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A B S T R A C T   

Objectives: Lymphovascular invasion serves as a crucial prognostic indicator in invasive breast 
cancer, influencing treatment decisions. We aimed to develop a machine learning model utilizing 
optimal volumes of interest extracted from multisequence magnetic resonance images to predict 
lymphovascular invasion in patients with invasive breast cancer. 
Materials and methods: This study comprised 191 patients postoperatively diagnosed with invasive 
breast cancer through multi-sequence magnetic resonance imaging. Independent predictors were 
identified through univariate and multivariate logistic regression analyses, culminating in the 
construction of a clinical model. Radiomic features were extracted from multi-sequence magnetic 
resonance imaging images across various volume of interest scales (− 2 mm, entire, +2 mm, +4 
mm, and +6 mm). Subsequently, various radiomic models were developed using machine 
learning model algorithms, including logistic regression, support vector machine, k-nearest 
neighbor, gradient boosting machine, classification and regression tree, and random forest. A 
hybrid model was then formulated, amalgamating optimal radiomic and clinical models. 
Results: The area under the curve of the clinical model was 0.757. Among the radiomic models, 
the most efficient diagnosis was achieved by the k-nearest neighbor-based radiomics-volume of 
interest (+2 mm), resulting in an area under the curve of 0.780. The hybrid model, integrating the 
k-nearest neighbor-based radiomics-volume of interest (+2 mm), and the clinical model surpassed 
the individual clinical and radiomics models, exhibiting a superior area under the curve of 0.864. 
Conclusion: Utilizing a hybrid approach integrating clinical data and multi-sequence magnetic 
resonance imaging-derived radiomics models based on the multiscale tumor region volume of 
interest (+2 mm) proved effective in determining lymphovascular invasion status in patients with 
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invasive breast cancer. This innovative methodology may offer valuable insights for treatment 
planning and disease management.   

1. Introduction 

Breast cancer is the most diagnosed type of cancer in women worldwide and is the leading cause of cancer-related deaths, primarily 
contributing to patient mortality caused by recurrence or metastases [1]. Lymphovascular invasion (LVI) occurs when tumor emboli 
are located within the peritumoral lymphatic and vascular systems and is a critical step in the progression and metastasis of invasive 
breast cancer (IBC) [2,3]. LVI increases the likelihood of lymph node metastasis, a poor prognosis, and local relapse after 
breast-conserving surgery [4,5]. Moreover, LVI could serve as a potential biomarker for chemoresistance during neoadjuvant 
chemotherapy [6]. 

Despite recommendations, preoperative biopsies for LVI are associated with inherent sampling errors, potentially raising the risk of 
postoperative recurrence [7]. Hence, precise preoperative predictions are vital for determining the most suitable surgical approach, 
adjusting neoadjuvant chemotherapy regimens, and scheduling the frequency of preoperative assessments. 

High spatial resolution and the ability to comprehensively characterize entire IBC lesions are features of multi-sequence magnetic 
resonance imaging (MRI). These features render MRI increasingly useful to assess LVI in patients with IBC. The MRI morphological features 
of LVI are peritumoral edema, adjacent vessel sign, diffusion-weighted image (DWI) rim sign, kinetic enhancement curves, peritumoral or 
tumor apparent diffusion coefficient (ADC), and magnetic resonance (MR)-reported axillary lymph node (mrALN) status [8–11]. However, 
MR morphological features are somewhat limited by subjectivity, low accuracy, and heavily rely on physician expertise. 

Radiomics is a promising field that quantifies tumor heterogeneity by analyzing high-throughput features [12]. Radiomics has a 
high probability of diagnosing LVI. However, most studies have primarily focused on features solely extracted from primary tumors, 
which results in oversights of variations in surrounding tissues that consequently limit the accuracy of the approach [13–18]. 
Incorporating radiomics features extracted from the peritumoral region within a radial distance of 4 mm from the primary tumor can 
aid in diagnosing IBC [19], prediction of lymph node metastasis [20,21], assessment of molecular subtypes [22,23], and prediction of 
LVI [24]. Therefore, peritumoral tissue analysis is crucial for obtaining a comprehensive understanding. Nevertheless, the optimal 
dilation or indent distance for generating peritumoral regions of interest associated with LVI has not been determined. 

Successful radiomic outcomes necessitate precise delineation of target regions, robust prediction models, and dependable algo-
rithms infused with comprehensive information to effectively anticipate LVI [25,26]. Thus far, a radiomics model encompassing the 
multiscale peritumoral regions of IBC remains to be systematically assessed. Drawing on insights gleaned from previous investigations 
[24], we sought to systematically address this gap by incorporating a 2-mm radial expansion or indentation within both the peritu-
moral 4-mm region and the entire tumor volumes of interest (VOIs). Consequently, our primary aim was to assess how varying regions 
influence the prognostication of LVI outcomes, achieved through radial adjustments at − 2, 2, 4, and 6 mm from the tumor boundaries. 
Moreover, our objective was to formulate a hybrid model tailored for predicting LVI status in patients with IBC, amalgamating the 
optimal VOIs with machine learning (ML)-based radiomics and MR imaging characteristics. This amalgamation holds the potential to 
offer invaluable insights for treatment planning and disease management. 

2. Materials and Methods 

2.1. Patient enrollment 

This retrospective study, conducted from January 2019 to July 2023, was approved by the Ethical Review Board of Xiangtan 
Central Hospital (No. 2022-09-004). The requirement for informed consent was waived by the Ethical Review Board owing to the 
retrospective study design. 

Fig. 1. Schematic illustration of the patient enrollment process.  
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Fig. 1 shows a schematic illustration of the patient enrollment process. Utilizing data from two medical centers, namely the Second 
Affiliated Hospital of Hunan University of Chinese Medicine and Xiangtan Central Hospital, this cross-sectional study consecutively 
enrolled women diagnosed with IBC based on imaging findings from January 2019 to July 2023. The participants underwent mul-
tisequence MRI for IBC screening or issue resolution. Both medical centers employed MRI scanners from the same manufacturer and 
adhered to identical MRI training programs. Inclusion criteria included an assessment by multi-sequence MRI, confirmation of IBC 
based on pathological findings from surgical specimens, and MRI conducted within 2 weeks of post-mastectomy or breast-conserving 
surgery. Exclusion criteria included biopsies before MRI; prior surgery coupled with neoadjuvant chemotherapy, radiotherapy, or 
chemoradiation; and MR images with conspicuous artifacts impeding manual segmentation. Consequently, 191 patients from the two 
medical centers were included, with 134 randomly assigned to the training set and 57 to the test set at a ratio of 7:3. 

2.2. Acquisition of MR images 

Both centers used a 1.5-T MAGNETOM Aera MRI scanner with an 18-channel surface breast coil (Siemens AG, Munich, Germany) 
and identical scanning protocols. Patients were positioned prone to acquire axial fat-suppressed T2-weighted images (T2WIs), T1- 
weighted images (T1WIs), and DWIs with b-values of 0 and 1000 s/mm2, ADCs, and dynamic contrast-enhanced MR images (DCE- 
MRI). The protocol consisted of the following: axial fat-suppressed T2WI (inversion time, 165 ms; repetition time [TR]/echo time [TE], 
4830/50; flip angle, 170◦; field of view [FOV], 320–320 mm; acquisition matrix, 338 × 446; average, 2; slice thickness, 4 mm); axial 
T1WI (TR/TE, 8.08/4.76; flip angle, 20◦; FOV, 320–320 mm; acquisition matrix, 338 × 446; average, 1; slice thickness, 1.1 mm); DWI 
with b-values of 0 and 1000 s/mm2 (TR/TE, 7460/65; FOV, 153–340 mm; acquisition matrix, 72 × 160; slice thickness, 5 mm); and 
DCE-MRI (TR/TE, 5.03/2.4; flip angle, 10◦; FOV, 360–360 mm; acquisition matrix, 218 × 256; average, 1; slice thickness, 1.6 mm). 
Contrast-enhanced imaging involved intravenously administering gadoteric acid meglumine salt (0.2 mL/kg) at 3 mL/s using a high- 
pressure injector. Pre-contrast images were acquired, and a contrast agent was injected, followed by saline (20 mL). The patients were 
consecutively scanned six times for 90 s each with phase A1 image used for DCE imaging. 

2.3. Morphological MR feature analysis 

Two experienced radiologists (Xiuqi Yang and Ying Zeng), specializing in breast MR interpretation with 7 and 15 years of 

Fig. 2. Process of multi-scale tumor segmentation.  
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experience, respectively, independently evaluated the MR images that were anonymized and randomized to ensure the absence of bias. 
Discrepancies were resolved by consensus. 

Peritumoral edema was assessed by visually identifying a hyperintense signal surrounding tumors on fat-suppressed T2WI [8]. 
High signal intensity within the tumor was defined as high intratumoral signal intensity on fat-suppressed T2WI [9,10]. A rim sign on 
DWI outlining either complete (≥90 %) or incomplete (<90 %) lesion coverage was also evaluated [11]. The adjacent vessel sign was 
determined by examining vessels entering the enhanced lesion or contacting its edge [11]. The criteria for positive axillary lymph node 
(ALN) status determined by MRI (mrALN) [23] included an axial diameter >10 mm, a long-to-short diameter ratio <1.6, cortical 
thickening with an eccentric profile, and absent fatty portal structures. 

2.4. Clinical model development 

We analyzed the relationship between LVI status and MR morphological features using logistic regression. Significant variables 
identified in univariate logistic regression were included as predictors in the subsequent multivariate logistic regression analysis of 
independent risk factors for predicting LVI status. We calculated odds ratios (ORs) and 95 % confidence intervals (CIs) to assess risk 
associated with each independent factor. Clinical models were constructed using features with p < 0.05. 

2.5. Image segmentation and VOI indentation/expansion 

Multi-sequence MR images, including T1WIs, T2WIs, DWIs, and DCE and ADC images, were preprocessed to standardize gray-level 
intensity ranges and resampled to a voxel size of 1 × 1 × 1 mm. These images were imported into the open-source three-dimensional 
(3D) Slicer software (version 4.6; https://www.slicer.org) that is widely used for medical image informatics, processing, and 3D 
visualization [27]. 

We conducted image registration to align the multi-sequence MR images. This process involves using a registration algorithm and 
appropriate parameters to transform DCE images and then aligning them with the anatomy and positioning of another sequence image. 
To facilitate this process, the target tumor (VOIentire) on the DCE image was manually delineated and subsequently transferred to the 
other sequence images. The general registration module (Elastix) in 3D Slicer provides various preset registration methods. We 
selected 3D DCE-MRI (breast), which is specifically designed for breast-related tasks. After image registration, regions at distances of 2, 
4, and 6 mm from the outer (VOI+2 mm, VOI+4 mm, and VOI+6 mm, respectively) and inner (VOI− 2 mm) surfaces of the tumor were 

Fig. 3. Least absolute shrinkage and selection operator (LASSO) regression model with 10-fold cross-validation for identifying radiomics signatures 
in the multiscale volumes of interest (VOIs): 3a) VOI− 2mm, 3b) VOIentire, 3c) VOI+2mm, 3d) VOI+4mm, and 3e) VOI+6mm. 
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automatically reconstructed using the morphology module in the scikit-image package in Python. We applied erosion and dilation 
morphological operators with ball kernels to the target VOI surface to generate the following types of VOIs: VOI− 2 mm, VOIentire, VOI+2 

mm, VOI+4 mm, and VOI+6 mm. The contour of each VOI was locally refined, primarily focusing on tumors with indistinct boundaries. 
Fig. 2 shows the multiscale tumor segmentation process. 

2.6. Feature extraction and selection 

Radiomic features were extracted from the T1WIs, T2WIs, DWIs, and DCE and ADC images using the Pyradiomics function package 
(https://pyradiomics.readthedocs.io) [28]. A Z-score transformation was applied to standardize each feature and reduce dimensional 
heterogeneity. We applied a minimum redundancy maximum correlation algorithm to identify the most relevant and informative 
tumor classification features with minimal redundancy. We also incorporated a least absolute shrinkage and selection operator 
(LASSO) regression model with 10-fold cross-validation (Fig. 3). Selected radiomic signatures were constructed (Fig. 4). Both pro-
cedures were initially executed on the training set before being applied to the test set. 

Fig. 4. Radiomics signatures for predicting lymphovascular invasion (LVI) in invasive breast cancer (IBC) patients within the multiscale VOIs: 4a) 
VOI− 2mm, 4b) VOIentire, 4c) VOI+2mm, 4d) VOI+4mm, and 4e) VOI+6mm. 
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2.7. Radiomic feature selection and multi-scale VOI radiomic model 

We applied the final features selected by the LASSO regression model with 10-fold cross-validation to construct radiomic models for 
ML. This step aimed to identify a classifier model with exceptional recognition. We used the training set to train the model, and the test 
set to adjust parameters and select the optimal model. To achieve this, we considered five prominent training models: logistic 
regression (LR), support vector machine (SVM), classification and regression tree (CART), k-nearest neighbor (KNN), and gradient 
boosting machine (GBM). We also compared the diagnostic performance of these models in the test set using the area under the curve 
(AUC), accuracy, sensitivity and specificity. We used ML screening based on the optimal VOIs to determine the most effective radiomic 
models. 

2.8. Hybrid model implementation 

We created a hybrid model comprising imaging findings, superior VOIs, and ML-based radiomic models and evaluated its predictive 
ability by calculating the AUCs. The overall benefits of the models across various risk thresholds were assessed using decision curve 
analysis (DCA). Fig. 5 shows the general framework of the statistical analyses. 

2.9. Statistical analysis 

Data were statistically analyzed using R version 4.3.1 (R Foundation for Statistical Computing, Vienna, Austria). Normally and non- 
normally distributed data regarding continuous variables were respectively analyzed using Student t-tests and Mann–Whitney U tests. 
Categorical variables were assessed using chi-square tests. Statistical significance was set at p < 0.05. 

3. Results 

3.1. Patient demographics 

This study included 191 patients with IBC (median age, 50 [24–83] years). Among them, LVI was absent and present in 146 and 45 
patients, respectively. The patients were randomly allocated to the training and test groups at a ratio of 7:3 without intentional 
partitioning. The training set comprised 134 patients, (median age, 50 [23–84] years), including 103 and 31 without and with LVI, 
respectively. The test set comprised 57 patients (median age, 51 [29–78] years), among whom LVI was absent and present in 43 and 
14, respectively. Baseline characteristics did not significantly differ between the training and test cohorts (Table 1). 

3.2. Clinical model 

Univariate logistic regression analysis selected three variables that were entered into the multivariate logistic regression analysis. 
The peritumoral edema (OR: 1.273 (1.095–1.481), p = 0.002) and mrALN status (OR: 1.261 (1.084–1.467), p = 0.003) were identified 
as the sole independent risk factors for breast cancer with LVI (Table 2). The AUC of the clinical model was 0.757. 

3.3. Performance of multi-scale VOI radiomic model 

Models were constructed for each VOI subgroup using LASSO regression-selected radiomics features, and five ML algorithms (SVM, 
KNN, LR, RF, and CART). Table 3 summarizes the AUCs, and accuracy, sensitivity, and specificity values for the multiscale VOI 
radiomics model, and Fig. 6 shows the corresponding receiver operating characteristic curves. The mean AUCs for VOI+2 mm, VOI− 2 

mm, VOIentire, VOI+4 mm, and VOI+6 mm were 0.666, 0.633, 0.654, 0.530, and 0.612, respectively. Among the various VOI subgroup 

Fig. 5. General framework of the statistical analyses.  
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radiomics models, the AUC of the KNN-based radiomics-VOI+2 mm model was 0.780, indicating the highest diagnostic efficiency. 

3.4. Hybrid model construction and assessment 

We integrated the clinical and radiomic model constructed using the optimal KNN-based radiomics-VOI+2 mm to comprehensively 
evaluate diagnostic efficacy. The hybrid model had significantly improved discriminatory ability and provided a more comprehensive 
evaluation than that of either the clinical or radiomic models alone, as evidenced by the AUC and sensitivity, specificity, and accuracy 
values of 0.864, 0.929, and 0.719, respectively. Fig. 7 illustrates that the hybrid model offers the highest diagnostic efficiency and net 
benefit in accurately classifying LVI status, as evidenced by the corresponding receiver operating characteristic (ROC) curves (Fig. 7a) 
and DCA (Fig. 7b) in comparison to the other two models. In addition, we have established an online website to streamline the 
implementation of this hybrid model for clinical practitioners (https://gxmuchnom.shinyapps.io/DynNomapp/). We anticipate that 
this platform will enhance the accessibility and utilization of the model among healthcare professionals in their daily practice. 

Table 1 
Comparison of baseline information between the training and test set.  

Variables Total (n = 191) Training set (n = 134) Test set (n = 57) p-value 

LVI status, n (%)   0.979 
Absent 146 (76.4) 103 (76.9) 43 (75.4)  
Present 45 (23.6) 31 (23.1) 14 (24.6)  
Age, Median (Q1, Q3) 50 (45, 57) 50 (45, 58) 51 (45, 56) 0.983 

Location, n (%)   0.642 
Left 104 (54.5) 71 (53) 33 (57.9)  
Right 87 (45.5) 63 (47) 24 (42.1)  

TIC, n (%)    0.489 
Type 1 10 (5.2) 8 (6) 2 (3.5)  
Type 2 65 (34) 42 (31.3) 23 (40.4)  
Type 3 116 (60.7) 84 (62.7) 32 (56.1)  

FGT density, n (%)   0.478 
Dense 47 (24.6) 29 (21.6) 18 (31.6)  
Heterogeneously dense 69 (36.1) 49 (36.6) 20 (35.1)  
Scattered 50 (26.2) 38 (28.4) 12 (21.1)  
Predominantly fatty 25 (13.1) 18 (13.4) 7 (12.3)  

BPE, n (%)    0.918 
None/minimal 46 (24.1) 34 (25.4) 12 (21.1)  
Mild 80 (41.9) 56 (41.8) 24 (42.1)  
Moderate 43 (22.5) 29 (21.6) 14 (24.6)  
Marked 22 (11.5) 15 (11.2) 7 (12.3)  

Intratumoral high signal intensity, n (%)  0.303 
Absent 143 (74.9) 97 (72.4) 46 (80.7)  
Present 48 (25.1) 37 (27.6) 11 (19.3)  

Peritumoral edema, n (%)   0.66 
Absent 130 (68.1) 93 (69.4) 37 (64.9)  
Present 61 (31.9) 41 (30.6) 20 (35.1)  

Subcutaneous edema, n (%)   1 
Absent 157 (82.2) 110 (82.1) 47 (82.5)  
Present 34 (17.8) 24 (17.9) 10 (17.5)  

Intratumoral necrosis, n (%)   0.537 
Absent 154 (80.6) 106 (79.1) 48 (84.2)  
Present 37 (19.4) 28 (20.9) 9 (15.8)  

Internal enhancement pattern, n (%)  0.315 
Homogeneous 14 (7.3) 12 (9) 2 (3.5)  
Heterogeneous 151 (79.1) 102 (76.1) 49 (86)  
Rim enhancement 26 (13.6) 20 (14.9) 6 (10.5)  

Adjacent vessel sign, n (%)   0.279 
Absent 71 (37.2) 46 (34.3) 25 (43.9)  
Present 120 (62.8) 88 (65.7) 32 (56.1)  

Increased ipsilateral vascularity, n (%)  0.514 
Absent 102 (53.4) 69 (51.5) 33 (57.9)  
Present 89 (46.6) 65 (48.5) 24 (42.1)  

DWI.rim.sign, n (%)   0.238 
Absent 160 (83.8) 109 (81.3) 51 (89.5)  
Present 31 (16.2) 25 (18.7) 6 (10.5)  

MRI-ALN status, n (%)   0.135 
Absent 142 (74.3) 95 (70.9) 47 (82.5)  
Present 49 (25.7) 39 (29.1) 10 (17.5)  

Abbreviation: TIC, time-signal intensity; FGT, fibroglandular tissue; BPE, breast parenchymal enhancement; DWI, diffusion weighted imaging; MRI- 
ALN, MRI-axillary lymph nodes; LVI, lymphovascular invasion. 
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4. Discussion 

Our multi-sequence MRI-derived radiomics analysis focused on multiscale tumor regions and various ML algorithms to predict LVI 
in patients with IBC. SVM models seem to achieve better classification results compared with KNN models in other classification tasks. 
The outcomes of VOI− 2 mm, VOI+4 mm, and VOI+6 mm appear to adhere to this universal guideline. Nevertheless, the performance of 

Table 2 
Univariate and multivariate logistic regression analyses for selecting clinical information in model development.  

Variables Univariate Multivariate 

Odd Ratio (95% CI) p-value Odd Ratio (95% CI) p-value 

Age 1 (0.97–1) 0.84   
location 1.8 (0.79–4) 0.16   
TIC 1.2 (0.6–2.4) 0.63   
FGT density 1.2 (0.81–1.9) 0.33   
BPE 0.92 (0.6–1.4) 0.7   
Intratumoral high signal intensity 1.3 (0.56–3.2) 0.51   
Peritumoral edema 5.8 (2.5–14) <0.001* 1.273 (1.095–1.481) 0.002* 
Subcutaneous edema 1.9 (0.72–5) 0.2   
Intratumoral necrosis 1.8 (0.72–4.5) 0.21   
Internal enhancement pattern 1.8 (0.76–4) 0.19   
Adjacent vessel sign 2.1 (0.82–5.3) 0.12   
Increased ipsilateral vascularity 0.84 (0.38–1.9) 0.67   
DWI rim sign 2.8 (1.1–7.1) 0.031* 1.107 (0.932–1.313) 0.248 
mrALN status 5.4 (2.3–13) <0.001* 1.261 (1.084–1.467) 0.003* 

Abbreviation: TIC, time-signal intensity; FGT, fibroglandular tissue; BPE, breast parenchymal enhancement; DWI, diffusion weighted imaging; 
mrALN status, MRI-reported axillary lymph node. 

Table 3 
Performance comparison of ML-based radiomics models based on multiple VOIs in predicting LVI status.  

Radiomics models AUC ACC SEN SPE 

VOI − 2mm 

SVM 0.625 0.702 0.643 0.721 
CART 0.689 0.702 0.643 0.721 
RF 0.682 0.772 0.5 0.86 
KNN 0.538 0.544 0.429 0.581 
LR 0.681 0.737 0.571 0.791 
GBM 0.661 0.684 0.714 0.674 

VOI entire 

SVM 0.645 0.754 0.5 0.837 
CART 0.557 0.772 0.286 0.93 
RF 0.687 0.684 0.643 0.698 
KNN 0.688 0.649 0.786 0.605 
LR 0.673 0.702 0.571 0.744 
GBM 0.673 0.754 0.5 0.837 

VOI +2mm 

SVM 0.714 0.614 0.786 0.558 
CART 0.539 0.649 0.429 0.721 
RF 0.694 0.789 0.5 0.884 
KNN 0.780 0.684 0.857 0.628 
LR 0.613 0.754 0.357 0.884 
GBM 0.664 0.719 0.643 0.744 

VOI +4mm 

SVM 0.585 0.632 0.5 0.674 
CART 0.537 0.702 0.214 0.86 
RF 0.493 0.561 0.571 0.558 
KNN 0.485 0.614 0.286 0.721 
LR 0.585 0.631 0.49 0.673 
GBM 0.492 0.702 0.357 0.814 

VOI +6mm 

SVM 0.636 0.789 0.357 0.93 
CART 0.552 0.719 0.5 0.791 
RF 0.690 0.825 0.357 0.977 
KNN 0.495 0.719 0.286 0.86 
LR 0.653 0.702 0.571 0.744 
GBM 0.645 0.561 0.929 0.442 

Abbreviation: ML, Machine Learning; LVI; Lymphovascular Invasion; AUC, Area Under Curve; ACC, Accuracy; SEN, Sensitivity; SPE, Specificity. 
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Fig. 6. Receiver operating characteristic (ROC) curves for predicting LVI in IBC patients using the various radiomics models in the multiscale VOIs: 
6a) VOI− 2mm, 6b) VOIentire, 6c) VOI+2mm, 6d) VOI+4mm, and 6e) VOI+6mm. 

Fig. 7. 7a) Receiver operating characteristic curve and 7b) decision curve analysis evaluating the performance of the hybrid, clinical, and radio-
mics-VOI+2mm models. 
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various machine learning methods will vary depending on the specific classification task. The training process for an SVM model is 
considered more challenging than that of a KNN model, mainly due to the need for precise parameter selection. In this study, the KNN 
proved to be more effective than that of SVM for VOI entire and VOI+2 mm and better than VOI− 2 mm, VOI +4 mm, and VOI+6 mm. The 
radiomics-VOI+2 mm had the highest mean AUC among the VOIs, and KNN-based radiomics achieved the highest diagnostic efficiency 
among the various VOI-subgroup radiomic models. Our hybrid model significantly improved predictive performance and enhanced 
clinical usefulness compared with the clinical model alone. Previous research has underscored that patients with IBC with LVI 
generally experience diminished overall survival, disease-free survival, local recurrence rates, breast cancer-specific survival, distant 
metastasis, and loco-regional recurrence rates post-breast-conserving surgery compared with their LVI-negative counterparts [4,5]. 
Hence, considering mastectomy alongside radical systemic treatments is prudent. Furthermore, LVI status holds promise as a potential 
biomarker for assessing chemoresistance during neoadjuvant chemotherapy [6]. Thus, our hybrid model can accurately predict LVI 
preoperatively in patients with IBC, thereby offering valuable insights for guiding initial surgical strategies and tailoring neoadjuvant 
chemotherapy regimens. 

MRI-based radiomics show promise in distinguishing LVI in patients with IBC [13–18]. However, previous studies have primarily 
focused on delineating VOIs based on primary lesions, thus neglecting LVI occurrence in peritumoral regions. Malignant tumors are 
often migratory, invasive, and disruptive to the microenvironment. They typically have centrally located necrotic or hypoxic zones 
owing to insufficient blood supply, whereas peripheral tumor regions are associated with predominant cancer cell proliferation. 
Heterogeneity in the periphery offers valuable diagnostic insights. The diagnostic potential of radiomic features extracted from the 
peritumoral region within a radial distance of 4 mm from the primary tumor can be used to diagnose breast cancer [19], predict lymph 
node metastasis [20,21], and assess molecular subtypes [22,23]. The diagnostic efficiency of the 4-mm region is better for the peri-
tumoral versus intratumoral region [24]. However, determining the optimal dilation or indentation distance for defining a peritumoral 
region of interest in relation to LVI has remained unexplored. 

Our innovative approach involved extracting radiomic features from IBC tumors using multi-scale VOIs (VOI− 2 mm, VOIentire, VOI+2 

mm, VOI+4 mm, and VOI+6 mm). Among these, the mean AUC was the highest for VOI+2 mm, indicating that most of the independent 
radiomic features were concentrated within the 2-mm peritumoral region. This finding aligns with the pathological definition of LVI 
and further supports the notion that MRI radiomic features extracted from a tumor with a 2-mm peritumoral dilation can partially 
reflect the IBC tumor microenvironment. Furthermore, we used various ML algorithms for each VOI size to develop a reliable, highly 
accurate, and efficient predictive model. The diagnostic efficiency was notably optimal for the KNN-based radiomics-VOI+2 mm. 

We investigated MR morphological features to identify independent predictors of LVI status and found that peritumoral edema and 
the mrALN status were significant indicators of LVI in patients with IBC. Peritumoral edema in IBC is associated with various path-
ological characteristics such as angioectasia, growth patterns, interstitial fibrosis, and tumor necrosis. Edema occurs owing to me-
chanical obstruction of the vascular and lymphatic vessels by tumor emboli resulting from LVI. Consequently, this obstruction leads to 
fluid retention or leakage into surrounding spaces. Moreover, inadequate neovascularization and abnormal lymphatic drainage 
contribute to elevated interstitial fluid pressure and vascular leakage [8,29,30]. The mrALN status serves as an important indicator of 
ALN metastasis in patients with breast cancer in clinical practice and has reliable diagnostic performance [31]. Notably, LVI is the 
initial stage of ALN metastasis [32]. Consistent with previous results [24], we also identified a correlation between mrALN status and 
LVI in patients with IBC. In addition, our hybrid model comprising optimal KNN-based radiomic-VOI+2 mm and clinical models had 
excellent discrimination and calibration, further establishing its practical value for clinical applications. 

4.1. Limitations 

Although we obtained promising results, our study is subject to certain limitations. First, the retrospective design introduced 
inherent selection bias. Consequently, only 45 of 191 patients with IBC were found to have accompanying LVI, constituting a rate of 
23.6 %, which is potentially lower than the actual positive rate. Hence, future studies should consider refining sampling methods or 
augmenting the sample size. Second, the preoperative hybrid model, combining optimal VOIs with ML-based radiomics and MR 
findings, shows promise in predicting LVI. However, the limited follow-up duration has impeded our thorough exploration of its 
prognostic abilities. Therefore, extending the observation period would enhance our understanding of the prognostic significance of 
this hybrid model in predicting LVI. Finally, our investigation signifies the inaugural utilization of appropriate target regions, pre-
diction models, and reliable algorithms to systematically assess a radiomics model encompassing multiscale peritumoral ranges. 
Similarly, despite the assessment of clinical stage I solid lung adenocarcinoma prognosis in the study by Liu et al. [33], the deter-
mination of the optimal VOIs for predicting microvascular invasion in intrahepatic cholangiocarcinoma in the study by Ma et al. [34], 
and employment of multiparametric MRI-derived radiomics to predict disease-free survival in early-stage squamous cervical cancer in 
the study by Zhou et al. [35], comprehensive delineation standards for selecting boundary distances are lacking. Further comparative 
pathological studies are required to address this issue. 

5. Conclusion 

We found that a 2-mm peritumoral dilation can partially reflect the IBC tumor microenvironment. Among various models, the KNN- 
based radiomic-VOI+2 mm model had the best diagnostic ability to predict LVI. Our hybrid model comprising optimal KNN-based 
radiomics-VOI+2 mm with a clinical model achieved the most accurate prediction of LVI. Our findings showed that LVI can be accu-
rately predicted before surgery, allowing for the early identification of patients with IBC and prognostic estimations. Overall, the 
preoperative prediction of LVI may help physicians to formulate comprehensive and patient-targeted treatment plans. 
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