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Abstract
Reproducibility in biomedical research, and more specifically in preclinical animal research, has been seriously questioned. 
Several cases of spectacular failures to replicate findings published in the primary scientific literature have led to a perceived 
reproducibility crisis. Diverse threats to reproducibility have been proposed, including lack of scientific rigour, low statisti-
cal power, publication bias, analytical flexibility and fraud. An important aspect that is generally overlooked is the lack of 
external validity caused by rigorous standardization of both the animals and the environment. Here, we argue that a reaction 
norm approach to phenotypic variation, acknowledging gene-by-environment interactions, can help us seeing reproducibility 
of animal experiments in a new light. We illustrate how dominating environmental effects can affect inference and effect 
size estimates of studies and how elimination of dominant factors through standardization affects the nature of the expected 
phenotype variation through the reaction norms of small effect. Finally, we discuss the consequences of reaction norms of 
small effect for statistical analysis, specifically for random effect latent variable models and the random lab model.
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Introduction

Since the mid-seventeenth century reproducibility, i.e., the 
ability to reproduce an experimental outcome by an inde-
pendent study is a fundamental cornerstone of the scientific 
method which distinguishes scientific evidence from mere 
anecdote. In modern research, however, such independent 
replication has been replaced by principles of experimen-
tal design which—in principle—should render replication 
by independent studies redundant. In the simplest form, the 
effect of a predictor (independent variable) on an outcome 
(dependent variable) is measured in a sample of independ-
ent replicate units (individuals). Scientific evidence gener-
ated in this way is arguably reproducible if the experimental 
units (i.e. individuals) are true random samples of the overall 
target population. Despite the general wisdom that true ran-
dom samples are practically impossible to achieve when the 
target population is e.g. a biological species, the potential 
consequences of non-independence on the reproducibility of 
results are usually ignored. This is mirrored by the fact that 

no independent replication studies are generally required by 
funders for accepting grant proposals or by editors before 
accepting manuscripts for publication.

Over the last 10–15 years, however, reproducibility in 
biomedical research, and more specifically in preclinical ani-
mal research, has been seriously questioned (Bailoo et al. 
2014). Several cases of spectacular failures to replicate find-
ings published in the primary scientific literature have led 
to a perceived reproducibility crisis (Freedman et al. 2015; 
Ioannidis 2005). In 2011, researchers from the company 
Bayer reported that out of 67 in-house replication studies 
of published research in the areas of oncology, women’s 
health and cardiovascular diseases only 14 (21%) could fully 
replicate the original findings (Prinz et al. 2011). Similarly, 
researchers of the company Amgen have replicated 53 origi-
nal research studies deemed ‘landmark’ studies in haema-
thology or oncology, recovering the original findings only in 
6 cases (11%) (Begley and Ellis 2012). These reports and a 
surge of meta-analyses confirming low replication rates [e.g. 
(Sena et al. 2010; Rooke et al. 2011; Dumas-Mallet et al. 
2017)] lead to a heated debate within as well as outside the 
scientific community about the usefulness of animal models 
for bio-medical research (Ioannidis 2005; Freedman et al. 
2015; Munafò et al. 2017; Loken and Gelman 2017; Sena 
et al. 2007).
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Several potential causes for poor reproducibility have 
been proposed, including lack of scientific rigour, low sta-
tistical power, publication bias, analytical flexibility and per-
verse incentives in research—leading in some cases to out-
right fraud (Loken and Gelman 2017; Freedman et al. 2015; 
Ioannidis 2005). While all of these aspects might contribute 
to replication failure, we will here focus on another aspect 
that is all too often ignored: biological variation. Biologi-
cal variation is the sum of genetic variation, environmen-
tally induced variation and variation due to the interaction 
between environment and genotype (G × E interaction). As 
the response of an animal to an experimental treatment (e.g. 
a drug) depends on the phenotypic state of the animal, the 
response, too, is a product of the genotype and the environ-
mental conditions. Despite attempts to standardize animal 
facilities, laboratories always differ in many environmental 
factors that affect the animals’ phenotype [e.g. noise, odours, 
microbiota, or personnel (Crabbe et al.1999; Chesler et al. 
2002; Wahlsten et al. 2002; Würbel 2002; Chesler et al. 
2002; Sorge et al. 2014)]. In a landmark study, Crabbe and 
colleagues (1999) investigated the confounding effects of 
the laboratory environment and G × E interactions on behav-
ioural strain differences in mice. Despite rigorous standardi-
zation of housing conditions and study protocols across three 
laboratories, systematic differences were found between lab-
oratories, as well as significant interactions between geno-
type and laboratory. Even temporal variation within a single 
laboratory can lead to relevant effects, as demonstrated in a 
recent study where researchers found considerable pheno-
typic variation between different batches of knockout mice 
tested successively in the same laboratory (Karp et al. 2014; 
von Kortzfleisch et al. 2020).

The reaction norm is a concept helping to explain the 
observation that individuals of the same genotype will pro-
duce different phenotypes if they experience different envi-
ronmental conditions (Woltereck 1909). It is the result of a 
complex environmental cue response system, which buffers 
the functioning of the organism against environmental and 
genetic perturbations (Schmalhausen 1949; Waddington 
1942; Forsman 2015). The consequence of such a regulatory 
system is that environmental influences can play an impor-
tant part in shaping the phenotype. Environmental influences 
do not only play a role at the time of assessment of the phe-
notype but throughout the ontogeny of the organism (Schli-
chting and Pigliucci 1998). A reaction norm perspective on 
phenotypic traits unifies two concepts which have often been 
treated as opposing mechanisms: phenotype diversification 
due to environmental variation (plasticity) and the limitation 
of phenotypic variation by mechanisms that buffer develop-
ment against genetic and environmental variation (canaliza-
tion). Both plasticity and canalization have been considered 
as adaptive traits evolved as a consequence of environmental 
variation, though following Woltereck (1909) arguments, it 

is the reaction norm itself that one should consider as the 
evolved trait (Stearns 1989). Its adaptive value is, however, 
limited to a certain range of environmental variation: envi-
ronmental situations that lie far outside the range of environ-
ments a species experienced over its evolutionary past can 
overtax the organism’s ability to appropriately respond to the 
situation and lead to maladaptive or pathological responses. 
With respect to reproducibility it must be emphasized that 
‘phenotype’ is not restricted to visible differences between 
individuals but does equally refer to differences in physi-
ological or behavioural responses to any sort of stimulation 
or treatment.

We have recently argued that a failure to recognize the 
implications of reaction norms might seriously compro-
mise reproducibility in bioscience—specifically in in-vivo 
research (Voelkl and Würbel 2016; Voelkl et al. 2018). Lab-
oratory experiments that are conducted with inbred animals 
under highly standardized conditions are testing only a very 
narrow range of one specific reaction norm. Independent 
replicate studies that fail to reproduce the original findings 
might not necessarily indicate that the original study was 
poorly done or reported, but rather that the replicate study 
was probing a different region of the norm of reaction (Voe-
lkl et al. 2020). Therefore, the attempt to improve reproduc-
ibility through rigorous standardization of both genotype 
and environment has been referred to as “standardization 
fallacy” (Würbel 2000). Here we will explore this proposi-
tion in more detail, first consider the case of a single domi-
nating environmental factor, and then the reaction norms of 
small effect. In practical terms this will lead us to emphasize 
the importance of including the laboratory environment as 
a factor in multi-laboratory studies and meta-analyses or 
to consider introducing a correction factor in the statistical 
model to account for predicted between-laboratory variation.

Conceptualizing the reaction norm

The reaction norm can be conceptualized as a function map-
ping an environmental parameter to an expected value of a 
phenotypic trait (Fig. 1).

If we denote the environmental parameter as X and the 
phenotypic trait of the organism as Y, then the norm of 
reaction h(⋅) gives the expected value for Y given the envi-
ronmental state x as E(y|x) = h(x) . In many cases, the phe-
notypic trait will be a continuous valued trait. In this case, 
we can describe the distribution of expected values for 
the trait by a probability density function (PDF) f(y). The 
environmental parameter is assumed to be a characteristic 
that can be measured on a continuous scale. Environments 
differ in the environmental parameter and the probability 
of finding the environment in a specific state regarding this 
parameter can be given by a probability density function 
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g(x). Hence, with the help of the reaction norm, we can 
describe the relationship between the expected trait value 
and the distribution of the environmental states with the 
composite function

Originally Woltereck (1909) referred to the relationship 
between a specific environmental variable and the pheno-
type as Phänotypenkurve (phenotype curve), while he used 
the term Reaktionsnorm (reaction norm) for specifying the 
collective influence of all environmental variables. However, 
later Woltereck widened the use of the term reaction norm to 
include also small subsets of phenotype curves or even phe-
notype curves of a single environmental variable. Today the 
term norm of reaction is usually used to describe the rela-
tionship between a single environmental parameter on the 
expected phenotype of the organism (Pigliucci 2005; Sarkar 
1999). In evolutionary ecology, reaction norms are often the 
target of the study. Reaction norms are studied experimen-
tally by systematically varying one environmental parameter. 
If one wants to describe the combined effect of two or more 
environmental parameters on the phenotype, the norm of 
reaction takes on the form of a surface or a hypersurface. 
Conceptually, there is no bound for the number of dimen-
sions included, though limits of human imagination sets con-
strains as the heuristic value of the model quickly decreases 
with increasing dimensionality. Furthermore, collecting 
empirical data becomes very cumbersome when combina-
tions of several parameters need to be varied systematically. 

(1)f (y) = (g◦h)(x) = g(h(x)).

For these two reasons defining, high-dimensional norms of 
reaction is an approach rarely taken or advised.

Dominating factors

In most cases of biomedical research, environmentally 
induced trait variation apart from the treatment effect is not 
of interest and considered as unwanted noise. The predomi-
nant approach taken to deal with environmentally induced 
variation is to identify potential dominating environmental 
parameters and keep them constant (standardization), where 
we speak of a parameter as ‘dominant’ if it contribute much 
more to the total environmentally induced trait variance than 
most other parameters. In those cases, where a dominat-
ing factor can be identified but not controlled, it might be 
recorded and added to the analysis as co-variate or nuisance 
factor (Fig. 2). The very idea of environmental standardiza-
tion is, thus, to reduce environmentally induced trait varia-
tion by reducing variation in all those environmental factors 
that are known to—or are suspected to—cause trait varia-
tion. The list of factors standardized in most pre-clinical 
studies with rodent model organisms includes (but is not 
limited to) cage size, cage content (nesting material, shelter, 
enrichment devices), housing temperature, humidity, light 
regime, stocking density, food and water supply, handling 
techniques and cage maintenance routines. In fact, even 
many more environmental factors are standardized, though 
some of them seem to be so self-evident or trivial that they 
are hardly ever mentioned and easily overlooked (e.g. all 
laboratory environments are free of catastrophic events like 
hailstorms or feline predators). Thus, rigorous standardiza-
tion is presumed to eliminate most or all dominating factors 
and, hence, lead to a substantial reduction in environmental 
variation and arguably also to a reduction in environmen-
tally induced trait variation. Study-specific standardization 
will mainly reduce within-study trait variation, while stand-
ardization across studies (harmonization) will reduce both 
within- and between-study variation.

Reaction norms of small effect

If all environmental factors with dominating contributions 
to trait variation have been “neutralized” in a big sweep, one 
might believe that the remaining environmentally induced 
variation is of little interest. This, however, might not nec-
essarily be the case, because in addition to environmental 
conditions, the genetic background of the laboratory animals 
is also highly standardized when experiments are conducted 
with inbred mouse strains. Mice used in a single study will 
be delivered from the same breeding facility and stem from 
the same breeding line. As a consequence, individual genetic 
variation is very small, with the result that environmentally 
induced variation and G × E interactions might still make 

Fig. 1   a Reaction norm allows describing the relationship between 
the expected value of a phenotypic trait (E(Y)) and an environmen-
tal parameter (X) for a specific genotype. The observed values of the 
phenotypic state (indicated by the Gaussian bell curves) will vary 
due test variation, measurement error, and due to biological variation 
induced by variation in other environmental parameters. b The reac-
tion is a genotype specific property: different genotypes ( g1 , g2 ) can 
have different reaction norms, with the effect that for the same envi-
ronmental parameter value, x3 , g1 and g2 produce different expected 
trait values, k and m. For some x, both genotypes can have the same 
expected values for y (e.g. E(y|g1, x2) = E(y|g2, x2) = l ) and different 
genotypes can have the same expected trait value under different envi-
ronmental conditions (e.g. E(y|g2, x1) = E(y|g1, x3) = k ). If the reac-
tion norm is flat, we expect the same trait value even under different 
environmental conditions (e.g. E(y|g2, x3) = E(y|g2, x4) = m)
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up most of the total biological variation in the organism 
(Würbel 2000). Environmental effects should, therefore, still 
be taken into account. Yet, the nature of the combined envi-
ronmental influences has changed. Originally, we were con-
fronted with the situation of many environmental parameters 
having a small effect on trait variation and one or a small 
number of dominating parameters, contributing much more 
to trait variability. However, after dominating factors have 
been taken care off, we should be left only with a large num-
ber of factors, each having a small effect on the total vari-
ance. This situation requires a different treatment. Assuming 
that those factors are additive and independent of each other 
and recalling the central limit theorem (Galton 1875; De 
Moivre 1756; Lindeberg 1922), we can expect that under 
those assumptions the limiting distribution for the effect of 
the environmental states can be described by a Gaussian 
random variable X ∼ N(�, �).

Reproducibility

As the reaction norm allows relating environmental vari-
ation to expected variation in trait values Y, we might ask, 
whether this can help us in defining an acceptance region, in 
which the effect size estimate of a replicate study has to fall, 
in order to be considered a ‘successful’ replication. Tradi-
tionally, the discussion how to find this region has focused 
almost exclusively on the domain of Y—the trait—by parti-
tioning the observed variation in the trait value in variance 
attributed to laboratory (i.e. environmental variation) and 
variance attributed to individual variation and measurement 
error. Here, we suggest a conceptually different approach: 

instead of defining the acceptance region based on observed 
trait variation, we want to define the acceptance region based 
on the range of expected values given the environmental 
states. We can consider two different scenarios: (a) the reac-
tion norm is known and the values x for the environmental 
variable for the specific studies are known, and (b) the reac-
tion norm is known and the distribution for the environ-
mental variable is known. Under scenario (a), we can use 
the reaction norm to find the expected value for y for the 
original study as E(y|x1) = h(x1) , where x1 is the value for 
the environmental variable of the original study. Likewise, 
the expected value for y of a replicate study done under envi-
ronmental condition x2 is given by E(y|x2) = h(x2) . Different 
measures for reproducibility have been suggested, though for 
our purpose a very simple definition might suffice. We say 
that a replication study successfully reproduced the original 
finding if its parameter estimate falls within the confidence 
interval of the original study. The replicate study can be said 
to reproduce the findings of the original study if

where ȳ1 is the mean of the observed values of the original 
study, ȳ2 is the mean of the observed values of the replicate 
study, SE1 is the standard error for the mean estimate of 
the original study done under environmental condition x1 
and z is a parameter determining the confidence level. In 
words, as we know the difference in expected trait values 
for the environmental conditions under which original and 
replicate study have been conducted, we can shift the con-
fidence interval for the mean estimate of the original study 

(2)
E(y|x2) − E(y|x1) + ȳ1 − z × SE1 < ȳ2

< E(y|x2) − E(y|x1) + ȳ1 + z × SE1,

Fig. 2   Effect of dominating factors on effect size estimates and repro-
ducibility. Panel a shows the hypothetical results of 25 studies, where 
between-study variability is relatively large in comparison to within 
study variability and the confidence intervals of several studies would 
not include the summary effect size estimate. In panel b, however, 
studies are sorted by an environmental gradient (ambient tempera-
ture) on the y-axis, suggesting that this environmental factor has a 
linear influence on the effect size of the experimental treatment. In 

this case, inclusion of this factor, would allow giving predicted val-
ues with respect to the environmental variable and most studies cap-
ture the predicted value for the respective ambient temperature. In the 
case of a specific environmental factor that was reliably measured and 
reported for all studies, such a regression approach would, indeed, be 
the best option for both estimating the conditional effect size and esti-
mating replication success
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by that amount before testing whether the mean estimate 
of the replicate study falls within that interval. Practically, 
such cases where the reaction norm and the environmental 
parameters are known might be rare, because if they are 
known, then the expected value for y could be deduced read-
ily from x and there would be little need to actually perform 
the experiment. Under scenario (b), the reaction norm is 
known, but the researcher is blind to the actual parameter 
values for the environmental variable X under which the 
original study or the replication study were performed. How-
ever, the researcher knows the overall distribution for X. In 
this case we can approach the question of reproducibility 
differently. If we know the distribution for X and the reaction 
norm h(⋅) , equ. 1 allows us to evaluate the distribution for the 
expected values for Y. We can use this distribution to ask for 
the likelihood that the mean value from an observed set of 
values, ȳ , could stem from Y by calculating the probability 
that a randomly drawn value from Y would be more extreme 
than ȳ . We can do this for both, the observed mean for the 
original study ȳ1 and the observed mean for the replicate 
study ȳ2 . If the product of those probabilities is sufficiently 
large (lager than a critical value L), we have no reason to 
reject the idea that both estimates faithfully reflect randomly 
sampled realizations of the environmental parameter X. For 
ȳ1 > M1 and ȳ2 > M1 , where M1 is the first moment of f (⋅) , 
we can speak of successful replication if

In case of ȳ < M1 the respective integral is to be taken from 
∫ ȳ

−∞
 . Like scenario (a), scenario (b) suffers from the problem 

that the reaction norm must be known. If it is not known, 
we cannot proceed this way, but the reaction norms of small 
effect can at least be integrated in the statistical model. For 
this case we noted that the combined effect of many envi-
ronmental variables should result in Y ∼ N(�, �) . The con-
tribution of the reaction norms of small effect to an observed 
difference between two study outcomes will be confounded 
with other sources of between-study variation; thus, we can-
not isolate it and consequently also not determine its effect 
on reproducibility. However, the reaction norms of small 
effect can be subsumed in the random variable for laboratory 
or study in a latent variable model and, hence, statistically 
taken care of.

Random lab model

A statistical approach incorporating the reaction norm into 
estimates of individual studies has been suggested by Kaf-
kafi et al. (2017), dubbed the random lab model (RLM). This 
model adds ‘noise’ for the presumed variation contributed 

(3)∫
+∞

ȳ1

f (y) dy × ∫
+∞

ȳ2

f (y) dy > L.

by the G × E interaction term to the individual variation, 
generating an ‘adjusted yardstick’ for inference and param-
eter estimates. It is, thus, raising the benchmark for finding 
significant results by trading statistical power for increased 
realism through wider confidence intervals of the effect 
size estimates. The effect of this adjustment is technically 
achieved by adding a penalizing G × E term to the variance. 
The standard error for the effect size estimate of a simple 
contrast of two groups (e.g. ‘test’ and ‘control’) can, then, 
be calculated as:

where s2 is the observed variance, n1 and n2 are the respec-
tive sample sizes for treatment and control groups, and 2s2

G×E
 

is the added ‘ G × E noise’ (Kafkafi et al. 2017). The latter 
term cannot be estimated from data from a single experi-
ment, but it is suggested—or hoped for—that large data 
bases or meta-analyses will allow giving rough approximate 
values for specific fields of research and specific types of 
interventions.

Discussion

We started off with the observation that the phenotype of an 
organism is always a product of its genotype and the envi-
ronmental circumstances under which it developed. Thus, a 
phenotypic trait should not be considered as a fixed entity 
but as a conditional property of the organism. Experimenters 
have long identified environmental clustering—be it as sites, 
laboratories, batches, racks, cages—as potential sources for 
covariation. The seemingly logical solution to this problem 
is, to add shared environment as a random effect in the statis-
tical model. For example, if a large biomedical intervention 
study is carried out at several laboratories, then a joint analy-
sis would include the identity of the laboratory as a random 
factor in the analysis. In single-laboratory studies batch or 
cage are often added as random factors. These random fac-
tors are by default modelled as normally distributed random 
variables. As several authors have noted (e.g. Einbeck et al. 
2007; Aitkin 1999; McCulloch and Neuhaus 2010, 2011) 
this assumption might often be made for computational con-
venience and not because of compelling empirical evidence. 
From a conceptual viewpoint it is not always justified: it 
might work well if the environmental influence is a sum 
of many different underlying processes (reaction norms of 
small effect), while the presence of dominating factors can 
lead to non-normal distributions for the expected trait value.

Next, we have noted that reaction norms come in two fla-
vours: dominating factors and factors of small effect. Given 
the usually continuous nature of environmental effects on 

(4)SE =

√

s2

(
1

n1
+

1

n2

)
+ 2s2

G×E
,
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trait values, this is a rather arbitrary distinction that would 
defy any attempt of operationalization. Dominating factors 
are environmental factors that contribute much more to the 
overall trait variation, than other environmental factors, but 
for practical purposes we can simply define dominating fac-
tors as factors where we can see clear effects on the trait 
variation given realistic (reasonably small) sample sizes. If 
such effects exist, vigilant experimenters will either con-
trol the environmental parameter (keeping it constant) or 
incorporate it in the analysis by systematically varying it 
and adding it to the model. Furthermore, we can expect a 
large number of environmental parameters having a small 
effect on the expected phenotype value. Employing the cen-
tral limit theorem, we suggested summarizing the effects 
of all those parameters in a single normally distributed 
random variable. The question arises, whether those small 
environmental effects can have an effect on the reproduc-
ibility of a study result. We argue that this can, indeed, be 
the case for two reasons. First, even if the effect of a single 
environmental parameter might be rather small, the com-
bined effects of many such parameters can—sometimes—
become substantial. (Though in many cases it will not as a 
result of the regression to the mean.) Second, what we see 
in biomedical research is a tendency for standardizing many 
aspects of experimental studies. Standardizing instruments 
and measurement protocols means reducing measurement 
error. Standardizing housing conditions and testing condi-
tions means eliminating most dominating environmental fac-
tors and, hence, reducing the overall variation. At the same 
time, standardizing the genotype by working with highly 
inbred lines means that also the genetic variation is largely 
reduced—leading again to a reduction in variance of the 
phenotype. Thus, while the overall phenotypic variation is 
reduced through standardization, the relative proportion of 
the phenotypic variation contributed by the remaining envi-
ronmental factors will consequently increase (Würbel 2000). 
As the reduction in measurement error and genetic variation 
results in a larger proportion of phenotype variation that can 
be attributed to the reaction norms of small effect, we have 
to consider what consequences this has for the distribution 
of the expected trait value.

From viewing between-study variation from a reaction 
norm perspective, we can learn two important things. First, 
as soon as the slope for the reaction norm is not flat, the 
environment affects the expected trait value and should be 
incorporated in any explanatory model as latent variable. In 
analyses of multi-laboratory studies and in meta-analyses 
this is done by treating the laboratory, the study site, or the 
study as random factor of a mixed effect model. Indeed, over 
the last decades several authors have emphasized and dili-
gently advocated the use of mixed effect models for multi-
centre studies (Localio et al. 2001; Kahan and Morris 2013) 

and meta analyses (Freeman et al. 1986). Their efforts have 
not been in vain and today mixed effect models can be con-
sidered the standard approach to dealing with laboratory-
to-laboratory or clinic-to-clinic variation. However, while 
those recommendations for the use of mixed effect models 
were based on statistical arguments (non-independence and 
the observation that adding a random factor for laboratory 
or clinic can reduce the unexplained error term), we arrived 
at the same suggestion from— what we would call—first 
principles of biology: the norm of reaction as a cogent prod-
uct of stabilizing selection. Second, as soon as dominating 
factors have non-linear reaction norms, it becomes likely 
that the resulting distribution for expected trait values is not 
normal. Does this mean that multi-centre studies or meta-
analyses implicitly assuming a normally distributed latent 
variable for the combined effects of laboratory environment 
are wrong? From a conceptual viewpoint, this might indeed 
be a questionable assumption; however, this might not mat-
ter too much for practical purposes. For most statistical mod-
els it is sufficient that normality is only approximately met 
as the algorithms might be rather robust against moderate 
deviations from normality (McCulloch and Neuhaus 2010; 
Maas and Hox 2004; Grilli and Rampichini 2014; Bell et al. 
2018). That is, if the reaction norm for the dominating factor 
does not lead to a heavily skewed or distorted distribution 
of the latent variable, then the effect on the model outcome 
might be negligible. If one has reason to believe that the 
assumption is substantially violated, then a non-parametric 
modelling approach based on mixture-models (Aitkin 1999; 
Einbeck et al. 2007) or Markov chain Monte Carlo methods 
(Hadfield 2010) might offer suitable alternatives.

Conclusion

When studying living organisms, we are faced with inher-
ent biological variation which is distinct from random 
noise or measurement error and which is fundamental to 
the correct interpretation of experimental results. Fully 
acknowledging this requires adopting a reaction norm 
perspective on physiological and behavioural responses. 
This will lead to a re-thinking of parameter estimation and 
inference, it will let us see reproducibility in a new light 
and it can even help gaining new insights into adaptive 
responses and gene-by-environment interactions. Here, we 
have tried to dissect its implications for the reproducibility 
debate and, more generally, what it means for the inter-
pretation of experimental results in biomedical research.
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