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ABSTRACT

In this article, we focus on the analysis of competi-
tive gene set methods for detecting the statistical
significance of pathways from gene expression
data. Our main result is to demonstrate that some
of the most frequently used gene set methods,
GSEA, GSEArot and GAGE, are severely influenced
by the filtering of the data in a way that such an
analysis is no longer reconcilable with the principles
of statistical inference, rendering the obtained
results in the worst case inexpressive. A possible
consequence of this is that these methods can
increase their power by the addition of unrelated
data and noise. Our results are obtained within a
bootstrapping framework that allows a rigorous as-
sessment of the robustness of results and enables
power estimates. Our results indicate that when
using competitive gene set methods, it is imperative
to apply a stringent gene filtering criterion.
However, even when genes are filtered appropri-
ately, for gene expression data from chips that
do not provide a genome-scale coverage of the
expression values of all mRNAs, this is not enough
for GSEA, GSEArot and GAGE to ensure the statis-
tical soundness of the applied procedure. For this
reason, for biomedical and clinical studies, we
strongly advice not to use GSEA, GSEArot and
GAGE for such data sets.

INTRODUCTION

The analysis of gene sets for detecting an enrichment of
differentially expressed genes has received much attention

in the past few years. One reason for this interest can be
attributed to the general shift of focus within the biolo-
gical and biomedical sciences toward systems properties
(1) of molecular and cellular processes (2–7). It is now
generally acknowledged that statistical methods for
analyzing gene expression data that aim to detect biolo-
gical significance need to capture information that is con-
sequential for the emergence of a biological function. For
this reason, methods for detecting the differential expres-
sion of (individual) genes have less explanatory power
than methods based on gene sets (8), especially if these
gene sets correspond to biological pathways (9). For the
following discussion, we assume that the definition of the
gene sets is based on biologically sensible information
about pathways as obtained, e.g. from the gene ontology
(GO) database (10), MSigDB (11), KEGG (12) or expert
knowledge.
Many methods have been suggested for detecting the

differential expression of gene sets or pathways
(8,13–19). These methods can be systematically classified
based on different characteristics (e.g. univariate or multi-
variate, parametric or non-parametric) (20,21), but the
most important difference between different approaches
is whether they are ‘self-contained’ or ‘competitive’ (21).
Self-contained tests use only the data from a target gene
set under investigation, whereas competitive tests use, in
addition, data ‘outside’ the target gene set, which can be
seen as background data. This appears curious, and one
might ask whether the term ‘background data’ is well
defined. One purpose of this article is to demonstrate
that a precise definition of the ‘background data’ is neces-
sary to avoid a statistical misconception for the usage of
competitive tests.
The present article focuses on competitive gene set

methods, investigating their inferential characteristics.
More precisely, we study the five competitive gene set
methods GSEA (11), GSEArot (22), ‘random set’ (23),
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GAGE (24) and GSA (25), and investigate their ‘power’
and ‘false-positive rate’ (FPR) with respect to biological
and simulated data sets. The reason for selecting these five
methods is that GSEA is currently arguably thus far the
most popular gene set method, which is frequently applied
to biological and biomedical data set. The methods
GSEArot and GSA are closely respectively distantly
related to GSEA, claiming to provide an improvement
of the statistical methodology aiming for an enhanced de-
tection capability of biological significance. In contrast to
GSEA, GSEArot and GSA, which are three
non-parametric methods, ‘random set’ and GAGE are
parametric methods. Including the methods ‘random set’
and GAGE in our analysis allows studying the influence
of these different types of statistical inference methodo-
logies on the outcome of competitive tests. For example,
for microarray data with large sample sizes, non-
parametric methods based on a resampling of the data
are frequently recommended, resulting in a better per-
formance than comparable parametric methods (26,27).
However, it is currently unknown whether competitive
non-parametric tests have more power than competitive
parametric tests.
The major purpose of this article is to investigate the

performance of these five methods, depending on (i) the
correlation structure in the data, (ii) the effect of up- and
down-regulation of genes, (iii) the influence of the back-
ground data (gene filtering) and (iv) the influence of the
sample size. These dependencies are of particular biolo-
gical relevance because these conditions are known to vary
widely among data sets of different origin, e.g. owing to
physiological conditions, patho- or tumorigenesis, medi-
cation of drugs or even the preprocessing of the data. Thus
far, several studies compared competitive gene set
methods with each other (20,21). However, in our
analysis, we choose more expressive conditions to reveal
the underlying methods’ characteristics relentlessly. A
schematic overview of our analysis is shown in Figure 1,
and the parameters we will study are highlighted in red. A
detailed discussion of the various aspects of our analysis
and the categorization of data is given at the beginning of
the ‘Results’ section.
The article is organized as follows. In the ‘Materials and

Methods’ section, we describe the data we are using for
our analysis, and introduce the error measure that are
relevant for their quantitative assessment. The ‘Results’
section is subdivided into four major parts. In the first
two subsections, we use data from prostate cancer to
study the influence of the correlation structure in the
data, the effect of the up- and down-regulation of genes
and the overall influence of the sample size (A, B and D in
Figure 1). The following two subsections focus on the in-
fluence of background data and the importance of data
filtering (C in Figure 1). For this analysis, we are using
microarray data from acute lymphoblastic leukemia
(ALL), prostate cancer and breast cancer as well as
simulated data sets. The article finishes with the
‘Discussion’ section summarizing our results and
providing recommendations for the practical usage of
the studied methods.

MATERIALS AND METHODS

In this section, we describe the biological and simulated
data we use for our analysis.

Surrogate data: prostate cancer

To investigate the dependency of gene set methods’
performance on (i) the correlation structure in the data,
(ii) the effect of up- and down-regulation of genes and
(iii) the influence of the background data, we generate
six different data sets. In the next section, we describe
how these data sets are defined, and in section
‘Generation of surrogate data’, we define a bootstrap pro-
cedure we apply to these data to generate surrogate data.

Preparation of data with a biological pathway partitioning
We use a gene expression data set of prostate cancer from
(28) generated from an Affymetrix platform. For the pre-
processing and normalization of the data, we followed
(28). We use this data set as a reference data set and call
it DF. DF consists of two expression matrices Xt (treatment
group) and Xc (control group) of dimension (p� nt) and
(p� nc), respectively, with p=8727 genes and nt=52
samples for the treatment and nc=50 samples for the
control group. Here, the number of genes p refers to the
genes that pass the filtering of the preprocessing of
the data [interquartile range (IQR)=0.4]; hence, this
number is different from the number of genes present on
the chip. For this reason, we index the data set by an ‘F’
(filtered). We call the total number of genes on the chip
q(12 625). For our analysis, we use equal sample sizes
n= nt= nc=50 for the control and treatment group by
randomly selecting 50 samples from the 52 treatment
group. After the normalization, we map the genes to the
category ‘biological process’ of level four in the GO
database (10) to obtain information about their associ-
ation with biological pathways. For the prostate cancer
data set, we identify 213 different pathways.

From DF, we generate a data set without a correlation
structure between the genes by applying the following
procedure:

. To generate expression data with the same distribution
of expression values for each gene, but without a cor-
relation structure, we permute each row vector of the
two matrices Xt and Xc independently, for each gene.
That means we permute the sample labels, independ-
ently for each gene and the treatment and control
group. We call the resulting data set Dc

F.

It is important to note that the two data sets are paired
ðDF,Dc

FÞ. This becomes important when we compare
results for DF with Dc

F in section ‘Robustness of the
methods’. Furthermore, we would like to remark that
the data set Dc

F generated by this procedure is similar to
the prostate cancer data because it maintains individual
gene scores, e.g. t-scores. However, the important differ-
ence is that the genes in this data set are uncorrelated.

To study the effect of the up- and down-regulation of
genes, we generate another data set called Dr

F. This data
set is obtained by ordering all genes in the data set DF in
such a way that we have only up-regulated genes.
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. For each gene in DF, we compare the mean expression
value of a gene between the treatment and the control
group. If we find a down-regulated gene in the treatment
group, the gene expression profiles between the treat-
ment and the control group are replaced with each
other, for this gene only. This procedure results in a
data set, called Dr

F, that contains only up-regulated
genes with respect to the treatment group that means
the proportion of up-regulated genes is one.

Finally, to study the influence of the background data,
we use the prostate cancer data set consisting of all q genes
present on the microarray chip. We call this data set DA

(for ‘all’ genes). We apply to DA the same procedures as
for DF to obtain uncorrelated (Dc

A) and up-regulated (Dr
A)

data. This gives six different data sets (DF, D
c
F, Dr

F, DA,
Dc

A, Dr
A) that maintain important characteristics of real

data, including their membership to the biological
pathways, despite the various transformations we apply
to the original data sets DF and DA.

Generation of surrogate data
For analyzing each of the six data sets—in the following,
we use the shortcut D to indicate D 2 fDF,Dc

F,Dr
F,DA,

Dc
A,Dr

Ag—we apply a two-step strategy.
First, we use a data set D(n) (of sample size n=50) and

identify which pathways are significant and which are not.
We call the resulting list of significant pathways PsðnÞ and
the list of pathways that are non-significant PnðnÞ. That
means, for each pathway i 2 PsðnÞ, we consider its null

Figure 1. Schematic overview and visualization of the analysis conducted in this article. The analysis focuses of our study are highlighted in red
(A–D).
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hypothesis as truly false, i.e.H0(i,n)=1. To emphasize the
dependency of this result on the sample size, we write the
pathway lists and the null hypotheses as a function of n. For
the following analysis, we use the results from this analysis
as reference lists, as we consider the significant pathways in
PsðnÞ as ‘true positives’ and the non-significant pathways in
PnðnÞ as ‘true negatives’. In the second step, we construct
b(nk)=100 bootstrap data sets for k=9 different sample
sizes, n1 ¼ 45 > n2 ¼ 40 > � � � > n8 ¼ 10 > n9 ¼ 5 (step
size: 5), whereas each data set is drawn from the total of n
available samples. To each bootstrap data set, we apply a
gene set method. From this, a result is assessed with respect
to the reference lists, PsðnÞ and PnðnÞ, obtained for sample
size n, in Step 1.
More precisely, we calculate the power of a test for a

given sample size nk by calculating the P-values, pj(i), for
the pathways withH0(i,n)=1 (i 2 PsðnÞ and j 2 f1, . . . ,bg).
From this, we estimate the ‘mean proportion of significant
results’ from the b bootstrap samples,

mðiÞ ¼
1

b

Xb

j¼1

I pjðiÞ < �ji 2 PsðnÞ with H0ði,nÞ ¼ 1
� �

, ð1Þ

assessed at a significance level of �=0.05. Here I() is
the indicator function, which is ‘1’ if its argument is
true and ‘0’ otherwise. Furthermore, m(i) corresponds to
the power of the test with respect to pathway i
i 2 PsðnÞ with H0ði,nÞ ¼ 1½ �. To obtain the power of the
test with respect to arbitrary pathways, we average over
all significant pathways,

Pr reject H0j if H0 is false given PsðnÞ½ � ¼

¼
1

jPsðnÞj

XjPsðnÞj

i¼1

mðiÞ
ð2Þ

This provides an estimate for the probability to reject the
null hypothesis when the null hypothesis is false, which
corresponds to the power of the test with respect to
PsðnÞ. We would like to emphasize that this is not the
(true) power of a test, which is defined with respect to
the true list of significant pathways, Ptrue

s ðnÞ,

i:e: Pr reject H0j if H0 is false given Ptrue
s ðnÞ

� �
ð3Þ

Similarly, we estimate the FPR of a test from the P-values
of the pathways with true null hypothesis
i 2 PnðnÞ with H0ði,nÞ ¼ 0½ � with respect to the reference
list PnðnÞ.
We would like to point out that owing to the fact that

our reference list may contain false declarations, our
results assess the ‘statistical robustness’ of the tests, by
providing estimates for, e.g. their power, rather than
their true value. Furthermore, because we generate boot-
strap data sets for each sample size nk, we consider these as
surrogate data for newly generated data from independent
experiments, which are not available.

RESULTS

To simplify the following discussions, we introduce first
some notation. Generally, all competitive gene set

methods, which are discussed in detail in the supplemen-
tary file in the ‘Methods’ section, use genes in a target (t)
gene set W (see Figure 1). We term the contributing ex-
pression data for this target pathway Dt=D(W), and the
data from a background (b) gene set Db. Depending on the
method, see ‘Materials and Methods’ section, Db is either
given by D(Wc) or D(V), whereas V corresponds to the set
of all genes used for an analysis, and Wc is the comple-
mentary set of genes given byWc=V�W (set difference).
Hence, for every analyzed pathway, a data set D is split
into two data sets, Dt and Db, which are not necessarily
mutually exclusive. We want to emphasize that neither Dt

nor Db are fixed, but they change their roles for every
target pathway, W, that is analyzed.

Interestingly, there is a second separation of the data
possible that is important for our study. This separation
refers to a non-overlapping separation of D into experi-
mental (e) data, De, and unrelated (u) data, Du, i.e.
D ¼ De [Du. Here, by experimental data, we mean data
that convey information about an experiment. In contrast,
unrelated data represent essentially noise without infor-
mation about the underlying experiment. Specifically, for
microarray data, genes that are at least on a basal level
expressed carry information, and hence, contribute to ex-
perimental data. In contrast, not every gene in a genome is
expressed. Nevertheless, such genes may lead to
non-vanishing expression values, e.g. owing to cross-
hybridization. However, such gene expressions are con-
sidered as unrelated data. In Figure 1, the data De and
Du are visualized as violet ellipses and green rectangles,
respectively. On the level of cellular networks, the
non-expression of genes is indicated by the absence of
connections (interactions) between genes. Hence, such
genes do not contribute to the cellular networks for the
physiological condition under investigation. In contrast,
genes that are expressed interact with each other by
forming cellular networks. In Figure 1, gene expression
is measured only for the genes that are part of the
cellular network that has a green underlay.

Practically, one aims to separate De and Du from each
other by applying a filtering procedure to an expression
data set. This separation is mutually exclusive because
either the expression value of a gene contains information
or it does not. Also, this separation is fixed for a given
data set D; hence, it is independent of any target pathway.

These two types of data separations, as defined above,
can be intertwined with each other. For example, suppose
a data set has either not been filtered or the filtering cri-
terion was too loose, resulting in the presence of genes that
are not expressed at all (here we do not speak about dif-
ferential expression, but a lack of a basal expression). In
such a case, a data set D consists of both parts De and Du.
This implies that every data set Dt of a target pathway can
also be separated in such two parts, namely, De

t and Du
t ,

and similarly the background data for this target pathway
separates in De

b and Du
b.

That means there are non-trivial data separations that
can be considered, and in the following, we will see that
competitive gene set methods can be only fully understood
in terms of these data separations.
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Influence of correlation and expression: filtered data

In Figure 2, we show results for the surrogate data of
prostate cancer for the three filtered data sets DF (top
row), Dc

F (middle row) and Dr
F (bottom row). The colors

of the curves correspond to GSEA (red), GAGE (green),
GSA (blue), ‘random set’ (gold) and GSEArot (purple).
With respect to the notation introduced above, this means
that the data for the target pathway as well as for the
background contain (approximately) only information
from experimental data, i.e. Du

t ¼ ; and Du
b ¼ ;, for all

tested pathways.
From this figure, one can see that the power of GAGE

(green) seems to be least affected by the different trans-
formations of the data, resulting in a similar power for all

three data sets. However, the number of significant
pathways for Dc

F and Dr
F is reduced by �50% compared

with DF, which means that the number of detected ‘true
positive’ pathways for Dc

F and Dr
F is reduced by a factor of

2. The power of ‘random set’ (gold) is similar for DF and
Dc

F, but reduced for Dr
F. Also, the number of significant

pathways for Dr
F is reduced by >50%.

The number of significant pathways for GSEA (red)
and GSEArot (purple) is the smallest compared with all
other methods. It is interesting to note that the power of
GSEA for the data set Dc

F is larger than for the other two
data sets (DF and Dr

F), i.e. reducing the correlation in the
data leads to an increase in the power and also in the
number of significant pathways. The reason for this
behavior is that the correlation has an influence on the

-
-

-

.

.

.

Figure 2. Prostate cancer: results for DF (top row), Dc
F (middle row) and Dr

F (bottom row). Shown are the power (first column), FPR (second
column) and the ‘number of significant pathways’ (third column) for different pathway-based methods. GSEA (red), GAGE (green), GSA (blue),
‘random set’ (gold) and GSEArot (purple).
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data. The correlation structure between gene profiles in-
creases the gene set scores and increases false-positive pre-
dictions (29). The power of GSA (blue) appears to be
stable across the different transformations, but the
changing numbers of significant pathways indicate other-
wise. We come back to this point in the section
‘Robustness of the methods’.
In general, for large sample sizes, the FPR is well

controlled by all methods. For small sample sizes,
‘random set’ (gold) attains the largest FPR of �10%.
This may come from the parametric nature of this test,
and hint to deviations of assumption with respect to the
real characteristics of the data.

Robustness of the methods

To investigate the influence of the filtering on the results,
we repeated a similar analysis as above, but for the unfil-
tered data sets DA (top row), Dc

A (middle row) and Dr
A.

For a comparison of these results with the results shown in
Figure 2, we determine the common pathways that are
declared significant in two different data sets. For
example, for each method, we determine the ‘fraction of
common pathways’ (FOCP) found in DF and Dc

F by

FOCPðDF ^Dc
FÞ ¼

¼
# pathways significant in (Dc

F and DFÞ

max # significant pathways in (DF or Dc
FÞ

� � :

That means the nominator counts the number of
common significant pathways that are found in Dc

F and
DF. To emphasize this ‘conjugate’ connection between the
data sets, we denote this by DF ^Dc

F. Comparing different
combinations of data sets allows us to obtain more
detailed information about the influence of the different
data transformations. In Figure 3, we show in the top row
results for DF ^Dc

F (left) and DA ^Dc
A (right), and the

bottom row shows DF ^Dr
F (left) and DA ^Dr

A (right).
The most robust method with respect to the independ-

ent row permutations is ‘random set’ (gold), shown in the
top row. GSEArot (purple) is most robust against the ex-
pression sorting (bottom row). It is important to
remember that DF ^Dc

F corresponds to paired data sets,
as described in section ‘Preparation of data with a biolo-
gical pathway partitioning’. Owing to the fact that the
t-score, used by ‘random set’ as gene-level scores si, is in-
variant against this data transformation, this results in a
perfect correspondence of the identified pathways in DF

and Dc
F. The method that is most sensitive against the

performed transformations is GSEA (red), which shows
overall the least amount of common pathways between
the different data sets. One reason for this is that GSEA
finds, in general, only a few significant pathways (see
column 3 in Figure 2), but the least for Dr

F and Dr
A.

Hence, the FOCP for DF ^Dr
F and DA ^Dr

A (bottom
row in Figure 3) is even smaller than for DF ^Dc

F and
DA ^Dc

A (top row).
An interesting behavior shared by all five methods is the

relative constance of the FOCP with respect to different
values of the sample size. This indicates that an increase in
the sample size does not affect the methods. Hence, the

effects of the correlation and the up- and down-regulation
on the identified pathways are largely sample size
independent.

Influence of data filtering: ALL, prostate cancer and
breast cancer

Next, we investigate the effect of data filtering on the
results of an analysis for ALL, prostate cancer and
breast cancer. We use three different cancer data sets to
demonstrate that the observed results are not specific for
one particular tumor type. The first data set is from ALL,
(30) consisting of two leukemia classes, BCR/ABL and
NEG, each consisting of 37 samples. Additionally, we
use a breast cancer data set (31) consisting of 62 samples
from grade 1 ER+and 33 samples from grade 3 ER+.

Because for microarray data, a separation into experi-
mental data, De, and unrelated data, Du, is not straight-
forward, we use a two-step procedure based on gene
filtering to obtain an approximation of such a separation.
First, we generate 9/10/9 different test data sets from the
prostate cancer/ALL/breast cancer data, by varying the
IQR of the gene expression values used as filtering (F)
criterion (32). Using different values of IQRF for
prostate cancer, ALL and breast cancer, namely,

f0:50,0:45,0:418,0:40,0:35,0:30,0:25,0:20,0g;

f0:55,0:50,0:45,0:423,0:40,0:35,0:30,0:25,0:20,0g and

f0:52,0:477,0:427,0:377,0:327,0:277,0:227,0:177,0g;

we obtained h 2 f9=10=9g different data sets that are given
by DF ¼ fD IQRFð1Þ½ �, . . . ,D IQRFðhÞ½ �g. These data sets
consist of

Vprostate ¼ f4282,5394,6312,6882,8599,10417,11749,

12484,12625g;

VALL ¼ f4408,4973,5755,6312,6913,8580,10658,12209,

12604,12625g and

Vbreast ¼ f5956,7382,9042,11142,13759,17267,

20383,21909,22283g

genes. Second, To estimate the amount of De and Du in
DðIQRFðiÞÞ, we compare the value of IQRF(i) with the
median value IQRM obtained for all genes from the unfil-
tered data set. Owing to the nature of the data, it is diffi-
cult to quantify this mixture precisely; however, it is safe
to say that a data set D IQRFðiÞ½ � obtained for the filtering
criterion IQRF(i) has a larger proportion of genes that
convey information about the underlying experiment,
the larger the difference IQRFðiÞ � IQRM, i.e. for large
positive values. Similarly, a data set D IQRFðiÞ½ � has a
larger proportion of genes that ‘do not’ convey informa-
tion about the underlying experiment, the smaller the dif-
ference IQRFðiÞ � IQRM, i.e. for large negative values.
Hence, the tendency of a data set increases with the
distance to the value IQRM. In the following figures, the
dashed vertical line corresponds to IQRM. In microarray
data, genes with a low variability in their expression are
considered as noise, and filtering them out usually
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improves the power and accuracy of an analysis (33,34) (in
single gene analysis). Because of these interpretational
difficulties, we labeled the x-axis of the following figures
‘number of genes after filtering’. This leaves the above
interpretation to the reader.

Next, we identified for each of the three cancer types for
the smallest data set having 4282/4408/5956 genes the cor-
responding pathways of these genes, as defined by the GO
database (category: biological process) (10). This ensures
that for all different test data sets, the same pathways are
present. Furthermore, it reduces the presence of unrelated
genes to a minimum because the used filtering of
IQRF=0.50/0.55/0.52 is even more stringent than
IQRM. From this analysis, we find 1729/1761/1128 differ-
ent pathways. To obtain a reference list of pathways we
declare as ‘true positive’, we use the prostate data for the

maximal sample size (50 normal, 52 tumor) passing a fil-
tering with IQRM=0.418/0.423/0.377. For these data sets,
we estimate the P-values for the 1729/1761/1128 pathways,
for all competitive gene set methods. All pathways that are
significant after a multiple testing correction for
controlling the false discovery rate (FDR) with the
Benjamini–Hochberg procedure (35) at a level of FDR
(see Figure 4) are considered as ‘true positives’. That
means this analysis generates, for each method separately,
a reference list of pathways we call ‘true positive’. Finally,
we use the different test data sets in combination with the
reference lists of significant pathways to estimate the
power of the methods. To point out that this power is
with respect to a reference list, which may be different
from the list of truly biologically significant pathways,
we use the term ‘reference power’ and ‘reference false

Figure 3. Prostate cancer: FOCP found for (DF ^Dc
F) (top left), (DA ^Dc

A) (top right), (DF ^Dr
F) (bottom left) and (DA ^Dr

A) (bottom right). GSEA
(red), GAGE (green), GSA (blue), ‘random set’ (gold), GSEArot (purple).
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discovery rate’. To obtain estimates for the reference
power, we do a jackknife resampling using all available
samples (50 normal, 52 tumor). This way, we generate
different data sets for each of the eight gene sizes in V.
We would like to note that there are different ways to

obtain a reference list of pathways considered as ‘true posi-
tives’ by choosing alternative filtering values. However, we
selected IQRM because it represents a conservative choice.

The results of this analysis are shown in Figure 4. The
obtained reference power for the five gene set methods is

. . .

. . .

. . .

. . .

Figure 4. Estimated reference power (left), proportion of significant pathways (middle) and reference false discovery rate (right) for different data
sets from prostate cancer (top), adult acute lymphoblastic leukemia (ALL) (second row) and breast cancer (third and fourth row) obtained by
varying the filtering criterion. The FDR thresholds for the four rows are 0.2, 0.2, 0.05 and 0.2, respectively.
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qualitatively similar to the results for the simulated data,
shown in Figure 5. Quantitatively, the standard deviations
are larger, which may come from the more heterogeneous
correlation structure among the genes, included only sim-
plistically in our simulations. The vertically dashed line at
gM=6312/6312/11 142 genes included in Figure 4 corres-
ponds to the median filtering IQRM ¼ 0:418=0:423=0:377.
GSA and ‘random set’ method are only included in the
power plots to show that these methods are largely un-
affected by the number of genes after filtering, which is
also true for the proportion of significant pathways
(POSP) and the reference FDR.

Interestingly, the POSP increases significantly for
GAGE, GSEA and GSEArot by adding more genes
in the analysis by using a less stringent filtering. In
Figure 4, middle, we show the rescaled number of signifi-
cant pathways of these three methods, which we call the
POSP, obtained from the transformation,

POSPðgÞ ¼
yðgÞ � ymin

ymax � ymin
2 ½0,1�: ð4Þ

Here, y(g) corresponds to the number of significant
pathways for g genes and ymin ¼ ming yðgÞ½ � and
ymax ¼ maxg yðgÞ½ � to the minimum and maximum values
of y(g), respectively. For the three methods, these param-
eters are shown in the Supplementary Table S1. For
GSEA (red), GSEArot (purple) and GAGE (green), the
POSP for gM genes is between 0.03 and 0.80. Hence, using
a less stringent filtering criterion allows in all three
methods a significant gain in the POSP, depending on
the data. An additional problem is given by the lack of
control of the reference FDR, shown in Figure 4, right.

On a note, because GSEA has an empty reference list of
pathways for the prostate cancer data set, any significant
pathway corresponds to a false negative. For this reason,
the reference FDR is either one or not defined.
These examples allow a concrete description why such a

behavior of a method is problematic. Usually, the IQR is
used in the preprocessing step for microarray data to filter
out genes that either are not expressed or for which the
measurement is corrupted. However, our results demon-
strated that exactly these genes with an IQR < IQRF (on
the right-hand side of the dashed line) lead to an improve-
ment of the power and the POSP. In other words, the
addition of data that are potentially random improves
the methods. Another problem that can be explained
with the help of this example is that such methods are
tempting for its users to apply either a larger IQR as sug-
gested by the data or to not filter the data at all. Both
choices result in similar consequences, namely, an
increased power and a higher number of significant
pathways, although the ‘additional’ data are potentially
random.

Influence of the background: simulated data

To get a more refined view on the effects observed for the
three cancer data sets, we repeat a similar analysis for
simulated data. Specifically, we study the influence that
‘unrelated data’ in the background data, i.e. Du

b, have on
the power of the competitive methods. For our simula-
tions, we define 150 non-overlapping pathways, each con-
sisting of 50 genes, and within each pathway, the average
correlation between the genes is r=0.1. This results in
7500 genes that are included in this data set. From these
150 pathways, we select randomly 100 pathways and
change the mean expression values of 50% of the genes
in these pathways. That means the detection call in these
100 pathways is 50%. We label these 100 pathways as
‘true positive’, and the remaining 50 pathways as ‘true
negative’. These data constitute De. In addition, we
include ‘unrelated’ genes that do not change their mean
expression values between the treatment and control
group. That means we add genes to the data set, which
are not differentially expressed, and their expression
values are sampled from the same distribution as for the
non-differentially expressed genes, i.e. from N(0,1). The
number of these unrelated genes corresponds to the x-
axis in Figure 5. Because these unrelated genes do not
belong to any of the 150 pathways, they contribute only
to the background data.
In Figure 5, we show the estimated power of GSEA

(red), GSA (blue), GSEArot (purple), GAGE (green)
and ‘random set’ (gold), depending on the number of un-
related genes added to the data set. The number of unre-
lated genes ranges from 0 to 5000, in steps of 500 genes.
That means the total number of genes in the extended data
set ranges from 7500 to 12 500. From Figure 5, one can see
that only the power of ‘random set’ (gold) and GSA (blue)
is invariant with respect to the number of unrelated genes;
hence, these methods exhibit a desirable behavior. All
other methods increase their power by increasing the
number of unrelated genes. GSEArot (purple) shows the
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Figure 5. Results for simulated data. Estimated power for GSEA (red),
GSA (blue), GSEArot (purple), GAGE (green) and random set (gold)
in dependence on the number of additional genes in the background
data set.
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highest raise in power by a factor of 17, followed by
GAGE (green, 3.88) and GSEA (red, 3.33).
To emphasize the fundamental statistical problem with

GAGE, GSEA and GSEArot, showing an increase in
power when unrelated genes (Du

b) are added to the
analysis, we present the following argument. Suppose
one conducts a two-sample t-test. For a given effect size
�m (difference of sample mean values in the two samples),
a power and a significance level �, one can estimate the
sample size that is necessary to control the type I error at
the desired significance level (36). For example, for an
effect size of �m=1, a power of 0.9 and �=0.05, the
required sample size is A22. Here it is important to
realize that with the effect size, we define the anticipated
‘strength of the signal in the data’, and the obtained
number of samples from the above calculation tells us
that by using >22 samples, we can distinguish such a
signal strength from noise. If, instead, the anticipated
effect size (signal strength) would be �m=0.01 (all
other parameters unchanged), we need A210 000
samples. Hence, the smaller the effect size (signal), the
more samples are required to distinguish such a signal
from noise. This behavior is intuitively plausible, as we
assume that more samples imply more information in
the data. We would like to highlight that a two-sample
t-test is ‘self-contained’ in the sense that only the data
from the two samples are used, but no background data
(Db ¼ ;). Now, the crucial point is that ‘competitive’ gene
set methods, namely GAGE, GSEA and GSEArot, do not
behave this way. Instead, these methods improve ‘seem-
ingly’ their power when ‘unrelated’ data, which do not
contain information (Du

b 6¼ ;), are added to the back-
ground data. The key to realize is that the unrelated
genes in the background do not contain information but
are essentially noise.
A serious implication of this is demonstrated in

Figure 6. In this figure, we are testing just one pathway
consisting of 100 genes, for a sample size of 10 (each con-
dition). The expression values for the control group are
sampled from N(0,1), and the expression values for the
treatment group are sampled from Nð�,1Þ, with m=0.09.
These data constitute De. Furthermore, the expression
values of the unrelated genes in the background data are
sampled from N(0,1) (control and treatment). Each box
plot in Figure 6 corresponds to a distribution of P-values
resulting from 50 hypotheses’ tests from independent data
sets. One can see that despite the small difference between
the mean expression values of the treatment and control
group (�m=0.09), GAGE, GSEA and GSEArot declare
this pathway as significant (for �=0.05) if the number of
unrelated genes in the background data is larger than a
certain number. With respect to the median of the
P-values, this threshold gene number is 1500, 100 and
100 (genes) for GAGE, GSEA and GSEArot, respectively.
We would like to emphasize that the sample size remains
fixed for all simulations, which implies that the amount of
information in the data (De) is also fixed and does not
increase by adding more unrelated genes (Du

b) to the
analysis.
The crucial point is that the size of the background

(number of genes) of these competitive tests ‘assumes’ a

similar role as the sample size for self-contained tests. This
implies that GAGE, GSEA and GSEArot do not possess
a sensitivity limit, as self-contained tests do. For any
self-contained test, such a sensitivity limit is naturally
given by the (complex) interplay between effect size and
sample size. Instead, for the above competitive tests,
including unrelated genes to the background can
increase the sensitivity of these tests with respect to any
effect size, even for a fixed sample size. Theoretically, this
means that for any effect size and a sufficiently large
number of unrelated genes in the background, any gene
set could become significant whenever �m 6¼ 0.

The problem is that the methods GAGE, GSEA and
GSEArot cannot distinguish between De and Du, as they
are using the combined data set D ¼ De [Du. Hence, they
treat Du implicitly as it would correspond to experimental
data, containing actual information about an experiment.
However, this can lead to false assessments because Du

allows controlling the strength of a signal by changing
the data, resulting in a lack of a sensitivity limit.

In the supplementary file, we show additional simula-
tion results for the POSP. As one can see in Supplemen-
tary Figure S1, these results reflect our findings for the
biological data, shown in Figure 4 (middle column).
From Supplementary Figure S1, one can see that with
an increasing number of unrelated genes (g), also the
POSP increases. This behavior is largely independent of
the strength of the correlation. This observation confirms
our finding discussed above that the sensitivity of these
three competitive methods can be controlled by the
number of unrelated genes, g, in the background
because for a sufficiently large number of background
genes, any pathway with �� 6¼ 0 can become significant.
However, this makes statements like ‘a pathway with
�� ¼ �0 6¼ 0 is truly null’ ill posed. Instead, one needs
to refine such an assertion for GSEA, GSEArot and
GAGE to obtain a precise statement:

SP1: Pathways with �� � 0:25 and a number of unre-
lated genes � 1000 in the background Du

b are truly null
with respect to a data set De.

If the information about the background data Du
b would

not be included, this statement would be inexpressive
because by increasing the number of unrelated genes in
the background data Du

b, without changing the experimen-
tal data De or the effect size �m, it can be invalidated, as
demonstrated in Supplementary Figure S1.

DISCUSSION

In this article, we investigated five common competitive
gene sets methods with respect to the dependency of these
methods on (i) the correlation structure in the data, (ii) the
effect of up- and down-regulation of genes, (iii) the influ-
ence of the background data and (iv) the influence of the
sample size. From studying the influence the correlation
and the proportion of up-regulated genes have, we found
that the power of ‘random set’ is most robust with respect
to the presence of correlations in the data (see Figure 3).
All other methods are much stronger affected, with GSEA
performing least favorable. The reason why ‘random set’
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is unaffected by sample-label permutations is that its test
statistic, �s (see in supplementary file Equation 1), is based
on individual gene statistics, which are invariant against
sample-label permutations. These results are in contrast to
the influence the proportion of up-regulated genes has on
the power. For these data, we found GAGE to outper-
form all other methods.

From investigating the influence of the background
data, we found that the methods GSEA, GSEArot,
‘random set’, GAGE and GSA can be categorized into
two groups. In the first group are ‘random set’ and
GSA, and in the second are GAGE, GSEA and
GSEArot. For methods in the first group, we found no
noticeable influence of the number of unrelated genes in
the background data on the power, for simulated data and
microarray data. However, methods in the second two are
severely affected. These results are consistent for
simulated and three cancer microarray data sets.

The conceptual understanding and the expectations we
have of statistical methods is that these must not improve
by adding ‘unrelated’ data to a given data set, as Du does
not contain information. Here, we used the term ‘unre-
lated’ because for real microarray data, it is not easy to
decide whether a gene is not expressed at all or whether it
merely has a low basal expression. As discussed in section
‘Influence of data filtering: ALL, prostate cancer and
breast cancer’, with an increasing distance from the
median filtering toward a less stringent filtering criterion,
the tendency of genes to be truly expressed decreases. In
this respect, the meaning of ‘unrelated’ converges to
‘random’. In contrast, for simulated data, genes
behaving randomly are clearly defined. For this reason,
we used the more neutral term ‘unrelated’, instead of
‘random’ or ‘noise’, to be applicable to both, simulated
and biological data. In this respect, the behavior of the
methods in the second group is undesirable, as it entails a
temptation on the users to apply a less stringent filtering
criterion to the data, hence leading to the pollution of a
data set by ‘not excluding’ unrelated data. If GAGE,
GSEA or GSEArot are used in combination with a data
set that contains ‘unrelated’ data (Du 6¼ ;), the obtained
results become flawed. Here, it is important to distinguish
between a flaw in a method itself and a deficient

application, and we would like to emphasize that only
the application of GAGE, GSEA and GSEArot in com-
bination with ‘unrelated’ data makes the results flawed. If
these methods are used with adequate data, the results are
proper.
As shown by our analysis, the key problem of GAGE,

GSEA and GSEArot is that the data Du influence the
significance of a pathway, whereas De remains unchanged.
This is a logical contradiction because the unrelated data
Du do not contain information about the experiment. In
other words, the reason for this curious behavior is that
the data Du, which do not contain information, are treated
by the methods ‘as if’ they would contain information. In
this way, Du is not only polluting the background data but
also the data of target pathways, as both may involve
unrelated data (in the form of Du

b 6¼ ; and Du
t 6¼ ;). As a

consequence of the entering of Du in the analysis, the dif-
ference between a signal and noise vanishes, implying a
loss of a statistical sensitivity limit.
To avoid an improper usage of GAGE, GSEA and

GSEArot, two points are crucial to consider. First, one
needs to make sure that no data are included in the
analysis that represent ‘unrelated’ data, i.e. Du needs to
be removed. For microarray data, this implies the appli-
cation of a data filtering procedure aiming to remove all
genes that do not have at least a basal expression level.
Unfortunately, this is not sufficient, because also De plays
a crucial role. Whereas it is in the hand of the analyst to
make sure that Du is (at least approximately) excluded
from an analysis, it is impossible to ensure the second
crucial point, namely, that the data set De is ‘complete’.
This means one needs to use ‘all’ expression data from ‘all’
expressed genes in a genome to establish a meaningful
definition of statistical significance. However, usually
microarray chips contain only a subset of all genes from
an organism. This implies that the available data set De is
only a subset of the complete expression data set DE of an
organism; hence, pathways declared as significant for De

may not be significant for the complete data set DE or vice
versa.
Based on our analysis, we are suggesting the following

procedure for using GAGE, GSEA and GSEArot. For
gene expression data from biological or biomedical

Figure 6. Distribution of P-values of one pathway with 100 genes, resulting from tests with GAGE (left), GSEA (middle) and GSEArot (right). The
x-axis gives the number of unrelated genes in the background. For all simulations, the sample size is fixed.
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experiments using a genome-scale microarray chip like the
‘Affymetrix Human Genome U133 Plus 2.0 Array’ for
human or ‘Affymetrix Yeast Genome S98 Array’ for
yeast, we suggest a stringent gene filtering removing all
unrelated data from a given data set. This allows a mean-
ingful analysis with a well-defined statistical interpretation
of the obtained results. For all other non–genome-scale
gene expression data sets, this is not necessarily
guaranteed, and the severity of this deviation can only
be answered in a case-by-case manner. For gene expres-
sion data from biomedical experiments or clinical studies,
which do not provide genome-scale expression data for
‘all’ genes, we advise strongly against the application of
GSEA, GSEArot or GAGE because of the unclear nature
of the interpretation for the obtained results lying outside
the realm of statistical inference.
In this context, RNA-seq data obtained from next-

generation sequencing technologies have a clear concep-
tual advantage over DNA microarray chips because,
principally, all mRNAs of an organism are sequenced,
and hence, are available for analysis (37,38). This
simplifies the experimental design for competitive gene
set analysis methods considerably, as the requirement
for the availability of all gene expression values for all
genes in a genome is naturally fulfilled.
Our recommendations are in striking contrast to the

recommended usage of GSEA given in (39): ‘The GSEA
algorithm does not filter the expression dataset and does
not benefit from your filtering of the expression dataset’.
Furthermore, it is reported that the findings in (40) show
that filtered and unfiltered data give the same results.
Unfortunately, one particular example does not establish
a legitimate usage for generic data set, as our results dem-
onstrate. Following the above reference given in (39), thus
far, many articles have been published under the impres-
sion that the usage of unfiltered data is not harmful (41).
Based on our analysis, we recommend repeating each of
these analyses to test the influence of the filtering
explicitly.

CONCLUSION

In summary, our analysis revealed that when using com-
petitive gene set methods, it is imperative to apply a
stringent gene filtering criterion. However, even when
the data are filtered appropriately, for gene expression
data from chips that do not provide a genome-scale
coverage of the expression values of all mRNAs, this is
not enough for GSEA, GSEArot and GAGE to ensure the
statistical soundness of the applied procedure. For this
reason, for biomedical and clinical studies, we strongly
advice not to use GSEA, GSEArot and GAGE for such
data sets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figure 1.
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