentrations
on the order of several tens to hundreds of nanograms per milliliter have been reported for several
phthalate metabolites. Metabolites of diethyl phthalate (DEP), dibutyl- (DBP) and diisobutyl- (DiBP)
phthalates, and DEHP were the most abundant compounds measured in urine. Temporal trends in
phthalate exposures varied among countries. In the United States (US), DEHP exposure has declined
since 2005, whereas DiNP exposure has increased. In China, DEHP exposure has increased since 2000.
For many phthalates, exposures in children are higher than those in adults. Human epidemiological
studies have shown a significant association between phthalate exposures and adverse reproductive
outcomes in women and men, type II diabetes and insulin resistance, overweight/obesity, allergy,
and asthma. This review compiles biomonitoring studies of phthalates and exposure doses to assess
health risks from phthalate exposures in populations across the globe.
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1. Introduction

Phthalates are diesters of phthalic acid (1,2-benzenedicarboxylic acid) and are synthetic organic
chemicals used in industries as solvents, plasticizers, and additives in polyvinyl chloride (PVC) plastics
or personal care products (PCPs) [1]. More than 25 phthalates are used in commercial applications,
with each adding unique qualities to the product into which it is incorporated. Ten commonly used
phthalates (Figure 1, Table 1) are dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate
(DBP), diisobutyl phthalate (DiBP), benzylbutyl phthalate (BzBP), dicyclohexyl phthalate (DCHP),
di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-isononyl phthalate (DiNP), and
di-isodecyl phthalate (DiDP). DEHP, one of the major phthalates in commerce, was first synthesized
for use as a plasticizer in 1933 [2]. The application of DEHP as an additive in polyvinyl chloride (PVC)
to impart the flexibility of plastic has made phthalates popular around the world. The addition of
phthalates to PVC makes it not only flexible but also malleable and durable. PVC products may contain
up to 50% (by weight) phthalates [1].
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Figure 1. Chemical structures of major phthalates and their metabolites studied in the literature. 

  

Figure 1. Chemical structures of major phthalates and their metabolites studied in the literature.
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Table 1. Major phthalate diesters and their corresponding metabolites studied in the literature.

Parent Compounds Abb. Major Metabolites Abb.

Dimethyl phthalate DMP Mono-methyl phthalate MMP

Diethyl phthalate DEP Mono-ethyl phthalate MEP

Dibutyl phthalate DBP Mono-n-butyl phthalate MBP

Benzylbutyl phthalate BzBP Mono-benzyl phthalate
(some mono-n-butyl phthalate) MBzP

Dicyclohexyl phthalate DCHP Mono-cyclohexyl phthalate MCHP

Di-2-ethylhexyl phthalate DEHP

Mono-2-ethylhexyl phthalate MEHP

Mono-(2-ethyl-5-hydroxyhexyl) phthalate MEHHP
(5OH-MEHP)

Mono-(2-ethyl-5-oxohexyl) phthalate MEOHP
(5oxo-MEHP)

Mono-(2-ethyl-5-carboxypentyl) phthalate MECPP
(5cx-MEPP)

Mono-(2-carboxymethyl-hexyl) phthalate MCMHP
(2cx-MMHP)

Diisobutyl phthalate DiBP Mono-isobutyl phthalate MiBP

Diisononyl phthalate DiNP
Mono-isononyl phthalate MiNP

Mono-(carboxyisooctyl) phthalate MCiOP

Diisodecyl phthalate DiDP
Mono-(carboxynonyl) phthalate MCNP

Mono-(carboxyisononyl) phthalate MCiNP

Di-n-hexyl phthalate DnHP Mono-n-hexyl phthalate MHxP

Di-n-octyl phthalate DnOP
Mono-n-octyl phthalate MnOP

Mono-(3-carboxypropyl) phthalate MCPP

Mono-carboxy-n-heptyl phthalate MCHpP

Mono-n-heptyl phthalate MHpP

Mono-n-pentyl phthalate MPeP

Mono-iso-propyl phthalate MiPrP

Currently, phthalates are used in many types of products, including building materials, automotive
parts, medical devices, food packaging, cosmetics, perfumes, toys, teethers, adhesives, paints, floorings,
lubricants, hair sprays, shampoos, soaps, nail polishes, and detergents [3–5]. The annual global
production of phthalate was 4.7 million metric tons in 2006 [6,7] and ~8 million metric tons in 2015 [8].
In most commercial products, DEHP, DiNP, and BzBP are used as additives, and they easily migrate
from those products into the environment through evaporation, leaching, and abrasion [9]. Phthalates
have been measured in a range of environmental matrices, including sludge, dust, soil, air, and
water [4], and are ubiquitous contaminants in the environment.

Phthalates are reproductive and developmental toxicants [10]. In laboratory animal studies,
DEHP has been reported to affect the reproductive system and development [11,12]. Further, changes
in hepatic structure and function and kidney function as well as disruption of thyroid signaling,
immune function, and metabolic homeostasis were reported [13–16]. The US Environmental Protection
Agency (EPA) classified DEHP and BzBP as probable and possible human carcinogens, respectively.
European authorities have classified phthalates with three to six carbons in their backbone as Repr 1B
Agents (i.e., presumed human reproductive toxicants) (https://echa.europa.eu/substance-information/-/
substanceinfo/100.239.213).

https://echa.europa.eu/substance-information/-/substanceinfo/100.239.213
https://echa.europa.eu/substance-information/-/substanceinfo/100.239.213
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Human exposure to phthalates arises mainly from ingestion, inhalation, and dermal
absorption [17,18]. Human biomonitoring studies have measured parent phthalate in serum [19]
and their metabolites in human urine [20,21], semen [22,23], and breast milk [24,25]. Studies have
demonstrated that phthalate exposure is associated with oxidative stress in humans [26,27]. Some
studies have linked phthalate exposure to premature thelarche [28,29], endometriosis [30,31], low semen
quality [32], reduced testosterone levels [33], obesity, diabetes, and breast cancer [34,35]. Phthalates are
regarded as endocrine-disrupting compounds [36]. One of the most significant effects of phthalates is
in terms of fetal development and reproductive anomalies and is referred to as “phthalate syndrome”
(e.g., developmental or testicular effects, insulin like factor 3 production) [37,38]. In addition, phthalate
exposure might be linked to insulin resistance and obesity in human populations [39,40].

In 1999, the European Union (EU) temporarily banned the use of six phthalates in children’s
toys: DiNP, DEHP, DBP, BzBP, DiDP, and DnOP (http://europa.eu/rapid/press-release_IP-05-838_en.
htm). Further, in 2009, these phthalates were restricted in toys in Europe (https://eur-lex.europa.eu/

legal-content/EN/TXT/?uri=CELEX%3A32009L0048). The US followed suit in 2008 by passing the
Consumer Products Safety Improvement Act, which banned the same six phthalates in children’s
toys (https://www.cpsc.gov/Regulations-Laws--Standards/Statutes/The-Consumer-Product-Safety-
Improvement-Act). Many industries began substituting alternative chemicals for phthalates in their
products, and several substitutive phthalate and non-phthalate plasticizers are currently used in many
products [41,42]. Although six phthalates are now restricted in children’s products in the US and EU,
they are unregulated and continue to be used in toys in many other parts of the world, including China
and India. In addition, children continue to be exposed to phthalates in cosmetics and PCPs as well as
in school supplies made of PVC, including notebooks and binders, art supplies, backpacks, lunchboxes,
paperclips, and umbrellas (https://www.sustainableproduction.org/downloads/PhthalateAlternatives-
January2011.pdf). Raincoats, boots, handbags, and soft plastic shoes also may contain phthalates.

A search on the basis of Web of Science Core Collection, BIOSIS Previews, Derwent Innovations
Index, MEDLINE, and ScieELO Citation Index was carried out to identify studies relevant to
biomonitoring and epidemiology on phthalates and phthalate metabolites. Topics of interest
included studies on phthalates in urine, serum, and other biofluids. The search terms used were:
phthalic acid/phthalates OR phthalate metabolites AND biomonitoring OR epidemiological studies.
Publications between 2000 and 2018 were extracted. This review provides a summary of human
biomonitoring studies of phthalate diesters and their monoester (primary) and oxidative (secondary)
metabolites as well as select epidemiological studies that link phthalate exposure to health outcomes in
human populations.

2. Sources of Phthalates

Owing to their widespread use in consumer products, phthalates are ubiquitous in the environment,
and a variety of sources have been reported to contribute to human exposure. For the purpose of
exposure analysis, phthalates have often been grouped as lower molecular weight (ester side-chain
lengths, one to four carbons; DMP, DEP, and DBP), and higher molecular weight (ester side-chain
lengths, five or more carbons; DEHP, DiNP, DiDP, and BzBP) phthalates [43]. The high molecular
weight phthalates are used primarily in PVC polymers and plastisol applications, plastics, food
packaging, and food processing materials, vinyl toys and vinyl floor coverings, and building products.
The low molecular weight phthalates are often used in non-PVC applications, such as personal care
products, paints, adhesives, and enteric-coated tablets [44]. BzBP, DEHP, DiNP, DBP, and DiBP are used
in toys, bags, gloves, and plastic tubing for improving flexibility and making the polymeric products
soft and malleable [4]. DMP and DEP are widely used in cosmetics, such as perfumes, aftershaves,
shampoos, makeup, and nail care products [4]. Cosmetics and personal care products are the major
sources of human exposure to low molecular weight phthalates. Food packaging plastic film contains
phthalates (such as DBP and DEP) at levels of up to 10% by weight. Plasticizer migration occurs when
food packaging films come in direct contact with foods, and fatty foods and high temperatures increase

http://europa.eu/rapid/press-release_IP-05-838_en.htm
http://europa.eu/rapid/press-release_IP-05-838_en.htm
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0048
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0048
https://www.cpsc.gov/Regulations-Laws--Standards/Statutes/The-Consumer-Product-Safety-Improvement-Act
https://www.cpsc.gov/Regulations-Laws--Standards/Statutes/The-Consumer-Product-Safety-Improvement-Act
https://www.sustainableproduction.org/downloads/PhthalateAlternatives-January2011.pdf
https://www.sustainableproduction.org/downloads/PhthalateAlternatives-January2011.pdf
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the migration [45]. Diet has been a major source of exposure to high molecular weight phthalates,
especially DEHP. In particular, foods packaged in plastic/PVC materials contribute to exposure to
DEHP in humans [46].

The major source of exposure to DEP—one of the major phthalates found in human urine—is
cosmetics and personal care products [17]. Studies have reported elevated concentrations of phthalates
in indoor air and dust [47]. In fact, among various contaminants measured in indoor dust, phthalates,
especially DEHP and DEP, are the major contaminants in indoor dust and air [46]. Phthalates
also were reported to occur in pharmaceuticals, especially in over-the-counter medications/syrups
and in pills with enteric coatings [48,49]. Medical devices that are suspected to contain DEHP
include intravenous (IV) storage bags, ventilator tubing, IV infusion sets, endotracheal tubes, IV
infusion catheters, nasogastric tubes, blood storage bags, enteral and parenteral nutrition storage bags,
blood administration sets, urinary catheters, PVC exam gloves, suction catheters, chest tubes, nasal
cannula tubing, hemodialysis tubing, syringes, extracorporeal membrane oxygenation tubing, and
cardiopulmonary bypass tubing [50].

Exposure doses to phthalates have been calculated through the ingestion of foods, air inhalation,
and dust ingestion for the general population in the US (sampled during 2011–2014) (Table 2) [46].
Dust ingestion is a major source of exposure to phthalates in infants and toddlers, whereas diet is the
major source for children and adults. The exposure doses are in the range of a sub to low µg/kg bw/d.
Further details of exposure doses calculated through biomonitoring data are provided below.

Table 2. Human exposure doses to total phthalates for the US population through various
pathways (µg/kg bw/d).

Exposure Route Dust
Ingestion

Dust Dermal
Absorption

Personal Care
Products (Dermal) Diet Indoor Air

Inhalation

Infants (<1 y *) 1.12 0.001 0.0095 - 0.845
Toddlers (1–3 y) 1.7 0.0008 0.0059 - 0.423

Children (3–11 y) 0.468 0.0006 - 4.68 0.203
Teenagers (11–18 y) 0.291 0.0005 - - 0.089

Adults (>18 y) 0.233 0.0002 0.013–0.49 1.03 0.07

* y = years old; “-” means not reported; data source: Tran and Kannan, 2015 [46].

3. Biomonitoring of Phthalates

Due to the ubiquitous occurrence and widespread exposure of phthalates, their metabolites are
one of the most examined environmental chemicals in human biomonitoring studies. The reported
half-life of phthalates diesters in blood plasma or urine of humans and rodents was less than 24 h.
Several studies have reviewed pharmacokinetics of phthalate esters, and these studies have found rapid
hydrolysis of diesters to monoesters in the gastrointestinal tract [1,2]. Binding of DEHP metabolites
to blood plasma proteins, existence of biliary excretion, and enterohepatic circulation in humans
have been suggested [2]. Nevertheless, urinary excretion has been the major elimination pathway of
phthalates [2]. Urinary concentrations of phthalate metabolites are generally 5–20 times higher than
that in lipid-rich compartments. For example, urinary concentrations of mono-2-ethylhexyl phthalate
(MEHP), mono-isobutyl phthalate (MIBP), mono-ethyl phthalate (MEP), and mono-n-butyl phthalate
(MBP) were 20–100 times those in blood or milk [24]. Phthalate metabolites have been measured in
various body fluids, including urine [47,51], serum [52,53], semen [32,54], breast milk [55,56], and
saliva [57] (Table 3). Phthalates can cross the placental barrier [58] and have been measured in amniotic
fluid in human studies [59]. To date, studies that report partitioning of phthalates among various tissues
and organs in an organism, at state-state exposure conditions, are not available. It is worth noting
that a few earlier reviews have described biomonitoring of phthalates in humans [60]. Biomonitoring
studies that report concentrations of phthalates metabolites are presented in Table 3.
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Table 3. Reported concentrations of major phthalate metabolites in human specimens collected from various countries.

Matrix Country/Region Studied Population Concentration
Reference

MMP MEP MBP MiBP MDEHP Unit

Urine Australia 30 non-occupational exposure 18.5 11.8 7.3 25.2 µg/L; median [61]
Urine Austria 251 children/adolescents; 272 adults; 72 senior citizens 25 10 28 15.5 µg/L; median [62]
Urine Belgium 261 persons 34.3 33.3 24.3 11.7 µg/L; median [63]
Urine Belgium 210 adolescents 38.5 52.7 µg/L; median [64]
Urine Belgium 123 men 138 women 37.6 31.3 26.2 17.1 µg/L; median [65]
Urine Belgium 25 persons 20.4 15.6 15.9 12.01 µg/L; median [66]
Urine Brazil 300 children (6–14 years old). 8.3 57.3 42.4 43.8 109 µg/L; median [67]
Urine Canada 3236 persons (6–49 years old) 49.1 23.8 40.9 µg/L; median [68]
Urine Canada 2000 women (first trimester) 32.02 11.59 µg/L; GM [69]
Urine Canada 80 infants 7.01 10.63 µg/L; median [70]
Urine China 108 young adults 31.8 37.5 67 57.2 65.3 µg/L; median [71]
Urine China 21 women 19 men 16.5 20.7 49.6 44 44.2 µg/L; median [72]
Urine China 430 children (208 girls and 222 boys) 15.7 4.14 21.9 14.3 µg/L; median [73]
Urine China 183 samples 14.6 22.1 63.5 57.1 76.1 µg/L; median [51]
Urine China 364 males (19–44 years old) 28.2 47.1 42 µg/L; median [74]
Urine China 39 children (5–9 years) 28.5 232 81.3 79.1 µg/L; median [75]
Urine Czech 117 women ND 56.7 32.2 µg/L; median [76]
Urine Czech 120 children ND 31.6 61.9 µg/L; median [76]
Urine Denmark 60 men 54.5 36.8 47.3 68.1 µg/L; median [77]
Urine Denmark 145 women 74 26 48 67 µg/L; GM [78]
Urine Denmark 143 children 28 39 74 99 µg/L; GM [78]
Urine Denmark 129 children 29 111 107 µg/L; median [79]
Urine Denmark 441 children 16.6 80.1 72.2 89.8 µg/L; median [80]
Urine Europe 171 individuals 49.9 0 4.5 µg/g CR; median [42]
Urine Europe 1335 children 34.4 38.4 45.4 47.6 µg/L; median [81]
Urine Europe 1347 mother 48.2 23.9 30.1 29.2 µg/L; median [81]
Urine Europe 1301 mother 72 18.3 23.3 22.4 µg/L; median [82]
Urine France 279 mothers 43.5 35.7 53.7 84.6 µg/L; median [83]
Urine Germany 634 individuals 109 35.4 45.3 µg/L; median [84]
Urine Germany 254 children 99.9 µg/L; median [85]
Urine Germany 53 women 32 men 90.2 181 83.3 µg/L; median [86]
Urine Germany 399 individuals 49.6 44.9 38.8 µg/L; median [87]
Urine Germany 120 females and 120 males 19.6 25.5 19.3 µg/L; median [41]
Urine Germany 30 males and 30 females (2015) 2.8 13.5 8.0 9.8 12.3 µg/L; median [88]
Urine Germany 30 males and 30 females (2007) 8.0 53.6 16.4 19.3 33.4 µg/L; median [88]
Urine Germany 111 children (48 girls and 63 boys) 53.6 74.9 130.1 µg/L; median [89]
Urine Germany 465 children (8–10 years old) 52.5 62.8 75.7 µg/L; median [90]
Urine Germany 599 children 95.6 94.3 174.6 µg/L; median [91]
Urine Germany 600 children (3–14 years old) 96 85 µg/L; median [91]
Urine Germany 207 infants (1–5 month) 12.1 1.1 µg/L; median [92]
Urine Germany 104 mothers 50.5 66.6 28.9 µg/L; median [93]
Urine Germany 104 children 39.1 56.5 103.9 55.7 µg/L; median [93]
Urine Greece 239 women 142 32.1 36.7 44.6 µg/L; median [94]
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Table 3. Cont.

Matrix Country/Region Studied Population Concentration
Reference

MMP MEP MBP MiBP MDEHP Unit

Urine Greece 239 children 35.3 23.3 36 45.6 µg/L; median [94]
Urine Hungary 115 women ND 55 32.4 µg/L; median [76]
Urine Hungary 117 children ND 47 56.7 µg/L; median [76]
Urine India 15 women 7 men 8.6 150 13 18.3 77.9 µg/L; median [72]
Urine Iran 56 children and adolescent (6–18 years) 17.4 28.2 42.9 44.9 µg/L; median [95]
Urine Ireland 120 mothers 50.2 18.5 23.8 17 µg/g CR; GM [96]
Urine Ireland 120 children 38.7 26.1 41.4 32.8 µg/g CR; GM [96]
Urine Israel 205 adults (20–74 years old) 27.9 37.6 81.7 µg/L; median [97]
Urine Italy 83 women (2011) 73.1 38.8 15.6 µg/g CR; median [42]
Urine Italy 111 women (2016) 49.9 0 4.5 µg/g CR; median [42]
Urine Italy 83 females 61.0 32.5 10.5 µg/L; median [98]
Urine Italy 74 males 73.2 41.2 15.2 µg/L; median [98]
Urine Japan 8 women 27 men 18.2 16.4 17.7 7.5 35.1 µg/L; median [72]
Urine Japan 80 women (controls) 21.4 84.3 72.7 µg/L; median [99]
Urine Japan 57 women (cases) 39.6 87.2 89.3 µg/L; median [99]
Urine Japan 35 adults 1 children 33 18 36 5 µg/L; median [100]
Urine Japan 111 pregnant women 5.70 7.75 46.6 18.5 µg/L; median [101]
Urine Korea 39 children 19.2 107 53.4 145.6 µg/L; median [102]
Urine Korea 60 individuals 10 13.4 16.7 4.5 43.6 µg/L; median [72]
Urine Korea 25 adults 80 134 40.4 125.8 µg/L; median [103]
Urine Korea 305 women 41 23.7 µg/g CR; median [104]
Urine Korea 1646 elderly people 39.5 44.8 µg/L; median [105]
Urine Korea 6478 adults 44.2 88.2 µg/L; median [106]
Urine Korea 6003 adults 24.2 52.2 µg/L; median [107]
Urine Korea 171 children 2.71 12.4 5.25 12.3 µg/L; median [108]
Urine Korea 392 children 185 µg/L; median [109]
Urine Korea 265 mothers 67.4 µg/L; median [109]
Urine Korea 297 adults 55.7 µg/L; median [109]
Urine Kuwait 22 women 24 men 10.1 411 113 54.1 180.4 µg/L; median [72]
Urine Malaysia 19 women 10 men 6.3 18.6 10.5 10.8 27.5 µg/L; median [72]
Urine Netherlands 100 women ND 112 43.2 41.3 61.8 µg/L; median [110]
Urine Norway 10 women 2 310 41.1 57 112.3 µg/L; median [111]
Urine Norway 61 adults 24.2 13.4 12.8 µg/L; median [112]
Urine Norway 116 pregnant women 55 25 20 26 µg/L; median [113]
Urine Portugal 112 children (4–18 years) 59.4 12.7 16.9 40.4 µg/L; median [114]
Urine Saudi Arabia 130 individuals 8.65 47.5 38.5 38.5 117.1 µg/L; median [26]
Urine Slovakia 129 occupational exposure 110 39.2 55.9 µg/L; median [115]
Urine Slovakia 68 occupational exposure population 201 103 61.4 82.7 µg/L; median [116]
Urine Slovakia 125 women ND 54.8 36.7 µg/L; median [76]
Urine Slovakia 127 children ND 39.6 82.8 µg/L; median [76]
Urine Slovakia 85 occupational exposure 78.5 85.6 21.5 µg/L; median [117]
Urine Slovakia 70 general population 78.1 96 14.7 µg/L; median [117]
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Table 3. Cont.

Matrix Country/Region Studied Population Concentration
Reference

MMP MEP MBP MiBP MDEHP Unit

Urine Spain 391 pregnant women 246 27.1 28.4 87.8 µg/L; median [118]
Urine Spain 120 children 198.9 63 µg/g CR; GM [119]
Urine Spain 120 mothers 150.8 33.3 µg/g CR; GM [119]
Urine Sweden 314 men 41 47 48.4 µg/L; median [120]
Urine Sweden 38 women 1.2 35 46 16 35 µg/L; median [24]
Urine Taiwan 41 women and 19 men (21–67 years) 32.3 36.5 15.9 µg/L; median

[121]
Urine Taiwan 155 women 5.7 25.3 80 22.6 µg/L; median
Urine Taiwan 30 (children, age: 2) 100.4 17.2 195.8 µg/L; median
Urine Taiwan 59 (children, age: 5) 75.2 25.2 148.9 µg/L; median
Urine Taiwan 100 women 72.3 12.5 96.8 µg/L; median
Urine U.S. 45 males (subfertile couples) 108 24.7 91.4 µg/L; median [122]
Urine U.S. 35 children 177.7 52.4 16.6 1025.9 µg/L; median [123]
Urine U.S. 7600–10,031 individuals 1.4 167 18.9 3.6 73.1 µg/g CR; median [124]
Urine U.S. 12–18 months toddlers 13.2-1388 6.6–2540 <1.7–47.3 µg/L; median [125]
Urine U.S. 186 persons in Northern Manhattan 199 36 µg/L; median [126]
Urine U.S. 446 pregnant women 41.1 µg/g CR; GM [127]
Urine U.S. 378 pregnant women 47 13.7 9.47 14 µg/L; median [128]
Urine U.S. 482 individuals 141 17.8 7.6 106.6 µg/L; median [27]
Urine U.S. 2772 adults 167 35.4 µg/g CR; median [129]
Urine U.S. 392 children of 6–11 years old 96.9 69.9 µg/g CR; median [129]
Urine U.S. 2350 individuals 1.8 194.4 20.7 3.7 73 µg/L; median [130]
Urine U.S. 33 lactating women 35.7–45.9 µg/L; median [131]
Urine U.S. 50 pregnant women (18–38) 61.5 18.2 31.1 µg/L; median [132]
Urine U.S. 406 men 4.5 145 14.5 5.2 µg/L; median [133]
Urine Vietnam 16 women 14 men 8.4 7.2 19.1 13.6 56.7 µg/L; median [72]
Serum Denmark 60 men <LOD ND <LOD 8.4 µg/L; median [77]
Serum Sweden 36 women 0.5 0.5 0.5 0.5 µg/L; median [24]

Seminal plasma Denmark 60 men <LOD <LOD ND <LOD µg/L; median [77]
Breast milk Denmark 65 women 0.1 0.9 4.3 9.5 µg/L; median [25]
Breast milk Finland 65 women 0.1 1.0 12.0 13.0 µg/L; median [25]
Breast milk Sweden 42 women ND 0.5 ND 0.49) µg/L; median [24]

Milk Switzerland 54 women 6.0 24.3 26.2 µg/L; median [134]
Milk U.S. 33 lactating women 0.3–0.7 µg/L; median [131]
Nail Belgian 10 individuals 64 74 138 µg/g CR; median [135]
Nail Norway 61 adults 89.7 104.8 89.3 µg/g CR; GM [112]

MDEHP: Sum of five DEHP metabolites (MEHP, MEHHP, MEOHP, MECPP, and MCMHP); ND: Not detected; LOD: Limit of detection; LOQ: Limit of quantification; GM = Geometric
mean; CR = Creatinine.
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Phthalate diesters (parent compounds) were measured in blood plasma of women with
endometriosis in India, and a significant association was found between phthalate exposure and
the risk of developing endometriosis [136]. Similarly, studies have determined phthalates in serum
samples of couples from Greenland, Poland, and Ukraine that showed that the DEHP levels were
associated with reduced time to achieve pregnancy [137]. Phthalate diesters and their metabolites also
have been measured in breast milk, serum, and urine from Swedish women [24]. In milk and serum
samples, the concentrations of phthalate diesters and their metabolites were below the method limit of
detection (0.12–3.0 µg/L). Detectable concentrations of phthalate metabolites, however, were found in
urine (0.1–1000 µg/L). Measurements of phthalate diesters in breast milk and serum are prone to false
positives due to background contamination. Medical devices, including blood collection devices and
plastic containers that are used to collect and store samples, can contain phthalate diesters [49]. If the
samples were to be analyzed for phthalate diesters, caution should be taken with the screening devices
used to collect and store samples. A comprehensive review of challenges associated with low-level
phthalate analysis in biological specimens has been published [17].

3.1. Phthalate Metabolites in Urine

Although microbial degradation of DEHP to MEHP in soils through lipase and esterase enzymes
has been shown, environmental degradation/transformation of parent phthalates is slow [25,138].
Because phthalates have a short half-life in human bodies and are excreted quickly in urine as monoester
metabolites, the metabolites are suitable biomarkers for human exposure to parent compounds. The
half-life of phthalates in human bodies (in plasma and urine) is less than 24 h, and following
metabolism, monoesters of phthalates are conjugated with glucuronide or sulfate and excreted in
urine [139]. Analysis of metabolites in urine involves enzymatic deconjugation followed by purification.
Assessment of human exposure to phthalates is based mainly on the measurement of their urinary
monoester metabolites, although several secondary and oxidative metabolites have been reported to
occur in human specimens [139]. For instance, DMP, DEP, and DBP undergo degradation/hydrolysis
and form their corresponding monoesters, i.e., MMP, MEP and MBP, respectively. Both hydrolysis
and oxidation products are formed from the metabolism of DEHP. MEHP, the hydrolysis product of
DEHP, is not a major metabolite. The oxidative metabolites, MEOHP, MEHHP, MECPP, and MCMHP,
however, are the major metabolites of DEHP and are appropriate biomarkers of exposure to this
compound [21]. Some studies suggest, however, that MEHP is more toxic than are other oxidative
metabolites. The general metabolic pathways of phthalate esters in humans are shown in Figure 2.

General Population Adults: A large number of studies have reported measurements of phthalate
metabolites in human specimens collected from European (Germany, Netherlands, Denmark, Norway,
Sweden, Greece, the Czech Republic, Hungary, Slovakia, and Spain) and Asian countries (Japan,
China, South Korea, India, Taiwan, Vietnam, Saudi Arabia, Malaysia, and Kuwait) as well as from
North American countries. The number of phthalate metabolites measured in urine samples varied
considerably; as new analytical standards become made available commercially, more metabolites
were added to the list of compounds measured in urine. Although a majority of the recent studies
measure close to 20 phthalate metabolites, studies conducted a decade ago measured 10 or fewer
metabolites of phthalates.

In general, the concentrations of the sum of 22 phthalate metabolites measured in human
urine were on the order of several to hundreds of parts-per-billion (µg/L) [21]. In a majority of the
biomonitoring studies, metabolites of DEHP, DEP, and DBP were the major compounds identified in
urine, and the profile varied depending on the country. Urine samples collected from 32 men and
53 women (age: 7–64 years) from northern Bavaria (Germany) contained MBP (median: 181 µg/L), MEP
(90.2 µg/L), and major DEHP metabolites, such as MEHHP (46.8 µg/L) and MEOHP (36.5 µg/L) [86].
The median concentrations of DEHP metabolites, namely, MEHP, MEOHP, and MEHHP, were 4.5, 28.3,
and 35.9 µg/L, respectively, and these three metabolites were highly intercorrelated. The concentration
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ratios, MEHHP/MEHP, and MEOHP/MEHP, were calculated to be 8.2, and 5.9, respectively. These
ratios suggest that MEHP is further oxidized to form MEHHP and MEOHP [86].Toxics 2019, 7, 21 11 of 29 
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The urinary concentrations of phthalate metabolites in general populations vary among countries.
Some of the highest concentrations of total phthalate metabolites were found in urine collected in
2006–2007 from Kuwaitis, with a maximum value of 19,300µg/L and a median value for of 1050µg/L [72].
The occurrence of phthalate metabolites was investigated in urine from Germans, and MBP was found
at high concentrations (median: 49 µg/L) [87]. The median concentrations of phthalate metabolites
in urine samples from Germany decreased significantly from 2002 to 2008 [41]. Similarly, urinary
phthalate metabolites measured in 2015 were significantly lower than those in 2007 in Germany [88].

Biomonitoring studies in other European countries, including France [83], Belgium [65,66],
Slovakia [117], and Norway [112], report phthalate metabolite concentrations in the range of 1–100 µg/L
in urine from adults. MBP and DEHP metabolites were the predominant compounds found in those
studies. Further, a comparative analysis of biomonitoring data in Europe suggested a significant
decline in phthalate metabolite concentrations (especially MEP, MBP, MBzP, and DEHP metabolites)
from 2011 to 2016 [42]. Several alternative plasticizers, however, are used as replacements for DEHP in
European countries. Common alternatives include Hexamoll DINCH (DINCH), acetyl tributyl citrate
(ATBC), dioctyl terephthalate (DOTP), 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB), trioctyl
trimellitate (TOTM), and di-(2-ethylhexyl) adipate (DEHA).

In North America, the distribution of phthalate metabolites in urine has been summarized in
nationwide monitoring surveys. For example, the US National Health and Nutrition Examination
Survey (NHANES) of the Centers for Disease Control and Prevention (CDC) showed that MEP, MEHP,
MEHHP, and MEOHP concentrations in urine from adults >20 years of age were 167, 3.99, 18.8,
and 12.6 µg/g creatinine (CR), respectively [129]. The NHANES program has measured 15 phthalate
metabolites in urine. The weighted geometric mean concentration of 15 phthalate metabolites in the
US general population was 125 µg/L for the samples collected in the period of 2007–2008. MEP was the
major compound found in urine, accounting for >70% of the total concentrations, which was followed
by mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP; ~18% of the total phthalate concentrations).
The NHANES data for the US general population in the period of 2005–2006 showed that MCNP, a
metabolite of DiDP, was found at a median concentration of 2.70 µg/L [140]. The updated NHANES
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report for 2013–2014 are available (https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSPHTE_H.htm).
A 67% decline in DEHP exposure in the US population between 2005/6 and 2011/12 has been
reported [141]. Several factors have been shown to affect exposures. The NHANES data showed that
several phthalate urinary metabolites were higher in males, Hispanics, and African Americans [142].
The Human Biomonitoring Program of Health Canada measured 11 phthalate metabolites in urine
samples of 3236 Canadians and found median MEP and MEHHP concentrations at 49.1 and 23.4
µg/L, respectively [68]. Since 2001, there has been clear evidence of a decline in DEP, DBP, and DEHP
exposure in the US [115]. In contrast, urinary DiNP concentrations in the US population increased
significantly during the period 2005/6–2011/12 (www.cdc.gov/exposurereport).

Urinary concentrations of phthalate metabolites have been reported for several Asian countries [97].
The measured concentrations in Asian countries were similar to those reported in Europe and North
America, although the profiles were distinct. For instance, MBP and MiBP were the major metabolites
found in urine from China, and their respective median concentrations were 61.2 and 51.7 µg/L [51].
Similar concentrations of MBP and the sum of DEHP metabolites were reported in urine from Nanjing
city (47.1 and 42.0 µg/L) [74] and Taiwan (47.1 and 42.0 µg/L) [121]. In contrast, DEHP metabolites were
predominant in urine from Japan, Malaysia, and Vietnam [72]. A nationwide survey of urine samples
from 6478 adults during the period of 2012–2014 in Korea showed median urinary concentrations of
DEHP metabolites (88.2 µg/L) that were twofold higher than that of MBP (44.2 µg/L) [106,107]. In
Israel, phthalate metabolites were found in urine samples collected from 250 adults (ages 20−74), with
median concentrations that ranged from 17.1 µg/L (MEOHP) to 37.6 µg/L (MiBP) [97]. DEHP exposure
in the Chinese population has increased since 2001 [143].

The global distribution of major phthalate metabolites measured in urine from general populations
is presented in Figure 3. Urine samples collected from Kuwait during 2006-2007 contained the highest
median concentrations of MEP (411 µg/L), MBP (113 µg/L), and DEHP metabolites (180 µg/L), with
a sum of median phthalate metabolite concentrations (median) at 1,050 µg/L [72]. This value is the
highest among all countries studied. The profiles of phthalate metabolites varied, with MEP as the
predominant metabolite in Indian and Kuwaiti urine samples (49% of the total), which were similar to
those found in the US. In China (52%), MBP was the major metabolite found in urine. In Korea (46%),
Japan (31%), and Vietnam (52%), DEHP metabolites were the dominant ones. MMP accounted for
<8% of the total phthalate metabolite concentrations in all Asian countries, except for Japan, where
it was 20%. Overall, MEP and DEHP metabolites were the major phthalate metabolites found in
urine from most Asian countries, a pattern similar to that found in the US [130]. The reported urinary
concentrations of phthalate metabolites among several European countries were similar whereas
information for African countries and Australia/Oceanian countries is limited.

Pregnant Women: Phthalates have been widely studied for exposure levels in pregnant women.
MEP (222 µg/g CR) was the predominant phthalate metabolite found in urine samples of pregnant
women from the Netherlands (Generation R study) [110]. Similar exposure levels were reported
for pregnant women from the US [131,132], Canada [69], and Norway [113], with MEP median
concentrations exceeding 30 µg/L. In a study of urinary phthalate metabolite concentrations in Spanish
pregnant women (n = 391), the median concentration of MEP was reported at 246 µg/g CR [118].

Several studies have examined phthalate metabolite concentrations in matched urine samples of
newborns and mothers. Maternal urinary concentrations of MEHHP and MEOHP in Korea were 17.7
and 14.7 µg/L, respectively, which were two- to threefold higher than those found in newborns (5.79
and 3.27 µg/L) [144]. Another study, however, showed similar urinary concentrations of phthalate
metabolites between 120 mother-and-child pairs [96]. Occurrence of phthalate metabolites in pregnant
women suggests potential exposure in the fetus.

https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSPHTE_H.htm
www.cdc.gov/exposurereport
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Children: The NHANES data showed that the concentrations of urinary phthalate metabolites in
children 6–11 years old were higher than those in adolescents and adults [142]. Several studies support
the CDC’s findings that children have higher urinary concentrations than do adults of DBP, BzBP, and
DEHP [41,145]. Differences in urinary concentrations of phthalates among infants, children, and adults
may reflect different sources and routes of intake. Ingestion is thought to be a primary pathway of
exposure to some phthalates, especially those in food packaging [146]. The mouthing behavior of
infants and toddlers could potentially increase their exposures to phthalates in toys and other products
made with plasticized polymers. The global distribution of reported urinary phthalate metabolite
concentrations in children is shown in Figure 4.Toxics 2019, 7, 21 14 of 29 
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MEP, MBP, and DEHP metabolites were the dominant compounds detected in urine from children.
Spot urine samples from 5- to 7-year-old German children contained a median phthalate metabolite
concentration (sum of 5 metabolites) of 76.9 µg/L, with DEHP metabolites as major compounds [89].
A similar concentration of DEHP metabolites at 75.7 µg/L was found in urine samples from 8- to
10-year-old German children (n = 465) [90]. Several biomonitoring studies reported comparable
concentrations of DEHP metabolites and MBP in urine from children in China [75], Korea [108],
Canada [70], Brazil [67] and Portugal [114].

In urine samples collected from children in Beijing, China, MBP was the most abundant metabolite
(median: 232 µg/L), followed by MiBP (81.3 µg/L), MECPP (79.1 µg/L), and MEP (28.5 µg/L). A
significant association between the concentrations of parent phthalate diesters in handwipes and the
corresponding monoester metabolites in urine were observed in urine from children, which suggested
that dermal absorption is an important exposure pathway for phthalates in children [75]. Mean
urinary concentrations of MBP decreased as the children aged [91]. Among children, urinary DBP and
DEHP metabolites in boys were higher than those in girls, whereas urinary MEP concentrations were
positively correlated with age in both genders [79]. Urinary concentrations of MEP in adolescents were
higher than those in children, which was associated with high cosmetic usage among teenagers [79,95].

Urinary phthalate metabolite concentrations have been reported for children and adults from
17 European countries, namely, Belgium, Cyprus, Czech Republic, Denmark, Germany, Hungary,
Ireland, Luxembourg, Poland, Portugal, Romania, Slovenia, Slovak Republic, Spain, Sweden,
Switzerland, and the United Kingdom (DEMOCOPHES); the geometric mean concentrations of
MEP, MBZP, MBP, MiBP, and ΣDEHP metabolites were 34.4, 7.15, 34.8, 45.4, and 47.6 µg/L for children
(n = 1355) and were 48.2, 4.51, 23.9, 30.1, and 29.2 µg/L for mothers [81], which suggested that children in
those countries were more highly exposed to several phthalates than were their mothers. Nevertheless,
some studies reported higher urinary MEP concentrations in mothers (45.1–72.0 µg/L) than in children
(12.1–16.4 µg/L) [82,92]. The concentrations of DEHP metabolites were reported to be similar between
mothers and children [82,109,119]. A significant positive correlation existed in urinary phthalate
metabolite concentrations between children and their parents. MECPP, an oxidative metabolite of
DEHP, was predominant in urine from children (92.7%) relative to that found in adults (56.7–57.6%).
Studies have found that children possess enhanced oxidative metabolism for DEHP [91,109,147].
Another study of urinary phthalate metabolites in 104 paired mothers and school-aged children
reported higher concentrations of secondary DEHP metabolites in children than in mothers [93]. A
study from Austria showed higher urinary concentrations of phthalate metabolites in children than
adults [62]. Overall, these studies suggest higher exposures to phthalates in children than adults.

Highly Exposed Populations: Highly exposed individuals have urinary phthalate metabolite
concentrations that often exceed those at the 95th percentile of the general population (https://www.
ncbi.nlm.nih.gov/books/NBK215044/). Neonates who receive medical treatments such as transfusions
are widely recognized as potentially highlexposed [148]. A study from Slovakia showed that the
urinary concentrations of DEHP metabolites, MiBP, and MBP in occupationally exposed individuals
from plastic industry were 55.9, 39.2, and 110 µg/L, respectively [115], which were higher than those
in urine from women of no known occupational exposures [61]. The median concentrations of MEP,
MBP, MiBP, and DEHP metabolites in urine from hairdressing apprentices who attended vocational
training schools in Slovakia were 201, 103, 61.4, and 82.7 µg/L, respectively [116]. Some medications
contain phthalates in their coatings or delivery systems [49] and may contribute to the high exposures
of children, pregnant women, and others who take these medications.

Exposure Assessment: The concentrations of phthalate metabolites measured in urine can be
used to assess the amount of parent phthalate to which humans are exposed, when the fraction of the
metabolite excreted in urine is known, as presented in the equation below [147]:

Estimated parent phthalate concentration =
Metabolite concentration

Excretion fraction
(1)

https://www.ncbi.nlm.nih.gov/books/NBK215044/
https://www.ncbi.nlm.nih.gov/books/NBK215044/
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The estimated daily intake (EDI) of parent phthalates is then calculated by taking the average
weight of an individual with the average urinary excretion rate, as shown in the equation below:

Estimated daily intake (EDI)= Estimated parent phthalate concentration ×Daily urine excretion volume
Average body weight (2)

Several studies have estimated exposure doses to phthalates in populations, which allowed for
comparison against a reference dose (RfD), the maximum acceptable oral dose of a toxic substance, of
the US EPA. The estimated mean daily exposure doses to DEP and DBP in Asian countries and the US
were one to two orders of magnitude below the EPA RfD (DEP = 800, DBP = 100, and DEHP = 20 µg/kg
body weight (bw)/day). The estimated daily exposure doses to DEHP in Kuwait and India, however,
were close to the RfD of the US EPA [72]. Similarly, high concentrations of DEHP metabolites (mean
concentration = 338 µg/L) were reported in urine from the Saudi population [26].

The calculated EDImax values for DEHP and DBP were 8 and 0.08 µg/kg bw/day, respectively,
for the population in Taiwan, which were one to two orders of magnitude lower than the tolerable
daily intake (TDI) values (the daily intake amount of a chemical that has been assessed to be safe for
human being on a long-term basis) suggested for DEHP (50 µg/kg bw) and DBP (10 µg/kg bw) by the
European Food Safety Authority (EFSA) [147].

The 95th percentile for DEHP exposure doses calculated for the general population (n = 85) and
children (n = 254) from Germany were 21 and 25 µg/kg bw/day, respectively, which exceeded the RfD
(20 µg/kg bw/day) and the TDI (20–48 µg/kg bw/day) [149]. Further, elevated exposure to phthalates,
especially DEHP, in neonates admitted to intensive care units was reported (median: 42 µg/kg bw/day;
95th percentile: 1780 µg/kg bw/day) [149], and the exposure dose was higher than the RfD.

Some studies defined “Biomonitoring Equivalents (BEs)” as the concentration or range of
concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium)
that is consistent with an existing health-based exposure guideline (e.g., RfD and TDI) [150,151]. BE
values for MBP, MBzP, and MEP were reported at 18000, 3800 and 2700 µg/L, respectively [150], and
the BE values range from 1500 to 3600 µg/L for MiNP [151]. These values may be used as screening
tools for evaluation of biomonitoring data for phthalate metabolites in the context of existing risk
assessments and for prioritization of the potential need for additional risk assessment efforts for each
of these compounds relative to other chemicals [150,151].

Although current exposure doses in the general population are below the tolerance limits reported
by environmental agencies, certainly population groups, especially children, are exposed to high levels
of phthalates. Studies of the effects of phthalates from early life stage exposures are warranted.

3.2. Phthalate Metabolites in Serum

The biomonitoring studies of human phthalate exposure have been based on urinary concentrations
of phthalate metabolites. However, when only serum was available for analysis, MEP and MiBP
representing low molecular weight phthalates, and MECPP and MCiOP representing high molecular
weight phthalates, have been used as indicators of phthalate exposure [77]. A study reported the
correlations of phthalate metabolite concentrations among urine, serum, and seminal plasma of young
Danish men [77]. The mean concentrations of MEP, MBP, and DEHP metabolites were one to two
orders of magnitude lower in serum (MEP: 4.2, MBP: 0.4, and DEHP: 7.6 µg/L) and seminal plasma
(1.0, 0.8, and 0.6 µg/L) than in urine (326, 42.5, and 115 µg/L). Another study, however, showed that the
distribution pattern of monoester metabolites in serum was similar to that of urine [152], especially for
MEHP (the metabolite of DEHP) [152]. Nevertheless, MEHHP, MEOHP, MECPP, and MCMHP were
found at much higher concentrations in urine than in serum [153]. The presence of MEHP in serum
was more likely related to contamination that arises from sampling devices.

Whole blood and cord blood samples from 128 healthy pregnant women and their newborns
were analyzed for phthalate metabolites. Median concentrations of MEHHP and MEOHP were 0.31
and <LOD µg/L in maternal blood and 0.32 and <LOD µg/L in cord blood, respectively. MEHHP and
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MEOHP also were reported to occur in the placenta at concentrations of 0.09 and <LOD ng/g [144].
MBP, MEHP, MEP, and MiBP were detected in blood serum at median concentrations of 0.54 0.49, 0.50,
and 0.5 µg/L, respectively [24], and these concentrations were at least an order of magnitude lower
than those measured in urine.

In the serum of patients who were undergoing dialysis [53,154–156], phthalate acid (PA) was
found as a metabolite of phthalates at remarkably high concentrations of 5.22 ± 3.94 mg/L [155].
Another study also reported the occurrence of PA in serum (0.205 ± 0.067 mg/L) of patients who were
undergoing dialysis [154]. Accumulation of PA in patients who are undergoing dialysis has been
suggested [156]. Serum concentrations of MEHP and DEHP were reported in autistic children [157].

3.3. Phthalate Metabolites in Amniotic Fluid, Breast Milk, Semen, and Saliva

MBP was found in >93% of amniotic fluid samples collected from the US [59] at concentrations
two- to threefold lower than those of serum and four- to sevenfold lower than those of urine [59].
Studies have reported the occurrence of phthalates in breast milk [158]; the reported concentrations in
breast milk were much lower than those in urine but similar to those in amniotic fluid. Monoester
metabolites of phthalates were measured in breast milk from 33 lactating mothers in North Carolina.
MCPP (0.2 µg/L) and MEOHP (0.3 µg/L), MECPP (0.1–0.4 µg/L), and MEHHP (0.2–0.3 µg/L) were
detected in some samples [131]. MiNP was the major metabolite found in breast milk collected from
mothers in Denmark (101 µg/L) and Finland (89 µg/L) [25,159]. Median concentrations of MBP, MBzP,
and MEHP in breast milk were 0.54, 0.50, and 0.49 µg/L, respectively [24].

Human saliva samples (n = 39) also contained phthalate metabolites [57,160]. Salivary
concentrations of phthalate metabolites in 39 adult volunteers were in the ranges of <1 to 10.6 µg/L for
PA, 91.4 µg/L for MEP, 65.8 µg/L for MBP, and 354 µg/L for MBzP. MBP was the most (85%) frequently
detected compound in saliva [57]. Two phthalate metabolites (2.2 µg/L MCPP and 2.3 µg/L MECPP)
were detected in a saliva sample from a US woman [131].

MBP and MBzP were found in semen from US men [32,54]. High concentrations of DEHP and its
metabolites (

∑
40.6 µg/L) were found in semen from German men [161]. Studies have also indicated

that semen quality can be affected by environmentally relevant phthalate exposures [121]. Further,
DEHP (4.20 µg/L) and DBP (2.06 µg/L) were reported at high concentrations in male seminal plasma
from men in the US. The metabolites of DEHP (

∑
0.98 µg/L) and MBP (2.97 µg/L) also were present in

considerable concentrations in seminal plasma in the same study [162]. These results suggested that
phthalate metabolites can partition in seminal plasma. Similarly, DEHP (2.09 µg/L) and DBP (1.75 µg/L),
as well as their metabolites, were found as the predominant phthalates/phthalate metabolites in seminal
plasma from male partners who were planning for pregnancy. This study showed adverse associations
between seminal phthalate metabolite concentrations and semen quality [163].

Phthalate metabolites were measured in nail samples from Belgium, and the total concentrations
ranged between <12 and 7980 ng/g. It should be noted, however, that some phthalates, especially DBP,
are used in nail polishes and that care should be exercised in interpreting such measurements. MEHP,
MBP, and MEP were the major metabolites detected in every nail sample, with a median concentration
of 138, 74, and 64 ng/g, respectively [135]. Another study of nail samples from Oslo, Norway, showed
the presence of monoesters, such as MMP (geometric mean 89.7 ng/g), MEP (104.8 ng/g), and MBP
(89.3 ng/g) [112]. The utility of other biologic matrices, such as blood, breast milk, semen, and nails, for
assessing human exposure to phthalates remains largely unknown due to the limited data.

4. Select Epidemiological Studies Linking Phthalate Exposure and Health Outcomes

Controlled laboratory animal studies on the toxic effects of phthalates have enabled understanding
of biological plausibility and potential mechanisms of actions of this class of chemicals. Thus far, the
majority of the laboratory animal exposure/toxicity studies have focused on DEHP and DBP/DiBP,
with limited studies examining the toxicities of other phthalates [164–191]. The reproductive and
developmental effects of phthalates are among the most studied and well-described toxic endpoints in
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those studies. The toxic endpoints determined in animal studies, following phthalate exposure, include
retention of nipples, anogenital distance, pathological changes in testes and male reproductive accessory
glands, hypospadias, cryptorchidism, and semen parameters. Phthalates have well-documented
anti-androgenic activity in rodent studies that result in reduced circulating testosterone. Several reviews
have been published on the toxicity of phthalates [10,14,168–170]. As a class of well-studied endocrine
disrupting chemicals, exposure to phthalates has been linked to sex anomalies, endometriosis, altered
reproductive development, early puberty and fertility, breast and skin cancer, allergy and asthma,
overweight and obesity, insulin resistance, and type II diabetes.

4.1. Diabetes

Diabetes is a metabolic disease that results in elevated blood glucose levels. Epidemiological
studies in the US [192,193] reported that women with higher urinary concentrations of MBP, MiBP,
MBzP, and MCPP and those of DEHP metabolites showed increased risk of diagnosis for diabetes in
comparison with those who had lower concentrations of phthalates. Phthalate exposures have been
shown to result in insulin resistance [166,194].

4.2. Overweight and Obesity

Overweight and obesity can be associated with many chronic diseases, including diabetes.
Phthalate exposure was associated with increased body mass and waist circumference [195]. Some
phthalate metabolites (MEP, MBP, and MiBP) were associated with obesity in children, whereas
MEHP, MECPP, MEHHP, MEOHP, MBzP, and MCNP were associated with obesity in adults. Further,
DEHP metabolites were found to be significantly associated with obesity in adult females and older
males [196]. Urinary concentration of MBP was associated with fat deposition in boys in China [197].

Several studies have shown a significant association between obesity and phthalate
exposure [193,196,198]. MEP, MEHP, MBzP, MEHHP, and MEOHP were associated with obesity
in the US population [198]. MBzP, MEHHP, MEOHP, and MEP were associated with increased waist
circumference and BMI [193] In contrast, higher concentrations of MEP and DEHP were found in the
serum and urine of individuals who were undergoing weight loss [199]. Food intake is the main source
of phthalate exposure (for high molecular weight phthalates). Therefore, overweight population with
high food intake might have high phthalate exposures.

4.3. Allergy and Asthma

Exposure to high molecular weight phthalates are is associated with allergies and asthma [200,201].
Studies indicated that children are prone to exposure to DEHP, BzBP, DBP, and DEP and that exposure
was associated with allergic rhinitis, atopic dermatitis, and conjunctivitis [202]. DEHP and BzBP and
their monoesters are regarded as allergens, and exposure to them has been associated with asthma
and wheezing in adults [200,201]. Exposure of DEHP, BzBP, DBP, and DEP during gestation has been
associated with allergic responses in infants and toddlers [200]. Urinary MEHP concentrations are
correlated with asthma in children [203]. Prenatal exposure to DEHP metabolites and BzBP has been
associated with the risk of developing asthma at the age of 7 years and older [204].

4.4. Reproductive Health

Urinary MEP and MBP and the metabolites of DEHP and DiNP are associated with anomalies in
pubertal development in girls [205]. A significant association between urinary concentrations of MBzP,
MEHP, and MEP and increased risk of endometriosis was found in women [206]. Exposure to MEP,
MiBP, and MBP pose an increased risk of pregnancy loss in Chinese women.

Poor semen quality was associated with exposure to phthalate metabolites. MBP and MBzP
were strongly associated with spermatotoxicity and subfertility in males [32,54]. Significantly higher
concentrations of DEHP (4.66 µg/mL) and MEHP (3.19 µg/mL) were found in the urine of 40 Turkish
boys with gynecomastia as compared to that of control groups [207]. Several reviews have appeared
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on the reproductive and developmental toxicities of phthalates [208]. Whereas some inconsistencies
exist across phthalates for specific health outcomes associated with exposures, moderate to strong
evidence of male reproductive effects have been demonstrated in the literature [208]. Because humans
are exposed to thousands of harmful chemicals, establishing the link between exposure to a single
substance class and adverse health outcomes is fraught with uncertainties.

5. Conclusions and Perspectives

Human biomonitoring studies are useful in elucidating exposures and body burdens of phthalates
at a population level. Although the sources of exposure to phthalates are well described, several
questions about cumulative exposures to phthalates throughout the life span, relative contributions
of various sources to cumulative exposures, and mixed exposures that may include phthalates or
other chemicals that may elicit common adverse outcomes remain unanswered. Biomonitoring
studies clearly demonstrate that human exposures are almost ubiquitous, and, in most cases, children
have higher exposures than do adults. The existing studies indicate that the observed associations
between phthalate exposure and disease outcomes are exploratory and preliminary, the health effects
of phthalate exposure warrant further study. Robust analytical methods exist to measure more than
20 phthalate metabolites in urine, a preferred matrix of choice for biomonitoring studies. Although
studies have reported the occurrence of phthalate metabolites in other human specimens, including
serum, seminal plasma, and amniotic fluid, the relevance of these matrices in understanding toxic effects
needs further investigation. Although biomonitoring studies select major biomarkers/metabolites
of phthalates, several other intermediate and transformation products of phthalates appear to exist
in human specimens. These intermediates may have more pronounced effects on health. Lack of
analytical standards hinders the identification of those intermediate biological transformation products
of phthalates. Further, the interaction of phthalate metabolites with other contaminants should be
considered in future investigations.

There is a lack of biomonitoring data on phthalate exposures in developing countries in
Africa and South America. Studies are needed in those regions with regard to exposures and
associated health outcomes in populations. Further, epigenetic effects of phthalate exposures warrant
further investigation.
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