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Abstract: The role of reliable, non-invasive imaging-based recognition of pulmonary hypertension
(PH) remains a diagnostic challenge. The aim of the current pilot radiomics study was to assess the
diagnostic performance of cardiac MRI (cMRI)-based texture features to accurately predict PH. The
study involved IRB-approved retrospective analysis of cMRIs from 72 patients (42 PH and 30 healthy
controls) for the primary analysis. A subgroup analysis was performed including patients from
the PH group with left ventricle ejection fraction ≥ 50%. Texture features were generated from
mid-left ventricle myocardium using balanced steady-state free precession (bSSFP) cine short-axis
imaging. Forty-five different combinations of classifier models and feature selection techniques
were evaluated. Model performance was assessed using receiver operating characteristic curves. A
multilayer perceptron model fitting using full feature sets was the best classifier model for both the
primary analysis (AUC 0.862, accuracy 78%) and the subgroup analysis (AUC 0.918, accuracy 80%).
Model performance demonstrated considerable variation between the models (AUC 0.523–0.918)
based on the chosen model–feature selection combination. Cardiac MRI-based radiomics recognition
of PH using texture features is feasible, even with preserved left ventricular ejection fractions.

Keywords: cardiac MRI; radiomics; pulmonary hypertension; machine learning; texture

1. Introduction

Pulmonary hypertension (PH) is a disabling disease with long-term morbidity and
mortality. The incidence of PH is increasing, which is associated with substantial health
and economic implications [1]. PH is defined as when resting mean arterial pressure as
measured during right heart catheterization (RHC) is ≥25 mm Hg [2]; however, it was
recently proposed to reduce the threshold to define PH to >20 mm Hg [3]. Patients with
PH have non-specific symptoms including dyspnea, chest pain, syncope, palpitations, or
reduced exercise tolerance [4]. No clinical, laboratory, or ECG marker is specific for early
diagnosis of PH. As such, patients often present late at an advanced stage of disease with
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features of right heart failure. Evidence suggests that early diagnosis and treatment leads
to improvement in the long-term prognosis of PH patients [5].

Diagnosis of patients with suspected PH and follow-up of patients with suspected
PH remains a challenge. Currently, the RHC is considered the gold standard modality to
confirm PH. However, RHC is invasive and associated with a 1% risk of major complica-
tions and a 0.05% mortality risk [6]. RHC should be chosen selectively in patients with
a high degree of suspicion. Non-invasive imaging modalities such as echocardiography,
cardiac MRI (cMRI), or chest CT may also provide evidence of PH and help in detecting
changes of PH, and each has its own merits and demerits. Echocardiography is highly
operator-dependent and may be unreliable or difficult to perform in patients with poor
acoustic windows due to body habitus, or in patients with significant lung disease [7].
Echocardiography also has limited sensitivity and specificity in diagnosing PH compared
to RHC [8]. A dilated main pulmonary artery >3 cm is a common CT marker for raising sus-
picion of PH in patients with high risk (left heart disease, obstructive sleep apnea, chronic
kidney disease requiring dialysis, systemic sclerosis, congenital heart disease, or sickle
cell disease) [9]. However, pulmonary artery diameter alone is inadequate to diagnose
PH [9]. cMRI is also commonly used for functional evaluation once PH is confirmed to
assess disease severity, right ventricular volume, and ejection fraction.

Radiomics is an emerging field in medicine that extracts quantitative features from the
routinely acquired images that are not visualized by the human observer. Radiomics can
be employed to extract features from medical images based on shape, texture, and intensity.
The advantage of a radiomics approach is that it can be applied to clinically-acquired
images and requires no additional image acquisitions or changes in protocol. Texture
features, which are the essential component of radiomics, have been used extensively in
the field of neuro-oncology to differentiate tumors, or to separate pathological subtypes
of the same tumor [10–15]. A few prior studies have evaluated the impact of radiomics-
based texture feature extraction in cMRI for diagnosis of myocarditis and differentiation
of various cardiomyopathies [16–19]. However, to the best of our knowledge, the role of
radiomics applied to cMRI texture features in the evaluation of PH has not been studied
before, and this is the goal of the study presented here. In this study, we have extracted
texture features from cMRI of patients with known PH and compared it with patients
without PH to identify a subset of texture features which will provide a predictive model
for PH. We provide here an investigation of the impact of multiple feature selection and
machine learning models on the overall model performance in diagnosing PH.

2. Materials and Methods

This is a single institution retrospective study approved by the local institutional
review board. Patients were identified using a radiology information system and electronic
medical records. Selection criteria for the PH group was as follows: right heart catheter-
ization (RHC) and cMRI performed within thirty days of either exam, and availability
of RHC derived mean pulmonary artery pressure and artifact-free balanced steady-state
free precession (bSSFP) 2D short-axis cine cardiac MRI images. Patients with evidence of
coronary artery disease, ischemic cardiomyopathy, or suspected infiltrative cardiomyopa-
thy (like sarcoidosis or amyloidosis) on cMRI were then excluded. PH was defined based
on RHC derived mean pulmonary artery pressure >20 mm Hg, founded on the recently
proposed criteria and clinical classification [3]. Many patients had more than one cause
of pulmonary hypertension (for example, lung disease and left heart failure). In these
patients, the final class characterization of PH was based on a local multidisciplinary PH
team discussion and recommendations. The patients in the PH group included all WHO
classes of PH with the majority being from group 2. An age and gender-matched control
group was retrospectively selected from patients who had undergone cMRI as part of a
clinical work-up for a family history of cardiovascular disease, and a normal cMRI with
normal biventricular ejection fraction and no delayed myocardial enhancement. Patients in
the control group had no evidence of coronary artery disease, and no history of cardiac



J. Clin. Med. 2021, 10, 1921 3 of 13

interventions including valve replacement or coronary interventions. Patients in the PH
and control group were also screened for presence of comorbidities including diabetes
mellitus, hypertension, and smoking. This yielded a total of 72 patients, 42 with PH and
30 controls. Primary extraction of texture features derived from cMRI of PH and controls
subjects was performed in a consistent way for all the patients in both of the groups. To
further analyze the texture features that may help differentiate the control group from PH
patients with preserved LVEF, a subgroup analysis was also performed. This subgroup
included patients from the PH group who had preserved left ventricle ejection fraction
(LVEF) ≥ 50% [20] and were compared against the controls. The subgroup of PH patients
(20) with preserved LVEF included patients with an echocardiographic diagnosis of dias-
tolic dysfunction (patients with heart failure with preserved ejection fraction (HFpEF)),
and patients without evidence of systolic or diastolic dysfunction (Figure 1).
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2.1. Cardiac MRI (cMRI)

cMRI was performed on a Siemens 1.5 T MRI (Siemens, Erlangen, Germany) using
phased-array cardiac coil. The following images were reviewed in the cMRI study in all
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subjects: balanced steady-state free precession (bSSFP) 2D cine imaging was obtained on
the short-axis (base to apex), and in the four-chamber, two-chamber, and left ventricular
outflow tract views followed by 2D single shot bSSFP, and segmented gradient recalled
echo (GRE) delayed late gadolinium enhanced imaging.

2.2. CMR Image Analysis

The de-identified cMRI images were analyzed by two readers with more than five
years of experience in cardiac imaging in consensus (SP and PN) using an FDA approved
freely available software dubbed Segment (version 3.0: http://segment.heiberg.se, accessed
on 28 April 2021) [21]. This software was used for selecting the desired end-systolic mid-
ventricular short-axis [22] image from bSSFP cine series for further texture analysis, as
performed in prior cMRI studies [22].

2.3. Right Heart Catheterization

Electronic medical records of the selected patients in the PH group were retrieved,
and information regarding right heart pressure including mean pulmonary artery pressure,
pulmonary vascular resistance, and pulmonary capillary wedge pressure were recorded.

2.4. Image Pre-Processing

The de-identified DICOM short-axis mid-ventricular slice was transferred to the
texture software MaZda 4.6 [23]. Image normalization was performed to make sure that the
features were reflective of only texture and were not affected by image contrast or overall
brightness [10]. This was performed within the texture software by rescaling the histogram
data, so the gray scale range was between image mean and three standard deviations
(mean − 3 SD and mean + 3 SD).

2.5. Image Segmentation

Segmentation was performed on a mid-ventricular end-systolic slice [22] by SP and
PN in consensus. A left ventricular myocardium mask was manually segmented using the
pencil tool within MaZda software. Care was taken to include only the myocardium and
avoid papillary muscles and the blood pool (Figure S1).

2.6. Texture Features Extraction

For each mask, 348 features were extracted using the MaZda software. These included
histogram (9), co-occurrence matrix (220), run-length matrix (20), gradient (5), autore-
gressive (5), geometrical (73), and wavelet (16) features. Details about these features are
provided elsewhere [24,25].

2.7. Feature Selection

Feature selection was a critical piece of the model building process due to the large
size of the feature set relative to the sample size. Feature reduction was performed to
exclude irrelevant, redundant, duplicated, highly correlated features and to reduce data
dimensionality and complexity. This was performed by using three feature selection meth-
ods: a linear combinations filter (lincomb), a high correlation filter (corr), and a principal
components analysis (PCA). The linear combinations filter addressed both collinearity and
dimension reduction by finding linear combinations of two or more features and removing
columns until the feature set was full rank. The high correlation filter removed variables
from the feature set which had a large absolute correlation. The number of components
retained in the PCA transformation was determined by specifying the fraction of the total
variance that should be covered by the components. The threshold for the largest allowable
absolute correlation for the high correlation filter was set to 0.6, and for the fraction of total
variance in the PCA transformation was set to 0.9. These thresholds were chosen to retain
as much information as possible while providing enough dimension reduction to allow
model fitting. Prior to any feature selection, all variables were standardized. These feature

http://segment.heiberg.se


J. Clin. Med. 2021, 10, 1921 5 of 13

selection methods were implemented using the recipes package [26] in software R version
4.0.2 (R Foundation for Statistical Computing, Vienna, Austria).

2.8. Model Fitting

Twelve different predictive models were fit to determine the best classifier and feature
selection combination for each feature set. These models were chosen to encompass a
variety of classifiers including linear, non-linear, and ensemble classifiers. The linear
classifiers evaluated were linear, logistic, ridge, elastic net, and LASSO (least absolute
shrinkage and selection operator) regression. The non-linear classifiers evaluated were
single-hidden-layer feedforward neural network, support vector machine (SVM) with a
polynomial kernel, and SVM with a radial kernel and multilayer perceptron (MLP). Finally,
the ensemble classifiers evaluated were random forest, generalized boosted regression
model (GBRM), and boosting of classification trees with AdaBoost.

2.9. Model Performance Evaluation

Each model was fit using the three aforementioned feature selection techniques as well
as the entire feature set (full) without any feature selection, except for the linear regression,
logistic regression, and the neural network which cannot be fit with the full feature set.
This is because the model parameters cannot be uniquely estimated in linear and logistic
regression models when the number of features is much larger than the sample size.
For neural networks however, the problem was more related to excessive computational
requirements. The model fitting process was also repeated using only the PH subgroup
compared to the normal control group. The overall workflow of the entire process from
segmentation to texture feature selection and model validation is summarized in Figure 2.
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3. Statistical Analysis

Continuous data was reported as mean ± standard deviation or median (IQR), where
appropriate. Group differences were tested using the two-sample t-test, Wilcoxon rank-
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sum test, or the chi-square test, and p-values below 0.05 indicated a significant difference
between the two groups.

Model fitting and cross-validated predictive performance was implemented using the
MachineShop [27] and RSNNS [28] packages, in software R version 4.0.2 (R Foundation
for Statistical Computing, Vienna, Austria) [29]. Five-fold repeated cross-validation with
five repeats was performed to evaluate the predictive performance of each model. When
necessary, tuning parameters were selected using nested cross-validation to avoid bias.
Hyperparameter tuning was done over a grid of parameter values for the default model
hyperparameters identified by the MachineShop software. For example, for the neural
network model, the hyperparameters were tuned to define the number of units in the
hidden layer and the weight decay value. The feature selection techniques were carried
out within each cross-validated split of the data, so as not to bias the estimate of predictive
performance. Predictive performance was measured with the area under the receiver
operating characteristic curve (AUC) for interpretability. As models were formulated to
predict PH, AUC estimated the probability that a randomly selected subject that had PH
would have a greater predicted value than a randomly selected normal control. Higher
AUC values indicated better predictive performance. The R code used to perform the
analysis is provided in the supplementary file.

4. Results
4.1. Patient Characteristics

No significant differences were found between the two groups for age, body surface
area (BSA), smoking status, associated diabetes mellitus, and hypertension except for BMI.
Table 1 presents the demographics and cMRI characteristics available for both groups.

Table 1. Demographics, co-morbidities, and cardiac MRI features of control and pulmonary hyper-
tension groups.

Normal (n = 30) Pulmonary
Hypertension (n = 42) p Value

Age a 49.53 ± 12.72 54.45 ± 17.42 0.1706

Number of Women (%) 16 (53.3) 23 (54.8) 0.9045

BMI a 28.82 ± 6.51 34.63 ± 9.00 0.0022

BSA a 1.96 ± 0.35 2.08 ± 0.27 0.1490

RVEF b 55.50 (53.00–61.00) 39.50 (29.0–47.75) <0.0001

LVEF b 62.00 (58.00–67.00) 45.50 (21.0–57.83) <0.0001

RVEDVI b 72.24 (62.07–82.63) 97.85 (73.99–120.71) 0.0003

LVEDVI b 76.73 (65.06–86.09) 95.21 (67.45–144.70) 0.0511

Smoking Status—n (%) 0.1444

Current 2 (6.67) 3 (7.14)

Former 7 (23.33) 19 (45.24)

Never 21 (70.00) 20 (47.62)

DM—n (%) 0.0663

No 26 (86.67) 26 (61.90)

Yes 4 (13.33) 15 (38.10)

Number with
Hypertension (%) 14 (46.67) 25 (59.52) 0.2804

a mean +/− sd. b median w IQR in (). BMI: body mass index; BSA: body surface area; RVEF: right ventricle
ejection fraction; LVEF: left ventricle ejection fraction; RVEDVI: right ventricle end-diastolic volume indexed;
LVEDVI: left ventricle end-diastolic volume indexed; DM: diabetes mellitus.
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The majority of patients with PH (26) were classified as WHO group 2. Table 2 displays
summary statistics for additional variables (only available for the PH group).

Table 2. Right heart catheterization (RHC) characteristics of the pulmonary hypertension (PH) group
with NYHA classification and World Health Organization PH class distribution.

Parameters Pulmonary Hypertension (PH) (n = 42)

PA Pressure a 37.00 (22–60)

PVR a 2.25 (0.91–9.95)

PCW a 22.00 (9–35)

Dur b/n RHC and Cardiac MRI (days) 6.00 (0–30)

WHO Class—n (%)

1 3 (7)

2 26 (62)

3 1 (2.4)

1 & 2 1 (2.4)

1, 2 & 3 1 (2.4)

2 & 3 9 (21.4)

5 1 (2.4)

NYHA Class—n (%)

1 2 (4.76)

2 5 (11.90)

3 23 (54.76)

4 6 (14.29)

No 2 (4.76)

Not Available 4 (9.52)
a medians w range (min–max) in (). PA: pulmonary artery; PVR: pulmonary vascular resistance; PCW: pulmonary
capillary wedge pressure; RHC: right heart catheterization; NYHA: New York Heart Association Classification;
WHO: World Health Organization.

4.2. Model Performance on Primary Analysis

The best model performance was seen for the multilayer perceptron (MLP) network
model classifier using the full feature set with cross-validated AUC 0.862 and accuracy of
78% (Figure 3).
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The summary statistics for the AUC of the top five models with the highest mean
AUC is provided in Table 3.

Table 3. Top five models selected to fit for entire group (all PH versus control).

Model Feature Selection Mean SD Median Min Max

MLP full 0.862 0.066 0.852 0.759 0.862

Ridge full 0.859 0.063 0.852 0.750 0.859

RF corr 0.848 0.081 0.854 0.630 0.848

Enet full 0.843 0.094 0.854 0.667 0.843

SVM Poly full 0.840 0.078 0.852 0.685 0.840
MLP: multilayer perceptron; RF: random forest; Enet: elastic net; SVM Poly: support vector machine with a
polynomial kernel; corr: high correlation filter.

4.3. Model Performance on Subgroup of PH Patients with Preserved Ejection Fraction (EF)

There were 20 patients in the PH group with LVEF ≥ 50% (15 patients had diastolic
dysfunction on echocardiogram, and 5 patients had neither diastolic nor systolic dysfunc-
tion). The texture models performed well in comparison of normal subjects with this
subgroup of PH patients with preserved LV ejection fraction. The best performing model
was the MLP model fit using the full feature set, which achieved a cross-validated AUC of
0.918 and accuracy of 80% (Figure 4).
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Figure 4. Model performance for subgroup analysis. Mean AUC for all models and feature selection combinations for
subgroup analysis including patients with pulmonary hypertension and preserved left ventricle ejection fraction (>50%)
and controls.

Table 4 provides the summary statistics for the AUC of the top five models with the
highest mean AUC using each feature set for the PH subgroup with preserved ejection frac-
tion.
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Table 4. Top five models selected to fit for PH subgroup (PH subjects with preserved ejection fraction
versus controls).

Model Feature Selection Mean SD Median Min Max

MLP full 0.918 0.089 0.917 0.708 1.000

Ridge full 0.902 0.129 0.958 0.542 1.000

SVM Poly full 0.887 0.152 0.958 0.417 1.000

SVM Poly corr 0.842 0.164 0.875 0.417 1.000

SVM Rad full 0.842 0.155 0.875 0.417 1.000
MLP: multilayer perceptron; SVM Poly: support vector machine with a polynomial kernel; SVM Rad: support
vector machine with a radial kernel; corr: high correlation filter.

4.4. Overall Performance for Both Groups

Performance metrics for the best models in each feature set for both the groups are
provided in Table 5. The top models were selected using the cross-validated AUC, where
predictive performance was measured repeatedly on different held-out test sets which
were not used in model fitting. In contrast, observed AUC was obtained by re-training the
best models on the full data.

Table 5. Performance metrics for best performing texture models on each feature set for the entire studied group (PH vs.
controls) and subgroup with preserved ejection fraction.

Feature Set Model Feature
Selection

Observed
AUC CV AUC CV Accuracy CV

Sensitivity
CV

Specificity

LV mask
(entire group) MLP full 0.998 0.862 0.783 0.794 0.767

LV mask (PH
subgroup) MLP full 1.000 0.918 0.808 0.740 0.853

MLP: multilayer perceptron; full: full feature set; AUC: area under the curve; Observed AUC: AUC when final selected model is fit to full
dataset; CV: cross-validated.

4.5. Feature Importance

Feature importance was evaluated for the highest performing model for both primary
and subgroup analysis (Tables S1 and S2). Since feature importance is not defined for MLP,
we defined feature importance for the next best performing model (ridge regression). The
top ten features were a combination of geometry, co-occurrence matrix, autoregressive,
histogram, and wavelet features. These features were a combination of shape, first and
higher order texture features.

5. Discussion

This study uniquely demonstrates that radiomics features extracted from mid-left
ventricular myocardium can non-invasively differentiate between patients with and with-
out PH.

Our pilot study demonstrates that the use of radiomics-based machine learning using
texture features from cardiac MRI has excellent diagnostic performance for the differentia-
tion between patients with and without PH. More importantly, our study demonstrates
that the radiomics-based models perform well even for PH patients that have no systolic
dysfunction. This is important information that may help non-invasive identification of
PH patients prior to systolic cardiac decompensation. Multilayer perceptron (MLP) was
the top performing classification model for both primary and subgroup analysis.

We found the MLP model to be the best performing model. The MLP model is a
type of feedforward artificial neural network that has an input layer, an output layer, and
multiple hidden layers. MLP helps in distinguishing data that is not linearly separable [30].
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The top five models for both primary and subgroup analysis were all fit to the full feature
set, except for the fourth-best model which was fit using a high correlation filter.

We evaluated forty-five different combinations of classifier models and feature selec-
tion strategies and found that model performance was variable for the best and the worst
performing models (AUC 0.523–0.918). Classifier model performance depends both on the
available data and on the classification task problem. Prior cMRI studies using radiomics
performed in patients with myocarditis, hypertrophic, or other forms of cardiomyopathy
or prognostication of tachyarrhythmias have only assessed single or limited machine learn-
ing models [16–18,24,31,32]. In our study, we explored the impact of multiple different
models and feature selection techniques on myocardial radiomics performance. Our study
provides evidence that the overall performance is based on the chosen combination of
models and feature selection methods. As such, prediction based on a single model may be
suboptimal. We conclude that further studies should assess multiple models and feature
selection strategies to ensure a more rigorous model selection process.

Our results demonstrate similar performance for the PH subgroup with relatively
preserved LVEF and provides evidence that radiomics features remain unaffected by the
variations in ventricular ejection fraction. This is important, as by using radiomics we may
be able to identify PH patients at risk of cardiac dysfunction early, while they still have
normal ejection fraction.

Feature reduction is often thought to be an essential part of the model building
process, either to reduce computational time or to reduce noise in the data. In our study,
we compared filtering methods (high correlation and linear combinations filter), feature
extraction using PCA, embedded feature selection methods from penalized classifiers and
tree-based ensemble models (ridge, elastic net, LASSO, random forest, GBRM, adaBoost),
and models fit using all features. The embedded feature selection performed by the
penalized classifiers and tree-based models selected feature subsets during the process
of selecting the optimal model. In contrast, filter methods performed feature selections
that were independent of the classifier performance. Our primary goal was assessing
predictive performance, and we found that MLP models fit using all available features
performed best for both the primary and subgroup analyses. While the MLP model does
not perform embedded feature selection as each feature has an associated non-zero weight
in the input layer, its ability to model non-linear relationships in all features is found to be
advantageous in this setting.

Our results stress that model performance is dependent on the type of classifier and
feature selection method chosen, as well as the dataset that the model is applied to. For
example, in the primary analysis the penalized classifiers showed improved performance
when fit to the full feature set (AUC 0.830–0.859) compared to fitting with feature selection
methods (AUC 0.629–0.787). On the other hand, the ensemble classifiers (random forest,
GBRM, adaBoost), which also perform embedded feature selection, performed best in
combination with the high correlation filter (AUC 0.772–0.848) compared to when the full
feature set was used (AUC 0.753–0.804). Thus, the belief that a priori feature reduction is
mandatory in model building may not always be true.

Feature importance evaluation showed that multiple feature types were seen in the
best performing models and belonged to different texture types. These findings suggest that
different features may carry different textural information and thus inclusion of multiple
feature types may improve the model performance.

Besides limitations of retrospective data, we did not perform external validation to
improve generalizability of the optimal model, i.e., the model with the best cross-validated
performance fit to the full dataset. However, we performed fivefold cross-validation with
five repeats to avoid overfitting and bias, and to validate our models. Additionally, we
provided the optimal models using the entire studied group and the subgroup and R code
to make predictions from these models in a supplementary file so they may be applied to
new data in the future. For new data we would suggest fitting the model which had the
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best cross-validated mean AUC to the full dataset and then applying the re-trained model
to new data.

Additionally, we did not evaluate radiomics from right ventricular myocardium.
The impact of PH is known to cause right heart strain and the effect of right ventricle
myocardium texture on the models’ performance needs to be tested. In this study, we
avoided the right ventricle myocardium because of its relatively thin wall compared with
the left ventricle. Since the majority of PH cases in our study had WHO group 2 (PH
secondary to left ventricle dysfunction), the association between radiomic features from
LV myocardium and PH is plausible. However, our results may not be directly applicable
to primary pulmonary hypertension and further studies with larger numbers of patients
from a different WHO group PH will be needed to explore if there is any association with
primary PH. Currently there are no known correlates of radiomic features with myocardial
physiology, and that makes it difficult to understand the biological correlation of these
texture features. To account for heterogeneity from other variables, the PH group and
the control groups were age and gender-matched. The comparison groups were also
matched for body surface area (BSA), smoking status, diabetes mellitus, and hypertension.
However, the PH group had significantly higher body mass index (BMI). This is due to
the retrospective nature of the study and higher incidence of PH among obese individuals.
This difference could affect the model performance, and future studies should be designed
to account for potential confounding variables.

Besides PH, cardiac MRI-derived radiomic features may help in differentiating patients
with left ventricular hypertrophy based on etiology (athlete’s heart, hypertensive heart
disease, amyloidosis, sarcoidosis, or hypertrophic cardiomyopathy) and assessment of
myocardial infarction and viability. Further studies should explore semiautomatic or fully
automatic segmentation of myocardium and extraction of radiomic features to minimize
manual input and time. In addition, evaluation of radiomic features from an entire cardiac
cycle may be performed.

6. Conclusions

Cardiac MRI-based texture feature extraction using radiomics and machine learning
demonstrated excellent performance in identifying patients with PH both before and after
the onset of LV systolic dysfunction. The MLP model fit using a full feature set was the
best performing model for the entire population group and PH subgroup with preserved
LVEF. The performance of machine learning models varies based upon the chosen feature
selection and model combinations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10091921/s1. Figure S1. Myocardial mask segmentation. A single mid-ventricular
short-axis slice from balanced 2D steady-state free precision cine cardiac MRI shows generation of
left ventricular myocardial mask (red). Table S1. Feature importance for texture variables for the
whole group for the best performing model (random forest with full feature set). Table S2. Feature
importance for texture variables for pulmonary hypertension subgroup for the best performing
model (random forest with high correlation filter). R code for models.
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