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Extra-basal ganglia iron content and non-motor symptoms
in drug-naïve, early Parkinson’s disease
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Abstract
Background Although iron dyshomeostasis is associated with Parkinson’s disease (PD) pathogenesis, the relationship between
iron deposition and non-motor involvement in PD is not fully understood. In this study, we investigated basal ganglia and extra-
basal ganglia system iron contents and their correlation with non-motor symptoms in drug-naïve, early-stage PD patients.
Methods We enrolled 14 drug-naïve, early-stage PD patients and 12 age/sex-matched normal controls. All participants
underwent brain magnetic resonance imaging to obtain the effective transverse relaxation rate (R2*) and quantitative suscepti-
bility mapping (QSM). Deep brain structures, including the nucleus accumbens, caudate nucleus, putamen, globus pallidus,
thalamus, hippocampus, and amygdala, were delineated using the FSL-FIRST; the substantia nigra, red nucleus, and dentate
nucleus were segmented manually. Inter-group differences in R2* and QSM values, as well as their association with clinical
parameters of PD, were investigated.
Results Substantia nigra and putamen R2* values were significantly higher in PD patients than in normal controls, despite no
significant difference in QSM values. Regarding the non-motor symptom scales, PD sleep scale score negatively correlated with
R2* values in the red nucleus and right amygdala, Scales for Outcomes in Parkinson’s disease-Autonomic scores were positively
correlated with R2* values in the right amygdala and left hippocampus, and cardiovascular sub-score of Non-Motor Symptoms
Scale for PD was positively associated with the QSM value in the left hippocampus.
Conclusion In this study, iron content in the extra-basal ganglia system was significantly correlated with non-motor symptoms,
especially sleep problems and dysautonomia, even in early-stage PD.
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Introduction

Iron plays a crucial biological role including mitochondrial
respiration, myelin synthesis, and neurotransmitter

production. Studies have shown an association between iron
accumulation and many neurodegenerative diseases such as
Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple
sclerosis, amyotrophic lateral sclerosis, and Huntington’s
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disease [1]. Iron dyshomeostasis was associated with oxida-
tive stress and led to dopamine depletion, which could be
implicated in PD [2]. In an AD mouse model, amyloid beta
induced reduction of iron and iron oxidation state correlated
with amyloid pathology [3]. Furthermore, neuroinflammation
has recently been highlighted as an etiology of neurodegener-
ative diseases. As iron is present in oligodendrocytes, astro-
cytes, microglia, and neurons in the brain, it may provide a
possible mechanism connecting neuroinflammation and de-
generative diseases [4].

To date, various iron-sensitive magnetic resonance imag-
ing (MRI) techniques such as susceptibility-weighted imag-
ing, transverse relaxation rate (R2*), and quantitative suscep-
tibility mapping (QSM) have been used to investigate the
in vivo distribution of iron in the brain [5, 6]. In PD, iron
accumulation in substantia nigra (SN) has been well
established and many studies have been published on the re-
lationship between iron concentration and disease progression
[7, 8]. However, most previous studies of PD using iron-
sensitive imaging focused on motor symptoms, whereas only
a few studies have investigated non-motor symptoms [9–11].
Furthermore, these studies only focused on the cognition or
total non-motor burden of PD. Additionally, most studies
failed to eliminate the possible confounding effects of medi-
cation. Therefore, we sought to investigate the possibility that
iron content in various brain regions may be associated with
various non-motor symptoms (NMSs) in early-stage PD.
Thus, in this study, the clinical association of iron content in
drug-naïve, early-stage PD patients was investigated using
R2* and QSM.

Materials and methods

Subjects

This study was approved by the Institutional Review Board of
Samsung Medical Center, Seoul, Korea. Written informed
consent was obtained from all enrolled participants. We re-
cruited drug-naïve, early-stage PD patients and age/sex-
matched normal controls at the movement disorder clinic,
Samsung Medical Center, Seoul, Korea, from May to
December 2017. The diagnosis of PD was based on the
Movement Disorder Society PD diagnostic criteria [12], and
early PD was defined as PD with less than 4 years of disease.
All patients underwent N-(3-[18F]fluoropropyl)-2β-carbon
ethoxy-3β-(4-iodophenyl) nortropane positron emission to-
mography in which we confirmed the typical pattern of pre-
synaptic dopaminergic neuronal loss.

Parkinsonian motor symptoms were evaluated based on the
Hoehn-Yahr (HY) stage [13] and Unified Parkinson’s Disease
Rating Scale (UPDRS) part 3 total score [14] and four sub-
scores: tremor, rigidity, bradykinesia, and axial symptoms

[15]. For NMSs, the Korean Non-Motor Symptoms Scale
for PD (K-NMSS), Beck’s anxiety inventory, Beck’s depres-
sion inventory, Innsbruck rapid eye movement sleep behavior
disorder (RBD) inventory, Parkinson’s disease sleep scale
(PDSS), Parkinson’s fatigue scale, Neuropsychiatric invento-
ry, Scales for Outcomes in Parkinson’s disease-Autonomic
(SCOPA-Aut), and Korean Mini-Mental Status Exam (K-
MMSE) were used in this study [16–24].

Subjects were excluded if any of the following was detect-
ed: (1) contraindications for MRI scans, such as metallic im-
plants or cosmetics; (2) significant motion during MRI acqui-
sition; (3) structural brain lesions, including those due to ter-
ritorial stroke, head trauma, or surgery; (4) dementia based on
the K-MMSE score corrected with education year [24]; and
(5) psychiatric disorders requiring medication or other medi-
cal conditions that could mimic PD, including atypical parkin-
sonism and musculoskeletal diseases.

MRI acquisition and analysis

All enrolled subjects underwent brain MRI for R2*
mapp ing and QSM us ing a 3T MRI scanne r
(Magnetom Prisma; Siemens Healthineers, Erlangen,
Germany), in a session consisting of a localizer, T1-
weighted imaging (magnetization-prepared rapid acquisi-
tion with gradient echo), T2-weighted imaging (turbo
spin echo), and a multi-echo gradient echo (multi-echo
GRE) scan. A typical scanning session lasted for ap-
proximately 25 min. The scan parameters for each scan
are listed in Supplementary Material 1.

R2* for each voxel was calculated by a mono-
exponential fit of the magnitude data from all echo-
times after removing the Rician noise [25]. All image
processing was performed in MATLAB (MathWorks,
Natick, MA, USA). The R2* map acquisition process
is depicted schematically in Supplementary Material 2.
The complex data from the multi-echo GRE scans were
also processed for QSM, using the publicly available
software package STI Suite (https://people.eecs.
berkeley.edu/~chunlei.liu/software.html). The QSM
results were used to generate additional contrast to aid
in the segmentation of certain deep brain nuclei (see
below) [26] which normally exhibit poor T1-weighted
contrast.

Segmentation of brain structures

Apart from the basal ganglia structures that were mainly
involved in PD, we also investigated the red nucleus
(RN) and dentate nucleus (DN) that had cortical or
striatal connections, which could influence PD motor
and non-motor symptoms [27, 28]. We also assessed
the limbic system including the amygdala, hippocampus,
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and thalamus, since it regulates various NMSs such as
autonomic, emotional, and memory function.

The T1-weighted images were used to segment the bi-
lateral nucleus accumbens, caudate nucleus, putamen,
globus pallidus, hippocampus, amygdala, and thalamus
in an automated workflow based on the FIRST function
of the FSL (created by the Analysis Group, FMRIB,
Oxford, UK) (Fig. 1A). The SN, RN, and DN were man-
ually segmented by a neurologist (M.K.) based on QSM
(Fig. 1B). This was repeated by the same person 6 months
later, and the consistency between the two manual seg-
mentations was verified based on intraclass correlation
coefficients, which were over 0.86 for all areas (0.992,
left SN; 0.869, right SN; 0.998, left RN; 0.999, right
RN; 0.999, left DN; and 1.000, right DN).

Statistical analysis

All data were presented as the mean and the standard devia-
tion over the volunteers in each group. The independent t-test
or Mann-Whitney U test was used to compare the baseline
characteristics, R2*, and QSM values between the two
groups. p values < 0.05 were considered significant. The cor-
relations between the imaging parameters (R2* and QSM
values) and clinical (motor and non-motor) scores were
assessed using a Spearman rank correlation test wherein age
and sex were controlled. When the correlation with K-MMSE
score was investigated, age, sex, and education years were
controlled. Bonferroni correction was used for multiple com-
parisons, with a significance level α = 0.05/45. For all statis-
tical analyses, the commercially available software package

Fig. 1 (A) Segmentation of the regions of interest (ROIs) in the deep
brain structures of a representative volunteer by FSL. Illustrated are
three-dimensional rendering of the ROI masks with automatic segmenta-
tion from FSL (a), and axial (b), coronal (c), and sagittal (d) plane views
on the T1-weighted images. (B) Segmentation of the manually drawn

ROIs of SN, RN, and DN. Abbreviations. Cd, caudate nucleus; Put,
putamen; Gp, globus pallidus; Thal, thalamus; NAc, nucleus accumbens;
R/L HP, right/left hippocampus; R/L Amg, right/left amygdala; SN,
substantia nigra; RN, red nucleus; DN, dentate nucleus
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IBM SPSS Statistics version 25 (SPSS Inc., Chicago, IL,
USA) was utilized.

Results

Subjects and clinical characteristics

Overall, 14 drug-naïve PD patients and 12 normal con-
trols were recruited for this study. Demographic and
clinical data are presented in Table 1. Among the PD
patients, the mean UPDRS part 3 score was 11.6 ± 8.5,
and the mean HY stage was 1.9 ± 0.6. With regard to
the NMSs, gastrointestinal symptoms, anxiety, and
RBD, which are known as pre-motor symptoms in PD,
were more prominent in PD patients compared to those
in control group participants.

Comparison of iron accumulation between patients
with PD and normal controls

There was no significant difference in both R2* relaxa-
tion rates and QSM values between the left and right
structures for all recruited subjects. Therefore, we used
bilaterally averaged R2* and QSM values, except those
of the hippocampus and amygdala, where functional
laterality has previously been reported [29]. When we
compared these R2* and QSM values between PD pa-
tients and normal controls, the R2* values of the SN
and putamen were significantly higher in PD patients
than in the normal controls, but there was no significant
difference in the QSM values between the two groups
(Table 2).

Correlation analysis of iron content with motor and
NMSs in patients with PD

In terms of motor symptoms, there was no significant
correlation between both the R2* and QSM values and
the severity of motor symptoms assessed using the
UPDRS part 3 total score and sub-scores and HY stage
regardless of age and sex. However, the iron contents of
several extra-basal ganglia structures correlated with
various NMSs when age and sex were controlled (Fig.
2). PDSS score was negatively correlated with the R2*
values in the RN (r = − 0.791, p = 0.024) and the right
amygdala (r = − 0.758, p = 0.048), and SCOPA-Aut
values were positively correlated with R2* in the right
amygdala (r = 0.789, p = 0.024) and the left hippocam-
pus (r = 0.756, p = 0.048). In terms of QSM, the
NMSS cardiovascular sub-score was positively associat-
ed with the QSM value in the left hippocampus (r =
0.760, r = 0.048).

Discussion

To our knowledge, this is the first study to investigate the
relationship between iron deposition and diverse NMSs in
drug-naïve PD patients. Iron accumulation is known to be
associated with PD pathogenesis, but whether it is a cause or
a consequence of neurodegeneration has not yet been eluci-
dated. We performed an explorative study to investigate the
correlation between iron content and clinical assessment, fo-
cusing especially on NMSs in drug-naïve, early-stage PD pa-
tients using R2* and QSM. Intriguingly, we found significant
correlations between the R2* and QSM values of various deep
brain structures, especially those of the extra-basal ganglia
system, and NMSs of PD, while there was no significant cor-
relation with motor symptoms.

In accordance with our results, increased iron content in the
SN of PD patients has been observed in postmortem as well as
in vivo radiologic studies [5, 6]. Regarding iron distribution
outside the SN, the results have been less consistent. PD pa-
tients were found to have increased iron content in the globus
pallidus, putamen, and SN in a previous study [9], while re-
duced putaminal iron levels were reported in another study
[30].

The correlation between iron content and motor symptoms
was investigated in previous studies, but the results were also
inconsistent. For example, UPDRS part 3 scores showed no
correlation with iron content in some studies [31–33], while
other studies demonstrated a significant correlation [7, 9]. In
the present study, we did not observe any significant correla-
tion between iron deposition and motor symptoms, although
R2* values were significantly increased in the SN and puta-
men in PD patients than in normal controls. Iron homeostasis
is disrupted in the early phase of neurodegeneration, and iron
accumulation may already have started even before mild
Parkinsonism appears, resulting in a lack of correlation of
R2*and QSM with motor symptoms. Similarly, one previous
study showed that SN iron content measured using R2* and
QSM correlated with changes in UPDRS part 1 and part 3
scores, respectively, only in the late stage of PD [8]. PD is a
wide-spectrum disorder with various clinical presentations;
thus, more studies with larger samples of homogenous PD
patients are needed for consensus on this issue.

In terms of NMSs, only a few studies have demonstrated an
association between iron content and non-motor involvements
in PD. Studies have shown that magnetic susceptibility values
do not differ between PD patients with high and low NMS
burdens [11] and that the severity of NMSs, as assessed based
on the UPDRS part 1 score, does not correlate with magnetic
susceptibility in the SN pars compacta [31]. However,
susceptibility-weighted imaging showed that iron deposition
in the SN was correlated with cognitive impairment, sleep
disturbance, and autonomic dysfunction in PD patients [34].
Besides the iron content in SN, cognitive impairment was
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shown to be associated with cerebral iron burden when
assessed using QSM [9, 10]. These results suggest that iron
accumulation is not exclusive to the SN but can occur in extra-
basal ganglia regions and could be associated with PD NMSs.

In this study, we found significant correlations between
extra-basal ganglia structure R2* and QSM values and auto-
nomic dysfunction and sleep problems, and our results are in
line with those of previous studies—early-stage PD patients

exhibited significant loss of right amygdala gray matter den-
sity, which was correlated with the SCOPA-Aut score [35];
more severe alpha-synuclein and tau pathologies were ob-
served in the amygdala of PD patients with sleep disturbances
[36]; and blood pressure variability was associated with hip-
pocampal volume [37]. Lastly, the RN has been suggested to
have a compensatory role in PD progression [28] and is con-
nected to cortical and subcortical regions, including the

Table 1 Demographic and
clinical data of enrolled subjects NC (n = 12) PD (n = 14) p-value

General information

Age (years) 58.5 (9.7) 64.1 (9.3) 0.147

Sex (M:F) 5:7 9:5 0.431

Education year (years) 13.1 (4.8) 10.2 ( 5.5) 0.170

Motor symptoms

Age of onset NA 62.1 (9.4)

Disease duration (years) NA 2.0 (2.0)

Dominance (Rt: Lt) NA 10: 4

UPDRS part 3 Tremor NA 0.8 (0.7)

Bradykinesia NA 4.0 (3.5)

Rigidity NA 1.9 (2.7)

Axial symptom NA 4.9 (3.7)

Total score NA 11.6 (8.5)

HY stage 1.9 (0.6)

Non-motor symptoms

NMSS Cardiovascular 0.8 (1.4) 1.4 (3.7) 0.952

Sleep/fatigue 2.6 (4.1) 4.9 (7.6) 0.123

Mood/cognition 1.3 (1.4) 3.8 (6.6) 0.577

Perceptual/ Hallucination 0.2 (0.4) 0.5 (1.3) 0.708

Attention/memory 2.3 (4.1) 2.3 (2.5) 0.339

Gastrointestinal 0.0 2.6 (3.7) 0.001*

Urinary 0.7 (0.9) 1.9 (2.6) 0.194

Sexual function 0.8 (1.2) 1.8 (4.8) 0.814

Miscellaneous 1.1 (2.1) 2.8 (4.7) 0.168

Total score 9.8 (12.5) 21.9 (27.4) 0.060

BAI 3.25 (4.9) 10.0 (11.7) 0.008*

BDI 3.8 (3.5) 6.9 (8.4) 0.339

RBD inventory 10.0 (0.9) 9.0 (1.4) 0.015*

PDSS 126 (33) 129.0 (29) 0.571

PFS 23.0 (17) 21.5 (27) 0.642

NPI 0.0 (0) 0.0 (4) 0.101

SCOPA-Aut 6.5 (5.8) 12.4 (8.8) 0.058

K-MMSE 28.2 (1.8) 27.8 (1.7) 0.586

Abbreviations. PD, Parkinson’s disease; NC, normal controls; UPDRS, Unified Parkinson’s Disease Rating
Scale; HY, Hoehn and Yahr; NMSS, Non-Motor Symptoms Scale; BAI, Beck’s anxiety inventory; BDI, Becks
depression inventory; RBD, rapid eye movement sleep behavior disorder; PDSS, Parkinson’s disease sleep scale;
PFS, Parkinson’s fatigue scale; NPI, Neuropsychiatric inventory; SCOPA-Aut, Scales for Outcomes in
Parkinson's disease-Autonomic; K-MMSE, Korean Mini Mental State Examination

*Statistically significant (p < 0.05)

The values are presented as mean (standard deviation). Age, education year, SCOPA-Aut, and K-MMSE were
assessed using an independent t-test; for the rest of the items, the Mann-Whitney U test was used
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hypothalamus, that regulates wakefulness [27]. Thus, the RN
R2* value in early-stage PD may be associated with sleep
problems.

Although both R2* and QSM were calculated from the
same, multi-echo GRE scans, we observed a discrepancy be-
tween R2* and QSM in terms of their statistically significant
discrimination between PD and control groups, as well as their
correlation with clinical symptoms. Such discrepancy can be
attributed to several factors. First, as paramagnetic (such as
due to iron) and diamagnetic (such as due to myelination)
tissue properties have different effects on R2* and QSM
[38], variable tissue magnetic properties arising from early
PD pathologic changes may have been differentially reflected
in R2* and QSM. Second, QSM is known to be affected by
the subjects’ head orientation with respect to the main mag-
netic field. In a recent study [39], such dependence was re-
ported to be about 0.01 ppm per 5° in the deep brain region.
Since the head orientation was not controlled in our study,
such orientation dependence could have added to the overall
variability of our QSM results (Supplementary Material 3).
Lastly, while R2* was calculated with a relatively robust
method of voxel-wise fitting of the magnitude data, QSM
was primarily based on the image phase, which is more prone
to errors due to physiological motion and streaking artifacts
[38, 39]. Along with the small sample size, such increased
variability may have rendered QSM weak in its statistical
power to distinguish between different subject groups. This
is in accordance with a previous study that reported low sta-
tistical significance in a small-sample QSM analysis, conduct-
ed with focus on the SN of PD patients [40].

Our study has certain inherent limitations. The first limita-
tion was that the sample size was small. However, we formu-
lated a homogeneous and qualified clinical cohort for this
study. All patients fulfilled the diagnostic criteria of PD [12]
and were free of confounding effects of medication and vari-
able disease severity. Further studies with larger samples of
homogenous PD patients are needed to draw more robust

Table 2 Results of R2* and QSM analyses in the PD and NC groups

Structures NC (n = 12) PD (n = 14) p-value

R2* (1/s)
Nucleus accumbens 20.7 (1.9) 22.5 (2.5) 0.057
Caudate 23.5 (2.3) 25.9 (3.2) 0.080
Putamen 27.8 (2.9) 31.2 (4.9) 0.031*
Globus pallidus 37.7 (5.2) 39.2 (4.5) 0.465
Thalamus 19.8 (0.9) 20.3 (1.2) 0.252
Substantia nigra 29.1 (2.8) 31.9 (3.5) 0.034*
Red nucleus 26.4 (2.8) 28.8 (3.3) 0.111
Dentate nucleus 30.0 (3.2) 31.4 (2.7) 0.239
R. amygdala 15.5 (1.1) 16.5 (1.8) 0.141
L. amygdala 16.6 (1.2) 16.5 (1.5) 0.804
R. hippocampus 17.7 (1.0) 17.7 (1.6) 0.977
L. hippocampus 17.2 (1.0) 17.4 (1.0) 0.740
QSM (ppm)
Nucleus accumbens 0.0056 (0.0092) 0.0118 (0.0075) 0.073
Caudate 0.0278 (0.0045) 0.0298 (0.0041) 0.262
Putamen 0.0259 (0.0073) 0.0303 (0.0086) 0.178
Globus pallidus 0.0549 (0.0151) 0.0516 (0.0128) 0.550
Thalamus 0.0001 (0.0027) − 0.0005 (0.0026) 0.561
Substantia nigra 0.0703 (0.0106) 0.0716 (0.0151) 0.806
Red nucleus 0.0712 (0.0123) 0.0677 (0.0105) 0.434
Dentate nucleus 0.0502 (0.0158) 0.0396 (0.0104) 0.052
R. amygdala 0.0009 (0.0095) 0.0006 (0.0079) 0.898
L. amygdala − 0.0020 (0.0079) 0.0007 (0.0082) 0.403
R. hippocampus 0.0017 (0.0045) 0.0019 (0.0032) 0.913
L. hippocampus 0.0009 (0.0020) 0.0015 (0.0044) 0.667

Abbreviations. PD, Parkinson’s disease; NC, normal controls; R., right;
L., left

*Statistically significant (p < 0.05)

Values are given as mean (standard deviation). Caudate nucleus, puta-
men, and red nucleus were assessed using the Mann-Whitney U test; for
the rest of the items, the independent t-test was used
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Fig. 2 Correlation analysis results between R2* (a) QSMvalues (b) and non-motor symptoms. Only statistically significant correlation values are shown
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conclusions. Second, although education year-corrected K-
MMSE score exhibited excellent discriminative power for de-
mentia [24], K-MMSE may not be a sensitive tool to detect
mild cognitive decline in early-stage PD. Full neuropsycho-
logical tests may allow to identify the presence of mild cog-
nitive decline and to reveal its association with R2* and QSM
values in future studies. Additionally, the PD patients were
older than the normal controls, although the difference was
not statistically significant; thus, age-related changes in brain
iron levels were not reflected in our analysis, potentially lead-
ing to a bias in the results. Nevertheless, the strength of this
study is that various non-motor symptom scales were used to
evaluate drug-naïve, early-stage PD patients with a focus on
the association between iron content and NMSs.

In conclusion, increased iron levels were observed in
the SN and putamen of early-stage PD patients who
were not on any medication. The iron levels in the
limbic system and RN were especially found to corre-
late with sleep problems and dysautonomia even in
early-stage PD. Our study may provide insight into the
relationship between iron deposition and NMSs in PD.
A future study that investigates the role of extra basal
ganglia iron in PD NMSs is warranted.
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