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Abstract 

Timelapse microscopy has recently been employed to study the metabolism and physiology of cyanobacteria at 

the single-cell level. However, the identification of individual cells in brightfield images remains a significant 

challenge. Traditional intensity-based segmentation algorithms perform poorly when identifying individual cells 

in dense colonies due to a lack of contrast between neighboring cells. Here, we describe a newly developed 

software package called Cypose which uses machine learning (ML) models to solve two specific tasks: 

segmentation of individual cyanobacterial cells, and classification of cellular phenotypes. The segmentation 

models are based on the Cellpose framework, while classification is performed using a convolutional neural 

network named Cyclass. To our knowledge, these are the first developed ML-based models for cyanobacteria 

segmentation and classification. When compared to other methods, our segmentation models showed improved 

performance and were able to segment cells with varied morphological phenotypes, as well as differentiate 

between live and lysed cells. We also found that our models were robust to imaging artifacts, such as dust and 

cell debris. Additionally, the classification model was able to identify different cellular phenotypes using only 

images as input. Together, these models improve cell segmentation accuracy and enable high-throughput analysis 

of dense cyanobacterial colonies and filamentous cyanobacteria.  
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Introduction 

Timelapse microscopy, combined with the use of fluorescent labeling and sensing, allows molecular processes to 

be observed in individual cells at a sub-cellular level. Recent techniques have shown that cyanobacteria, a model 

organism for the study of photosynthetic processes, can be filmed over extended periods of time1–3. The resolution 

of microscopy datasets has led to discoveries that were not previously observed in bulk culture experiments4,5 

such as the regulation of photosynthetic processes2 and organelle development and positioning6–8. 

Due to the large number of individual cells that can be captured in a single image, computational pipelines 

are often used to obtain single-cell data from microscopy datasets. However, the identification (or segmentation) 

of individual cells in the resulting images remains the main bottleneck in these pipelines. Cell segmentation is 

typically performed using intensity-thresholding, where every pixel above a set threshold is identified as being 

part of a cell3,9,10. Intensity-thresholding is popular as it is a relatively simple technique that works well if cells 

are fluorescently labeled, so that the fluorescence signal is much brighter compared to the background.  

Cyanobacteria produce photosynthetic pigments which are autoflourescent. While this might initially 

seem advantageous, the fluorescence signal is typically non-uniform throughout the cell. Additionally, the 

fluorescence intensity changes depending on the cell’s photosynthetic capacity, which can lead to issues when 

choosing a threshold intensity. Together, these issues have meant that using photosynthetic fluorescence to 

identify individual cells is undesirable. Alternatively, fluorescent proteins or dyes could be used to mark the cells. 

However, the presence of the autofluorescence once again complicates matters since most microscopes are limited 

to imaging ~3 fluorescence channels due to spectral overlap11,12. Requiring a fluorescent label would limit one’s 

ability to label other molecules or organelles of interest. It is therefore advantageous to develop segmentation 

algorithms which use the brightfield image, which is generated by light transmitted through the sample, to remove 

the need for further labeling.  

We previously developed intensity-thresholding algorithms to identify cyanobacteria in brightfield 

images. However, these images are difficult to segment because there is little contrast between the cell interior 

and the background13. The problem is exacerbated when cells grow in dense colonies or for filamentous strains 

of cyanobacteria as cell boundaries become even less pronounced (Fig. 1, S1).  

Here, we describe the development of a family of machine learning models, collectively named Cypose, 

to improve the segmentation of individual cyanobacterial cells. Compared to intensity-based thresholding, 

machine learning segmentation models can learn to identify cells using complex hierarchical image features and 

have been shown to work well even without fluorescent labeling14,15. Additionally, we describe a method to train 

a classification model, using a convolutional neural network (CNN) named Cyclass, to perform image-based 

identification of different cellular phenotypes. We demonstrate that the Cyclass model can be used to identify 

different cellular phenotypes using only image data as input. We demonstrate the usefulness of both Cypose and 

Cyclass by showing that these models can be used together to initially segment cyanobacterial cells in dense 
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colonies, then classify different cellular phenotypes in a timelapse video. This methodology could be helpful in 

studies of mixed bacterial species by enabling multiple genotypes/phenotypes to be imaged simultaneously or to 

distinguish individual species in studies containing mixed populations. 

 

Results 

Development of the Cypose cyanobacterial segmentation models 

Our Cypose segmentation models are fine-tuned models based on the Cellpose base models16. Cellpose consists 

of a U-Net like convolutional neural network, which transforms an image into a series of spatial gradients. These 

gradients are then used to identify and label individual cells in an image. 

In initial testing, we found that the base Cellpose cytoplasmic models (cyto217 and cyto318) showed poor 

performance when segmenting brightfield images of cyanobacteria (Fig. 1a). This is likely because these models 

were trained on cytoplasmic images of eukaryotic cells16, which have different phenotypic and morphological 

features compared to cyanobacteria. We also tested a separate segmentation model, bact-phase-omni, from the 

Omnipose package19 (which itself is derived from Cellpose), which was trained on images of bacteria. However, 

we found that this model appeared to perform worse than Cellpose for segmentation, likely because it was trained 

primarily on phase contrast images.  

To achieve higher quality segmentation on cyanobacteria, we trained a family of specialist models. Three 

different models were trained: (1) cypose-7002 and (2) cypose-7002-scratch were trained on images of 

Synechococcus sp. PCC 7002 (hereafter PCC 7002), which are unicellular, while (3) cypose-33047 was trained 

on images of Anabaena sp. ATCC 33047 (hereafter ATCC 33047), which are filamentous. Both cypose-7002 and 

cypose-33047 were fine-tuned from the Cellpose cyto2 base model, while cypose-7002-scratch was trained from 

scratch on the Cellpose architecture. Details of the training and datasets used are provided in the methods section 

below. We note that our models are based on the Cellpose 2.0 cyto2 model rather than the recently released 

Cellpose 3.0 cyto3 model, as the latter was unavailable at the start of this work. However, we have included 

comparisons of our new models with cyto3.  

 

Segmentation of Synechococcus PCC 7002 cells 

We used the cypose-7002 model to segment timelapse videos of PCC 7002 capturing single cells developing into 

colonies. A representative image showing a dense colony from a late frame taken from the benchmark movie is 

shown in Fig. 1a. Masks generated by our cypose-7002 model, the Cellpose and Omnipose models, as well as our 

previously described intensity-thresholding algorithm are shown for comparison. We note that while the intensity-

thresholding algorithm performed well, segmentation errors tended to develop within individual cells, as well as 
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between cells after 3 doublings (S1). However, our new Cypose model performed well over long timelapse 

movies. The model begins to fail when the colonies grow so dense that the cells start to overlap.  

To assess the accuracy of our model, we compared the mask generated by each method to our ground-

truth masks pixel-by-pixel by calculating the Intersection over Union (IoU) score, as well as the typical precision 

and recall scores for each method, as shown in Table 1 and S2. These scores showed that cypose-7002 outperforms 

other models across nearly all metrics. The cypose-7002 model appears to perform slightly worse compared to 

the intensity-based approach. However, as detailed in the methods, the benchmark dataset was generated using 

the intensity-based approach so there is likely a bias towards this approach. 

We note that while these pixel-based metrics are typically reported when comparing cell segmentation 

models, they do not accurately capture inaccuracies, such as over- and under-segmentation, in the resulting 

objects. For example, we observed that single cells were often split into two distinct objects by both cyto2, cyto3, 

bact-phase-omni. In this case, the error could be as small as a single-pixel wide line, which means that the number 

of erroneous pixels were much smaller compared to the number of pixels in both cells, the precision and recall 

scores appear high.  

To obtain a more accurate analysis, we developed code to recognize errors in the identified objects. We 

identified four errors: (1) oversegmentation (2) undersegmentation, (3) false positives, and (4) false negatives. 

We found that the cypose-7002 model resulted in a much lower number of errors compared to all other models, 

including the intensity-based approach (Table 1, Fig. 1b and b, S2). On the benchmark movie, cypose-7002 had 

10% of the total number of segmentation errors compared to the other tested models. Additionally, we found that 

cypose-7002 only generated two false negatives, compared to the hundreds generated by the other models. We 

note that while the number of errors in a frame increases slightly over the duration of the movie as colonies 

become denser (Fig. 1c), this model remains more accurate than the other tested models.  

During creation of the training dataset, lysed cells were not annotated. Consequently, we found that our 

cypose-7002 model was able to differentiate living and lysed cells (Fig. 1d). Additionally, to test the breadth of 

the model’s capability to segment cells with different morphologies, we applied the model to images of 

Synechococcus elongatus sp. PCC 7942 (hereafter PCC 7942), two genetic mutants of PCC 7002 with markedly 

different phenotypes, as well as images of PCC 7002 growing in a microfluidic device (Fig. 1e). In the latter, 

plastic posts in the microfluidic chamber are visible in brightfield. In all cases, we found that our new model 

correctly segmented cells, while ignoring other artifacts such as the posts. 
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Fig. 1: (a) Representative images of PCC 7002 showing the input image, ground-truth, and resulting masks from 

the intensity-thresholding algorithm and the various machine learning models. Errors in each mask are highlighted 

by a box: undersegmentation in blue, oversegmentation in magenta, and false positives (additional objects) in 

green. Scale bar indicates 5 µm. (b) Bar plot showing the total number of segmentation errors over the entire 

benchmark movie. (c) Plot showing the number of total errors at each frame. The bact-phase-omni model gave a 

total error over two orders of magnitude higher and is excluded for clarity (data shown in Fig. S2). (d) 

Representative frames from a movie showing that the cypose-7002 model was able to identify and ignore dead 

cells (indicated by white arrows), which were identified by their lack of growth during the movie. Scale bar 

indicate 5 µm. (e) Representative frames showing the model’s ability to identify different species/phenotypes and 

under different imaging conditions. The white arrows indicate posts of the microfluidic plate. Scale bars indicate 

5 µm. 
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Comparison of scratch-trained and fine-tuned models 

As previously mentioned, our cypose-7002 model was fine-tuned from the pretrained cyto2 model. The cyto2 

model was trained on a diverse training set, primarily comprising of images of eukaryotic cells, with additional 

non-cell images containing repeating patterns, such as shells and rocks. Since no images of cyanobacteria existed 

in the cyto2 dataset, we wanted to test if a segmentation model trained from scratch only on cyanobacterial images 

would perform better compared to the fine-tuned cypose-7002 model.  

The cypose-7002-scratch model was trained from scratch using the Cellpose architecture. This model was 

trained on 3.5x more cell images compared to cypose-7002. To account for different cell morphologies, our dataset 

included various PCC 7002 mutants which showed morphological deviations from WT cells (e.g., cell swelling 

and elongation) similar to those shown in Fig. 1e (note that these images were not shown to the fine-tuned cypose-

7002 model). Results from this segmentation model are shown in Fig. 1a. Benchmark metrics were also calculated 

and are shown in Table 1. 

 Overall, we found that the scratch-trained model provided very similar results to the fine-tuned cypose-

7002 model. However, training from scratch was both labor intensive (since more training data needed to be 

manually curated) and required substantially more training than fine-tuning. Considering the similarity in 

performance, we concluded that training from scratch did not offer notable advantages. 

 

Segmentation of filamentous cyanobacterial strains 

We fine-tuned a second model (cypose-33047) to segment filamentous Anabaena sp. ATCC 33047. This strain is 

challenging to segment as it forms interconnected structures with minimal intensity differences between 

neighboring cells. Additionally, ATCC 33047 differentiates into three morphologically and phenotypically distinct 

cell types: photosynthetic vegetative cells, specialized nitrogen-fixing heterocysts, which have no or little 

photosynthetic pigments20, and akinetes21, which are large, spore-like cells formed during low nutrient conditions. 

To increase the distinction between neighboring cells and to account for the different cell types, the cypose-33047 

model was trained on images of both the brightfield and the chlorophyll fluorescence channels. 

The resulting masks are shown in Fig. 2a. We found that our fine-tuned model provided significant 

improvement when segmenting filamentous cyanobacteria compared to the Cellpose and Omnipose models, and 

to the intensity-thresholding method (Table 1, Fig. 2b and c, S4, S5). As before, we used a timelapse movie with 

cells starting from small filaments as a benchmark. To capture a variety of conditions, we selected three distinct 

temporal subsets of this movie for testing, capturing variable cell densities at the start, middle, and end. We found 

that the cypose-33047 model excelled in early and mid-movie frames, with cyto3 performing better in later 

frames. This suggests that our model could be improved by increasing the number of images showing dense 

filaments in our training dataset.  
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More detailed analysis of the errors showed that the majority (52%, Table 1) of errors in cypose-33047 

were due to under-segmentation (Fig. 2b, S4). However, our model still showed better results when compared to 

the next best model, cyto3 (cyto3 had 688 under-segmentation errors compared to 81 for cypose-33047). We also 

found that our model was more accurate at segmenting akinetes than the other tested models and was resilient to 

other imaging artifacts (S5). 

 

 
Fig. 2: (a) Representative images of Anabaena 33047 showing the input image, ground-truth, and resulting masks 

from the intensity-thresholding algorithm and the various machine learning models. The input image is composed 

of two channels: brightfield (grayscale) and chlorophyll fluorescence (magenta). The heterocysts (labeled H) 

showed reduced or no chlorophyll fluorescence. An akinete cell is present in the image (labeled A). Scale bar 

indicates 20 µm. (b) Bar plot showing the total number of segmentation errors. (c) Plot showing the total number 

of errors at each frame of the benchmark movie. The line for bact-phase-omni was excluded for clarity (data 

shown in Fig. S4). 
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Table 1. Performance of segmentation models calculated by comparing the generated masks with ground-truth masks pixel-by-pixel 

or by identifying errors in individual objects. 

Organism Model  
Pixel-based performance Object-based performance 

IoU Precision Recall 
Over- 

segmented 
Under- 

segmented 
False 

Negative 
False 

Positive Total 

PCC 
7002 

cypose-7002 0.929 0.953  0.973  59 153 2 274 488 

cypose-
scratch 0.921  0.944  0.974  43 191 10 256 500 

cyto3 0.784 0.949 0.818 2175 12 128 1985 4300 

cyto2 0.597 0.853 0.666 834 18 829 8107 9788 

bact-phase-
omni 0.120 0.437 0.142 26364 6374 432 58982 92152 

Intensity 
thresholding  0.951 0.966 0.984  33 175 389 151 748 

 
ATCC 
33047 

cypose-33047 0.875 0.849 0.757 629 934 81 140 1784 

cyto3 0.732 0.905 0.793 33 2201 5597 46 7877 

cyto2 0.642 0.774 0.790 72 1199 2325 703 4299 

bact-phase-
omni 0.040 0.374 0.043 164 809 688 1485 3146 

Intensity 
thresholding 0.659 0.798 0.790 26605 2373 904 727798 757680 

 

 

Development of Cyclass to classify cellular phenotypes in a single image 

Microscopy-based assays allows individual cellular phenotypes to be observed, for example in microbiome22 or 

competition assays23,24 or to probe population heterogeneity8,25. Typically, cellular phenotypes are identified in 

post-processing by filtering using physical properties, such as size or growth rate, or by measuring the intensity 

of labelling with different fluorophores. However, developing these computational filters can be challenging if 

the phenotypes are not significantly different from each other or if a phenotype is not easily described by a single 

parameter. 

 Here, we describe a method to train a convolutional neural network (CNN) based classifier, named Cyclass 

(Fig. 3a), to identify different cellular phenotypes in an image. By using a CNN, we were able to train a model to 

recognize different phenotypes directly from input images without the need for explicitly designing filters. We 

note that, unlike the Cypose segmentation models, classifier models are not easily generalizable to different 

imaging conditions (e.g., number of available channels) or different phenotypes. Thus, it is likely that new 

classifier models must be trained for different applications. The Cyclass framework provided in the codebase 

enables users to train their own models using images consisting of up to 6 different channels. 
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As proof-of-principle, we trained a mode, named cyclass-7002, to classify four cell types of co-cultured 

PCC 7002 mutants with differently localized GFP: Strain 1 had GFP freely diffused throughout the cytosol, Strain 

2 had GFP localized to the carboxysome, Strain 3 had GFP localized to the procarboxysome, and the WT strain 

had no GFP. Details of each strain are available elsewhere26.  

A representative image showing the result of cyclass-7002 is shown in Fig. 3b. To visualize the results, 

we used the classification values from the spreadsheet to color the cell mask. To quantify the accuracy of the 

classification, we calculated the overall IoU (0.919), precision (0.958), and recall (0.958) scores. The confusion 

matrix was also calculated and is shown in Fig. 3c. When analyzing the error, we found that they primarily 

occurred in cells bordering merging colonies or in cells which exhibited intermediate phenotypes (Fig. 3d). This 

is likely because the input image size of 32x32 is larger than a single cell, and information from neighboring cells 

could affect the resulting classification. 

 

Fig. 3: (a) Classification network architecture. The values provided indicate the size of the input image and the 

sizes of the feature maps in each layer. (b) Representative images showing the input image (only brightfield and 

one of the GFP channels are shown here for clarity; the full set of channels are shown in S7) and a recolored mask 

showing the classification of four strains of PCC 7002 cells. The strains have differently localized GFP: WT (no 
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GFP labelling), Strain 1 (diffuse in cytoplasm), Strain 2 (carboxysome), and Strain 3 (procarboxysome). (c) 

Confusion matrix of the classification model. (d) Image showing the most common classification error, where 

WT (cyan) is misclassified as Strain 3 (yellow). These errors occur primarily when the colonies grow close 

together. The scale bars indicate 5 µm. 

 

 

Discussion and conclusions 

In summary, we have developed machine learning models for segmentation (Cypose) and classification of single 

cyanobacterial cells (Cyclass) in imaging datasets. These models can be used independently or within a pipeline 

in our previously developed CyAn software3 (Fig. 4). We have shown that the fine-tuned segmentation models 

generated from the generalist Cellpose models can outperform the originals, even when using images of cells 

which were highly distinct (i.e., bacteria) compared to those used to train the generalist models (i.e., primarily 

mammalian cells). Compared to our previous traditional intensity-based thresholding approach, these new models 

enable segmentation of challenging situations, such as PCC 7002 in dense colonies, and for filamentous bacteria 

like ATCC 33047. The fine-tuned models were also able to segment a variety of cell morphologies, allowing for 

broad application to images of cyanobacteria with different phenotypes. 

 Additionally, we investigated whether scratch-trained models performed better than fine-tuned models. 

We found that fine-tuned models trained from existing models provided the best balance between accuracy and 

resources required. Scratch-trained models offered little or no advantage over transfer learning. 

 Finally, we demonstrated that a cell classification model can be trained to classify different cellular 

phenotypes within a single image. Compared to traditional approaches, the cell classification model does not 

require the user to manually define filters (e.g., cell size or intensity) to identify different cell types, making 

analysis more robust and less prone to observer bias.  

 These new models advance the current state of image analysis for cyanobacterial imaging experiments by 

improving cell segmentation and classification. We believe that these models will enable future microscopy-based 

assays where different mutants or species are grown in the same conditions and imaged within a single field of 

view. 
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Fig. 4: Overview of developed pipeline. Brightfield images are run through the appropriate Cypose model to 

generate cell masks, which are then exported as TIFF files. These masks, along with the original images, can then 

be input into our CyAn software package for tracking and data analysis. For images with different cell types, the 

images can also be run through a relevant Cyclass model to identify different cell classes. These classifications 

are saved in a CSV file and subsequently used to inform downstream data analysis. 
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Methods 

Dataset generation 

Strain cultivation 

To generate the training datasets, we acquired new images, as well as repurposed datasets from previous 

experiments, both reported and unreported. Details for all strains are provided in references cited in Table S1. 

Synechococcus sp. PCC 7002 strains were cultivated in AL-41 L4 Environmental Chambers (Percival 

Scientific, Perry, IA) at 37°C under constant illumination (~150 µmol photons m−2 s−1) by cool white, fluorescent 

lamps, under either ambient or elevated (3%) CO2 conditions. Cultures were grown in 25 ml of A+ media in 

orbital shaking baffled flasks (125 ml) contained with foam stoppers (Jaece Identi-Plug), or on pH 8.2 A+ media 

solidified with Bacto Agar (1%; w/v). Antibiotics were added for routine growth of strains (kanamycin, 100 

µg/ml; gentamycin, 30 µg/ml), depending on the genotype.  

Anabaena sp. ATCC 33047 was obtained from the Pakrasi lab and grown at 37°C in BG11 media. All 

preculturing occurring in 25 mL liquid cultures with 100 rpm orbital shaking in 125 ml baffled flasks with foam 

stoppers. Liquid and agar cultures were grown in an AL-41 L4 Environmental Chamber (Percival Scientific, 

Perry, IA) at 37°C under constant illumination at ~150 μmol photons m−2 s−1 by cool white, fluorescent lamps in 

ambient air. 

 

Microscopy 

Images were taken using a Nikon TiE inverted wide-field microscope. Temperature and CO2 were controlled with 

an environmental chamber (Okolab) outfitted with a ProCO2 P120 Carbon Dioxide Single Chamber Controller 

(BioSpherix). Growth light was provided by a transilluminating red light emitting diode (LED) light source (Lida 

Light Engine, Lumencor). Fluorescence imaging was carried out using a highspeed light source (Spectra X Light 

Engine, Lumencor). NIS Elements software (version 5.11.00, 64-bits) with the Jobs acquisition upgrade was used 

to control the microscope. Image acquisition was performed using an ORCA-Flash4.0 V2+ Digital sCMOS 

camera (Hamamatsu) with a Nikon CF160 Plan Apochromat Lambda 100× oil immersion objective (1.45 NA) 

for PCC 7002 or Nikon CFI Plan Apochromat Lambda D 20× air objective (0.80 NA) for ATCC 33047.  

To acquire time-lapse datasets, PCC 7002 cells in exponential or early linear phase were diluted to 0.14 

OD730. 1 µL was spotted onto a 1% agarose A+ pad and allowed to dry (20 min). The pad was then inverted into 

an imaging dish, which was then wrapped in parafilm to keep the pad from drying out. The cells were preincubated 

at 37°C for 1 hour in the dark. Images were taken every 20 minutes. Cells were constantly illuminated with red 

light except during fluorescent imaging. 

ATCC 33047 cells were grown in liquid culture to ~1.00 OD730. 3-5 x 2 μL drops of cells were added to 

the imaging side of a 1% agarose w/v BG11 (or BG11-N to induce heterocyst differentiation) pad and allowed to 
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dry. The pad was flipped on to an imaging dish (Ibidi μ-dish 35mm glass). The imaging dish was then sealed with 

parafilm and placed into the microscope. Images were captured every 20 or 30 minutes, depending on the movie. 

 

Data preparation 

We used existing algorithms to assist with ground truth data generation. Initial cell masks were generated using 

either the CyAn Toolbox3 (version 1.3.4) running on MATLAB version R2020b or cyto2 running on Python3. 

These masks were then manually corrected using ImageJ/Fiji. Dead or overlapping cells were not annotated 

during this process. 

 

Model training details 

cypose-7002 

The fine-tuned PCC 7002 model was trained using the Cellpose v2 framework, starting with the pretrained cyto2 

model. A training corpus of 6 movies, consisting of 413 frames with a total of 35,000 cells was used. We note that 

only the brightfield channel was used for training this model. Training was carried out on a single Nvidia A100 

GPU using the pytorch framework. The final model was trained for 150 epochs. To benchmark the model, we 

used a separate movie which was never shown to the model during training. This benchmark movie consisted of 

70 frames. 

 

cypose-33047 

As before, this model was trained using the Cellpose v2 framework, starting with the pretrained cyto2 model. The 

training dataset consisted of images of ATCC 33047 containing both brightfield and chlorophyll fluorescence 

channels. A training corpus of 4 movies, consisting of 233 frames and 68411 total cells was used. Training was 

carried out on a NVIDIA T40 GPU using pytorch. The final model was trained for 1250 epochs. To benchmark 

the model, a separate movie was used. This movie was cropped to a total of 36 representative frames showing 

different cell densities from the start, middle, and end of the full-length video. The ground-truth data was made 

using an early version of the cypose-33047 model, then manually corrected.  

 

cypose-7002-scratch 

This model was trained from scratch using the Cellpose v2 framework. Since a larger dataset is required to train 

a model from scratch, we used images from an additional 12 time-lapse movies in addition to the 6 movies used 

to train cypose-7002. The total training set comprised of 18 movies with a total of 2271 frames and approximately 

125,040 cells. To account for the different cell morphologies, the training dataset included images from various 
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PCC 7002 knockdown mutants (e.g., ΔmurA, ΔftsZ, and Δftsh1-4) which show morphological deviations from 

WT-cells (e.g. cell swelling, cell elongation). The cypose-7002 model was used to generate the initial mask. As 

before, the masks were then manually corrected to generate the final training dataset. 

 

Segmentation benchmarking 

To validate our segmentation models, we calculated the pixel accuracy using the typical precision-recall metrics16. 

However, as discussed above, these metrics provide misleading statistics as errors such as over-segmentation tend 

to only involve a small number of pixels compared to the size of the cells. As an alternative, we developed an 

algorithm to identify and count specific segmentation errors. The main segmentation errors that are detected are: 

over-segmentation (when a predicted object is divided into more pieces than the ground truth), under-

segmentation (when multiple objects are grouped together into a single large object), false negative (objects that 

were found in the ground truth, but are missing in the predicted masks), and false positive (objects which were 

found in the predicted masks, but are not in the ground truth). To avoid overcounting the number of errors, the 

algorithm allowed approximately 10% discrepancy between the ground truth and predicted masks. 

 

Training the Cyclass classification model 

As shown in Fig. 3a, the Cyclass classification network architecture consists of a series of 4 sets of convolutional 

layers, with kernel sizes of 3x3. The feature map of each layer was batch normalized, and a leaky ReLU activation 

function was used. Each layer was followed by a 2x2 max-pooling layer with a stride of 2. A final fully connected 

layer was used for the classification task.  

To train the model, we used images from a dataset consisting of 4 distinct cell genotypes/phenotypes, as 

described above (see also Supplementary Table 1). The input images consisted of 5 channels, including brightfield 

and four fluorescent labels (see S7). To generate a training set, we manually annotated images as belonging to 

one of the four cell types. The model was trained with an input image size of 32x32 pixels (about ~1.5x – 2x cell 

size). It is interesting to note that during testing, smaller images appeared to perform worse suggesting that the 

network likely requires some information from neighboring cells. Conversely, input images that were larger might 

confuse the network as it includes too many other cells. The model was trained using the Adam algorithm, 

stopping at 60 epochs. To validate the model, a separate movie consisting of 70 frames was used as a benchmark.  

The classifier model was integrated into an automated pipeline. To use the classifier, we first generated 

masks to identify individual cells. The masks were then used to obtain the centroid position of each cell. A region 

of 32x32 pixels around this location was then cropped from the original image. The cropped image was then fed 

into the Cyclass network which calculated class probabilities for the cell. The class corresponding to the highest 

probability was then output to a csv file and used in downstream analysis (Fig. 4). 
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