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Abstract 

Cancer is a complex disease with heterogeneous mutational and gene expression patterns. Subgroups of patients who share a phenotype 
might share a specific genetic architecture including protein–protein interactions (PPIs). We de v eloped the Atlas of P rotein–P rotein Interactions 
in Cancer (APPIC), an interactive webtool that provides PPI subnetworks of 10 cancer types and their subtypes shared by cohorts of patients. To 
achie v e this, w e analyz ed publicly a v ailable RNA sequencing data from patients and identified PPIs specific to 26 distinct cancer subtypes. APPIC 

compiles biological and clinical information from various databases, including the Human Protein Atlas, Hugo Gene Nomenclature Committee, 
g:Profiler, cBioPortal and Clue.io. The user-friendly interface allows for both 2D and 3D PPI network visualizations, enhancing the usability 
and interpret abilit y of complex dat a. For advanced users seeking greater customization, APPIC con v eniently pro vides all output files f or further 
analysis and visualization on other platforms or tools. By offering comprehensive insights into PPIs and their role in cancer, APPIC aims to support 
the disco v ery of tumor subtype-specific no v el t argeted therapeutics and drug repurposing . APPIC is freely a v ailable at https://appic.bro wn.edu . 
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Introduction 

In 2024, around 2 million new cancer cases are expected to
be diagnosed and 611 720 cancer deaths are projected to oc-
cur in the United States ( 1 ). According to Centers for Disease
Control and Prevention (CDC), cancer is the second leading
cause of death in the United States, exceeded only by heart dis-
ease ( 2 ). Cancer is a complex disease that is often attributed
to perturbations in gene networks ( 3 ,4 ). Despite numerous ad-
vances in medical research, our understanding of the intricate
molecular and genetic interactions that drive cancer forma-
tion, progression and metastasis is still evolving ( 5 ). Given the
heterogeneous nature of cancer, which can vary greatly be-
tween individuals and even within a single tumor ( 6 ,7 ), there
is an urgent need for tools that can decode these complex
interactions. Advances in high-throughput sequencing tech-
nologies, genome-wide association studies and bioinformatics
methods have improved our understanding in the genetics of
complex diseases, including cancer. In this respect, network
biology-based approaches have emerged as powerful tools
as they have potential to reveal the biological mechanisms
of complex diseases such as cancer by bridging phenotype–
genotype information ( 8 ,9 ). These large-scale protein–protein
interaction (PPI) maps indicate that genes linked to similar
phenotypes often physically interact at the protein level ( 10 ).
Furthermore, similar phenotypes tend to occupy neighbor-
ing network spaces, a phenomenon observed in both model
organisms and humans. The availability of several publicly
accessible PPI databases marks a significant advancement in
this domain ( 9 ,11 ). PPI databases are critical resources for
understanding the complex networks that underpin cellular
functions and disease mechanisms. STRING (Search Tool for
the Retrieval of Interacting Genes / Proteins) stands out for
its integration of data from experimental results, computa-
tional predictions and public text collections ( 11 ). Addition-
ally, databases such as BioGRID, IntAct, the Human Protein
Reference Database (HPRD), MINT, ConsensusPathDB, Fun-
Coup, GeneMANIA, HumanBase, HumanNet and IID pro-
vide extensive PPI data for various organisms and pathways
( 9 ,12–20 ). Recognizing the potential utility of PPI network
analysis in complex disease research, in our previous study we
developed Proteinarium, a specialized tool designed to identify
patient clusters with shared PPI networks ( 21 ). Proteinarium
integrates multi-sample PPI analysis and visualization capabil-
ities, allowing researchers to examine PPI networks that drive
different disease phenotypes. Proteinarium stands out for its
ability to construct patient-specific PPI networks by integrat-
ing gene expression data with experimentally validated PPI
information. It identifies clusters of patients with shared net-
work similarities, offering a unique view into molecular inter-
actions that may drive distinct disease phenotypes. By high-
lighting hub proteins with therapeutic potential, Proteinarium
supports the identification of novel drug targets, making it an
essential tool in precision medicine. Leveraging STRING’s ex-
perimentally validated PPI data, Proteinarium facilitates de-
tailed exploration of PPI networks specific to each patient, aid-
ing in the understanding of molecular mechanisms underlying
various tumor types and identifying potential novel therapeu-
tic targets ( 22 ). 

Using Proteinarium, we identified the PPI networks specific
to 26 cancer subtypes across 10 tissue types, including blad-
der, brain, breast, colon / colorectal, gallbladder, lung, ovarian,
pancreas, prostate and thyroid. By integrating the PPI net-
works identified into an interactive user interface, we devel- 
oped the Atlas of Protein–Protein Interactions in Cancer (AP- 
PIC), a novel tool in cancer research. APPIC is an interac- 
tive web application that visualizes PPI networks in several 
tumor types and their subtypes as well as aggregates clinical 
and biological information from databases such as the Hu- 
man Protein Atlas (HPA), HUGO Gene Nomenclature Com- 
mittee (HGNC), g:Profiler, cBioPortal and Clue.io ( 23–26 ).
We used publicly available RNA-sequencing (RNA-seq) data 
from patients for the Proteinarium analysis. This web appli- 
cation functions as a dynamic tool to support the develop- 
ment of new therapeutic strategies, aid in drug repurposing ef- 
forts and further elucidate mechanisms behind tumor subtype 
formation. 

APPIC 

APPIC is an interactive webtool that presents the PPI subnet- 
works specific to 26 cancer subtypes across 10 tissue types.
Users can select a tissue type or subtype to explore the PPI 
subnetworks. Based on the selection, APPIC generates the 2D 

or 3D PPI network, and allows the users to browse the in- 
formation aggregated from databases such as HPA, HGNC,
Clue.io and g:Profiler. The size of a node representing a pro- 
tein is proportional to the number of connections with other 
proteins in the PPI. Proteins with the highest number of con- 
nections, known as ‘hub proteins’, are potential drug targets.
Studies showed that hub proteins in PPI networks are prefer- 
entially selected as drug targets due to their high connectivity 
and ability to propagate effects. However, being a hub protein 

alone does not ensure therapeutic potential without further 
analysis ( 27 ,28 ). 

Information on a specific protein in a selected PPI network 

is obtained from HPA and HGNC. The g:Profiler section dis- 
plays the biological pathways in the selected PPI network.
Clue.io section searches for existing drugs that target the se- 
lected protein. The proteins with potential drug targets in the 
PPI network are highlighted in red. cBioPortal section displays 
the Kaplan–Meier survival curve for the specific patient cluster 
used in the analysis of the PPI network. Users can download 

a list of patient IDs sharing the consensus network and the 
clinical data from cBioPortal for further analysis (Figure 1 ).
APPIC is freely available at https://appic.brown.edu. 

RNA-seq Data Processing and Proteinarium 

Analysis 

RNA-seq data from 10 cancer types, including bladder, brain,
breast, colon / colorectal, gallbladder, lung, ovarian, pancreas,
prostate and thyroid carcinomas, were downloaded from 

cBioPortal. The utilized datasets were obtained as messenger 
RNA expression z -scores that were precalculated relative to 

other tumor samples within the cohort, allowing the users to 

normalize expression values across all samples. Pseudogenes 
were filtered from the datasets. Subsequently, for each patient,
we ranked the genes in descending order based on expression 

levels to compile a list of ‘seed genes’, which was employed to 

execute Proteinarium ( 21 ). To determine the number of seed 

genes to be used in Proteinarium analysis, we prepared lists of 
the top N highly expressed genes ( N = 50, 100, 150, 200, 250 

and 300) for each patient (Figure 2 ). Genes are ranked for each 

patient based on their z -scores. The top N highly ranked genes,

https://appic.brown.edu
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Figure 1. ( A ) APPIC main page: the primary interface of the APPIC platform. ( B ) Interactive Cancer Types page: a page allowing the selection and 
exploration of various tumor types. ( C ) Example query: display for non-papillary urothelial carcinoma of the bladder (TCGA, PanCancer Atlas) with a 
cohort of 269 patients. ( D ) Results page for the query: left side shows the interactive consensus network for 269 patients. Nodes (or proteins) are blue 
b y def ault, and nodes with drugs a v ailable f or repurposing are highlighted in red. Right side pro vides detailed inf ormation about each node (or protein) 
from HPA, HGNC, Clue.io, g:Profiler and cBioPortal when selected. ( E ) Visualization options: 2D and 3D PPI networks, downloadable data for PPIs and 
screen capture for the PPI network. ( F ) Dynamic link to HPA: direct link to the HPA site for the queried protein in the network. ( G ) HGNC information: 
details about the protein as provided by HGNC. ( H ) Network annotation: biological pathways and associated P -values precalculated by g:Profiler. ( I ) 
Proteins with existing drugs (from Clue.io) are highlighted in red within the network diagram and listed in a table. ( J ) Clinical data display: survival plot of 
patients in the selected tumor subtype, based on clinical data from cBioPortal. Patient IDs and clinical data are a v ailable f or do wnload f or further analy sis. 

Figure 2. Identifying PPIs specific to cancer subtypes using P roteinarium. P roteinarium used RNA-seq data from patients with 10 tumor types to identify 
PPI networks specific to 26 cancer subtypes. 
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Figure 3. APPIC infrastr uct ure. Users select the cancer type that serves 
as the initial input. APPIC retrie v es and processes the PPI data based on 
the cancer type, which is stored on the server, to generate node graphs. 
APPIC extract cBioPortal data to generate survival plots. PPI data are 
further parsed, organized and sent to g:Profiler and Clue.io using their 
REST APIs. Responses are received as JSON objects that are displayed 
as tables on the front end. iFrames are used to embed HTML content of 
HPA and HGNC into the front end. 

 

 

 

 

as determined by their z -scores, are selected as seed genes for
the construction of PPI networks. Proteinarium is run with
these top N seed genes. One of the main outputs of Proteinar-
ium is a dendrogram, which clusters patients based on their
network similarities. To find the most stable dendrogram with
the optimum number of seed genes, the dendrograms are com-
pared using the cophenetic correlation coefficient (CCC) ( 29 ).
The CCC measures how accurately the dendrogram preserves
the pairwise distances between the original data points. The
best representative dendrogram is chosen by selecting the one
with the highest CCC score and the least number of seed genes.
Further details of this method were described in our study by
Hacking et al. ( 22 ). 

Proteinarium and PPI Network Construction 

We used Proteinarium to build the PPI networks. Proteinar-
ium is a unique tool designed for multi-sample PPI network
analysis. It builds patient-specific PPI networks by integrat-
ing gene expression data, such as RNA-seq, with experimen-
tally validated PPI information from STRING, allowing for
the identification of consensus PPI networks specific to a pa-
tient cohort. A key strength is its ability to cluster patients
based on network similarities, aiding in understanding dis-
ease heterogeneity. Proteinarium also offers layered visualiza-
tion of networks, providing a clear and customizable view of
PPIs. Additionally, its capacity to reveal hub proteins makes it
a valuable tool for identifying novel therapeutic targets, par-
ticularly in diseases such as cancer. Proteinarium requires a list
of genes (seed genes) for each sample as an input and generates
a PPI network for each patient by mapping the seed gene list
onto experimentally validated PPI information derived from
the STRING database ( 11 ). Proteinarium identifies clusters of
samples based on network similarities and presents the clus-
ters in a dendrogram. It uses Dijkstra’s algorithm for the short-
est path and the Jaccard index to build a network similarity
matrix of PPI between samples ( 21 ). In constructing the PPI
networks using APPIC, the values for key parameters, max-
PathLength and maxPathCost, were carefully chosen to bal-
ance network complexity and biological relevance. maxPath-
Length was set to 2, meaning that a maximum of one interme-
diary node is allowed between seed proteins. This value was
selected to capture relevant indirect interactions while avoid-
ing over-expansion of the network with potentially unrelated
nodes. Keeping the path length short ensures that the inter-
actions reflect more direct biological relationships, which is
critical for interpreting the network in the context of can-
cer subtypes. maxPathCost was set to 2000, based on inter-
action confidence scores from the STRING database (where
1000 is the maximum score for confidence). This threshold
was chosen to focus on high-confidence interactions, ensur-
ing that only interactions with scores above 800 are included.
This approach helps filter out lower-confidence connections
and improves the biological relevance and robustness of the
resulting networks. These parameters ensure that APPIC pro-
vides users with concise yet biologically meaningful networks
that reflect high-confidence interactions. Patients are clustered
according to the similarity of their PPI networks. Consensus
PPI networks are then formed based on these clusters. The fi-
nal output includes gene set and gene interaction files for the
consensus PPI networks, as well as a list of patient IDs for
each tumor subtype ( 21 ). 
System Description 

The front end of the webtool was developed using 
HTML / CSS / JavaScript and the React JavaScript framework 

( 30 ). The backend was developed using JavaScript (Figure 3 ).
To render the network diagrams, PPI data files are parsed 

and built using the React-Force-Graph library. To interact 
with HPA and HGNC, APPIC uses an iFrame to embed the 
web pages directly into the front end. APIs were used for 
g:Profiler and Clue.io to perform real-time search of biolog- 
ical pathways and existing drug targets relevant to the pro- 
tein selected by the user. The information received is pre- 
sented in tables built in HTML / CSS. cBioPortal datasets were 
downloaded as CSV files and stored in the backend of the 
webtool. APPIC parses these files to display the clinical data 
in HTML / CSS / JavaScript. The webtool including backend,
front end and data files is hosted on a Brown University server.

Case Study 

This case study aims to demonstrate how APPIC can be used 

to explore the PPI networks in urothelial carcinoma (bladder 
cancer) (TCGA, PanCancer Atlas), specifically focusing on the 
high microsatellite instability (MSI-H) subtype (Figure 4 ). 

Step 1: Identify hub proteins 

Within the urothelial carcinoma (MSI-H) PPI network, hub 

proteins—proteins with the highest number of interactions—
can be identified. These proteins are often essential for cancer 
progression and could serve as valuable targets for drug de- 
velopment or repurposing. The size of each node in the PPI 
network corresponds to the number of its connections. For in- 
stance, the most connected protein in the network is VAMP8,
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Figure 4. Case study to visualize PPI network specific to MSI-H bladder urothelial carcinoma (TCGA, PanCancer Atlas). 
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ith nine connections. The next two most connected proteins
re APOB, with eight connections, and MAPK1, with seven
onnections. 

tep 2: Obtain information on the selected proteins 

PA tab on the panel right side of the network can be accessed
y clicking the node on the PPI network and provides informa-
ion about the selected proteins. Users can also retrieve gene
nformation from the HGNC tab by clicking on a node and se-
ecting the HGNC tab. g:Profiler maps user-provided protein
ists to various biological databases and identifies statistically
ignificant enrichments in terms of biological processes, path-
ays and regulatory motifs. In this example, all proteins in

he PPI network are used as input for g:Profiler. 

tep 3: Drug repurposing for therapeutic insights 

lue.io was integrated into APPIC to allow the users to iden-
ify approved drugs that interact with key proteins in the PPI
etwork. Researchers can identify candidates for further pre-
linical or clinical testing in the MSI-H urothelial carcinoma
ubtype. In the PPI network, the nodes, which are colored in
ed, indicate that drugs are available for those proteins, i.e.
HRM2, APOB, MAPK, WASL, APP, PTPN11, PPP2CA, F2,
GFR, PLG, EGF and ALB in the PPI network shown in Figure
 . The names of these drugs for those proteins can be obtained
y clicking on the ‘Clue’ tab. There are total of 19 potential
rugs for MAPK1 and 1 drug for APOB. 

tep 4: Survival plot 

PPIC provides integrated survival plots from cBioPortal. Sur-
ival plots from the patients specifically contributing in a PPI
etwork can be visualized by clicking on ‘cBioPortal’ tab.
his analysis aids in identifying proteins potentially associ-
ted with poor survival outcomes (Figure 4 ). 
Discussion 

We developed APPIC, an interactive webtool for researchers
and clinicians to visualize and analyze the PPI subnetworks
specific to 26 cancer subtypes. The integration of databases
such as HPA, HGNC, g:Profiler, Clue.io and cBioPortal makes
APPIC a unique platform to further study the mechanisms
driving cancer subtypes and develop novel precision medicine
strategies. 

To construct the PPI networks for each patient sample, we
chose Proteinarium, a multi-sample PPI network analysis and
visualization tool, due to its specialized capabilities in iden-
tifying patient clusters with shared PPI networks. Proteinar-
ium excels at building consensus PPI networks in a cohort of
patients by using gene expression data from patients to re-
veal unique molecular mechanisms. Its ability to cluster pa-
tients based on network similarities enables the identification
of subgroups, aiding in the discovery of potential therapeu-
tic targets. Proteinarium highlights densely connected proteins
and identifies potential drug targets. Proteinarium employs
Dijkstra’s algorithm to construct high-confidence interaction
graphs, which is crucial for delineating distinct cancer types
or subtypes. It offers robust visualization options, including
layered graphs for patient clusters, and supports customiz-
ability with user-defined parameters. Designed to handle the
RNA-seq data, Proteinarium efficiently supports multi-sample
analysis by leveraging the STRING database for comprehen-
sive network construction. By utilizing Proteinarium, we built
detailed PPI networks for each cancer subtype, aiding in the
discovery of potential novel targeted therapeutics and drug
repurposing. 

One of the significant features of APPIC is the visualiza-
tion and analysis of PPIs, as it provides a user-friendly in-
terface enabling a comprehensive understanding of molecu-
lar interactions across a diverse range of cancer subtypes. AP-
PIC provides existing drug targets for selected proteins. This is
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Table 1. Comparison of cancer PPI tools: APPIC, HMNPPID, PINA 3.0 and OncoPPi 

Tool Data source Key features Visualization Focus 

APPIC RNA-seq data and patient 
survival data from 

cBioPortal, HPA, HGNC, 
g:Profiler, Clue.io, STRING 

Visualizes cancer 
subtype-specific PPI 
networks, integrates 
multiple datasets, drug 
repurposing, survival 
analysis 

2D / 3D visualizations of 
PPI networks with 
interactive tools 

26 subtypes across 10 
cancer types (bladder, 
brain, breast, etc.) with 
emphasis on drug targets 
and patient survival 

HMNPPID PubMed abstracts using 
PPIExtractor, data from 

various biomedical texts 

Provides cancer-specific PPI 
networks for malignant 
neoplasms, VisualPPI for 
network visualization 

VisualPPI with multiple 
layout modes and detailed 
analysis options 

PPIs in malignant 
neoplasms across 171 
cancer types 

PINA 3.0 RNA-seq data from 

TCGA, proteomics data 
from CPTAC 

Integrates 
tumor-type-specific 
interactome with RNA-seq 
and proteomics, mutation 
drivers and therapeutic 
targets 

Cytoscape.js-based 
interactive visualization 
and network customization 

Tumor context-specific 
interactome analysis and 
cancer driver identification 

OncoPPi Cancer genes from lung 
cancer cells; PPI data from 

STRING, BioGrid, IntAct, 
GeneMANIA, BioPlex 

Focuses on cancer-related 
PPIs and vulnerabilities, 
interaction discovery, 
mutual exclusivity analysis 

Interactive network 
visualization with focus on 
mutual exclusivity and 
functional associations 

Lung cancer PPI landscape 
expansion, cancer 
vulnerabilities, therapeutic 
targets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

especially important as the most connected or ‘hub’ proteins
are potential drug targets ( 27 ,28 ). In our previous study using
Proteinarium to study the RNA-seq data from a cohort of pa-
tients with mismatch repair (MMR) breast cancer, we showed
that the PPI network specific to MMR-deficient breast cancer
included highly connected clusters of histone proteins. Impor-
tantly, the MMR-intact breast cancer-specific PPI network was
distinct from the MMR-deficient breast cancer-specific PPI
network ( 22 ). As histone lysine methyltransferases are poten-
tial drug targets in breast cancer, our previous study showed
the utility of PPI network analysis including Proteinarium in
novel drug target discovery and drug repurposing specific to
cancer subtypes. APPIC was developed with the purpose of
expanding our efforts in novel drug target discovery and drug
repurposing using PPI network analysis to other cancer types
and their subtypes. Additionally, network annotations show
each protein’s function and connect to the HPA for more de-
tailed protein information. 

APPIC distinguishes itself from other cancer PPI tools such
as HMNPPID, PINA 3.0 and OncoPPi through its compre-
hensive integration of multiple data sources and its focus on
patient-specific PPI networks across various cancer subtypes
( 31–33 ). While tools such as HMNPPID rely on literature-
based interactions and PINA 3.0 integrates RNA-seq and pro-
teomics data, APPIC uniquely combines RNA-seq, clinical
and drug repurposing data as well as survival plots. Further-
more, APPIC’s real-time dynamic visualization of both 2D and
3D networks provides a more interactive and customizable ex-
perience for users compared to other tools. Unlike OncoPPi,
which focuses on a curated set of cancer-specific proteins, AP-
PIC provides a broader application across 26 cancer subtypes,
making it more versatile for exploring multiple cancer types
and their molecular mechanisms. A comparison of cancer PPI
tools was provided in Table 1 . 

Limitations and future work 

While APPIC offers a range of visualization options, some
advanced users might find the customization options limited
compared to stand-alone bioinformatics tools such as Cy-
toscape or Gephi, which allow for more extensive modifica-
tions and personalized network analysis workflows. To ad- 
dress this, all APPIC output files are available to the users,
enabling them to continue their analysis and visualization on 

other platforms for their specific needs. 
In the selection of the top N highly expressed genes as 

‘seed genes’, we assume that these genes are likely part of 
functionally relevant to the cancer subtype. This assump- 
tion is based on the modular organization of biological net- 
works, where highly expressed genes often cluster into disease- 
relevant neighborhoods of the interactome ( 34 ). While not all 
highly expressed genes are the most critical cancer drivers, this 
approach leverages network biology principles such as ‘guilt 
by association’ to prioritize genes for further analysis ( 35 ).
However, we acknowledge that this is a limitation and are ex- 
ploring ways to refine gene selection using multi-omics data 
and functional enrichment. 

As a future work, APPIC will be updated with PPI net- 
work data from other cancer types such as hematological ma- 
lignancies and sarcomas. Further integration of APPIC with 

other specialized resources in cancer biology and drug resis- 
tance could significantly enhance its impact. One particularly 
promising resource is the DRMref database, which provides 
a comprehensive map of drug resistance mechanisms based 

on single-cell data ( 36 ). DRMref offers insights into various 
cancer subtypes, including detailed analyses of cellular com- 
position, intratumoral heterogeneity and gene expression in 

resistant cells. By incorporating this database, APPIC could 

extend its ability to examine how PPI networks are influenced 

by drug resistance, enabling researchers to explore the under- 
lying mechanisms and discover novel therapeutic targets. 

Conclusions 

APPIC emerges as an innovative platform that not only facil- 
itates a deeper understanding of cancer subtypes through PPI 
subnetworks but also acts as a catalyst for the development of 
precision medicine strategies. Its unique integration of multi- 
ple databases, coupled with a user-friendly interactive inter- 
face, positions APPIC as an essential tool for both researchers 
and clinicians working in the field of oncology. 
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ata availability 

PPIC is freely available at https://appic.brown.edu . 

 c kno wledg ements 

e would like to thank Brown University Center for Compu-
ation and Visualization (CCV) for computational resources
nd Brown University Office of Information Technology for
ebsite support. 

unding 

rown University Undergraduate Teaching and Research
wards (UTRA) (Charissa C. and Caden C.); Legorreta Can-
er Center, Brown University (to E.D.G.U and A.U.); Rhode Is-
and Foundation (to E.D.G.U. and A.U.); Warren Alpert Med-
cal School, Brown University (to B.A.). 

onflict of interest statement 

one declared. 

eferences 

1. Siegel, R.L. , Giaquinto, A.N. and Jemal, A. (2024) Cancer statistics, 
2024. CA Cancer J. Clin. , 74 , 12–49. 

2. Heron, M. and Anderson, R.N. (2016) Changes in the leading 
cause of death: recent patterns in heart disease and cancer 
mortality. NCHS Data Brief , 254 , 1–8.

3. Grechkin, M. , Logsdon, B.A. , Gentles, A.J. and Lee, S.I. (2016) 
Identifying network perturbation in cancer. PLoS Comput. Biol., 
12 , e1004888.

4. Liu, Z. , Weng, S. , Dang, Q. , Xu, H. , Ren, Y. , Guo, C. , Xing, Z. , Sun, Z. 
and Han,X. (2022) Gene interaction perturbation network 
deciphers a high-resolution taxonomy in colorectal cancer. eLife , 
11 , e81114.

5. Stratton, M.R. , Campbell, P.J. and Futreal, P.A. (2009) The cancer 
genome. Nature , 458 , 719–724.

6. Gerlinger, M. , Rowan, A.J. , Horswell, S. , Math, M. , Larkin, J. , 
Endesfelder, D. , Gronroos, E. , Martinez, P. , Matthews, N. , 
Stewart, A. , et al. (2012) Intratumor heterogeneity and branched 
evolution revealed by multiregion sequencing. N. Engl. J. Med., 
366 , 883–892.

7. Kim, S. , Kim, D.H. , Lee, W. , Lee, Y.M. , Choi, S.Y. and Han, K. (2020) 
The nature of triple-negative breast cancer classification and 
antitumoral strategies. Genomics Inform. , 18 , e35. 

8. Oti, M. , Snel, B. , Huynen, M.A. and Brunner, H.G. (2006) 
Predicting disease genes using protein–protein interactions. J. 
Med. Genet., 43 , 691–698.

9. Stark, C. , Breitkreutz, B.J. , Reguly, T. , Boucher, L. , Breitkreutz, A. 
and Tyers,M. (2006) BioGRID: a general repository for 
interaction datasets. Nucleic Acids Res. , 34 , D535–D539. 

0. Barabasi, A.L. , Gulbahce, N. and Loscalzo, J. (2011) Network 
medicine: a network-based approach to human disease. Nat. Rev. 
Genet., 12 , 56–68.

1. Szklarczyk, D. , Gable, A.L. , Nastou, K.C. , Lyon, D. , Kirsch, R. , 
Pyysalo, S. , Doncheva, N.T. , Legeay, M. , Fang, T. , Bork, P. , et al. 
(2021) The STRING database in 2021: customizable 
protein–protein networks, and functional characterization of 
user-uploaded gene / measurement sets. Nucleic Acids Res., 49 , 
D605–D612.

2. Chen, K.M. , Wong, A.K. , Troyanskaya, O.G. and Zhou, J. (2022) A 

sequence-based global map of regulatory activity for deciphering 
human genetics. Nat. Genet., 54 , 940–949.

3. Del Toro, N. , Shrivastava, A. , Ragueneau, E. , Meldal, B. , Combe, C. , 
Barrera, E. , Perfetto, L. , How, K. , Ratan, P. , Shirodkar, G. , et al. 
(2022) The IntAct database: efficient access to fine-grained 
molecular interaction data. Nucleic Acids Res. , 50 , D648–D653. 

14. Herwig, R. , Hardt, C. , Lienhard, M. and Kamburov, A. (2016) 
Analyzing and interpreting genome data at the network level with
ConsensusPathDB. Nat. Protoc., 11 , 1889–1907.

15. Kim, C.Y. , Baek, S. , Cha, J. , Yang, S. , Kim, E. , Marcotte, E.M. , Hart, T.
and Lee,I. (2022) HumanNet v3: an improved database of human
gene networks for disease research. Nucleic Acids Res., 50 , 
D632–D639.

16. Kotlyar, M. , Pastrello, C. , Ahmed, Z. , Chee, J. , Varyova, Z. and 
Jurisica,I. (2022) IID 2021: towards context-specific protein 
interaction analyses by increased coverage, enhanced annotation 
and enrichment analysis. Nucleic Acids Res. , 50 , D640–D647. 

17. Licata, L. , Briganti, L. , Peluso, D. , Perfetto, L. , Iannuccelli, M. , 
Galeota, E. , Sacco, F. , Palma, A. , Nardozza, A.P. , Santonico, E. , et al. 
(2012) MINT, the molecular interaction database: 2012 update. 
Nucleic Acids Res., 40 , D857–D861.

18. Mostafavi, S. , Ray, D. , Warde-Farley, D. , Grouios, C. and Morris, Q. 
(2008) GeneMANIA: a real-time multiple association network 
integration algorithm for predicting gene function. Genome Biol., 
9 (Suppl. 1), S4.

19. Peri, S. , Navarro, J.D. , Kristiansen, T.Z. , Amanchy, R. , 
Surendranath, V. , Muthusamy, B. , Gandhi, T.K. , Chandrika, K.N. , 
Deshpande, N. , Suresh, S. , et al. (2004) Human protein reference 
database as a discovery resource for proteomics. Nucleic Acids 
Res., 32 , D497–D501.

20. Persson, E. , Castresana-Aguirre, M. , Buzzao, D. , Guala, D. and 
Sonnhammer,E.L.L. (2021) FunCoup 5: functional association 
networks in all domains of life, supporting directed links and 
tissue-specificity. J. Mol. Biol., 433 , 166835.

21. Armanious, D. , Schuster, J. , Tollefson, G.A. , Agudelo, A. , 
DeWan, A.T. , Istrail, S. , Padbury, J. and Uzun, A. (2020) 
Proteinarium: multi-sample protein–protein interaction analysis 
and visualization tool. Genomics , 112 , 4288–4296.

22. Hacking, S. , Chou, C. , Baykara, Y. , Wang, Y. , Uzun, A. and Gamsiz 
Uzun,E.D. (2023) MMR deficiency defines distinct molecular 
subtype of breast cancer with histone proteomic networks. Int. J. 
Mol. Sci., 24 , 5327.

23. Cerami, E. , Gao, J. , Dogrusoz, U. , Gross, B.E. , Sumer, S.O. , 
Aksoy, B.A. , Jacobsen, A. , Byrne, C.J. , Heuer, M.L. , Larsson, E. , et al.
(2012) The cBio Cancer Genomics Portal: an open platform for 
exploring multidimensional cancer genomics data. Cancer 
Discov., 2 , 401–404.

24. Povey, S. , Lovering, R. , Bruford, E. , Wright, M. , Lush, M. and 
Wain,H. (2001) The HUGO Gene Nomenclature Committee 
(HGNC). Hum. Genet., 109 , 678–680.

25. Raudvere, U. , Kolberg, L. , Kuzmin, I. , Arak, T. , Adler, P. , Peterson, H. 
and V ilo, J. (2019) g:Profiler: a web server for functional 
enrichment analysis and conversions of gene lists (2019 update). 
Nucleic Acids Res., 47 , W191–W198.

26. Thul, P.J. and Lindskog, C. (2018) The human protein atlas: a 
spatial map of the human proteome. Protein Sci. , 27 , 233–244. 

27. Feng, Y. , Wang, Q. and Wang, T. (2017) Drug target protein–protein
interaction networks: a systematic perspective. Biomed. Res. Int., 
2017 , 1289259.

28. Ghadermarzi, S. , Li, X. , Li, M. and Kurgan, L. (2019) 
Sequence-derived markers of drug targets and potentially 
druggable human proteins. Front. Genet., 10 , 1075.

29. Sokal, R.R. and Rohlf, F.J. (1962) The comparison of dendrograms 
by objective methods. Taxon , 11 , 33–40.

30. React (2024) React, the library for web and native user interfaces.
https:// react.dev/ , (June 2024, date last accessed).

31. Du, Y. , Cai, M. , Xing, X. , Ji, J. , Yang, E. and Wu, J. (2021) PINA 3.0: 
mining cancer interactome. Nucleic Acids Res., 49 , 
D1351–D1357.

32. Li, Q. , Yang, Z. , Zhao, Z. , Luo, L. , Li, Z. , Wang, L. , Zhang, Y. , Lin, H. , 
Wang, J. and Zhang, Y. (2019) HMNPPID—human malignant 
neoplasm protein–protein interaction database. Hum. Genomics , 
13 , 44.

https://appic.brown.edu
https://react.dev/


8 NAR Cancer , 2025, Vol. 7, No. 1 
33. Li, Z. , Ivanov, A.A. , Su, R. , Gonzalez-Pecchi, V. , Qi, Q. , Liu, S. , 
Webber, P. , McMillan, E. , Rusnak, L. , Pham, C. , et al. (2017) The 
OncoPPi network of cancer-focused protein–protein interactions 
to inform biological insights and therapeutic strategies. Nat. 
Commun., 8 , 14356.

34. V idal, M. , Cusick, M.E. and Barabási, A.-L. (2011) Interactome 
networks and human disease. Cell , 144 , 986–998.
Received: August 21, 2024. Revised: November 27, 2024. Editorial Decision: December 22, 2024. Ac
© The Author(s) 2025. Published by Oxford University Press on behalf of NAR Cancer. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is 
translation rights for reprints. All other permissions can be obtained through our RightsLink service v
journals.permissions@oup.com. 
35. Wolfe, C.J. , Kohane, I.S. and Butte, A.J. (2005) Systematic survey 
reveals general applicability of “guilt-by-association” within gene 
coexpression networks. BMC Bioinformatics , 6 , 227.

36. Liu, X. , Y i, J. , Li, T. , Wen, J. , Huang, K. , Liu, J. , Wang, G. , Kim, P. , 
Song, Q. and Zhou, X. (2024) DRMref: comprehensive reference 
map of drug resistance mechanisms in human cancer. Nucleic 
Acids Res., 52 , D1253–D1264.
cepted: January 3, 2025 

Commercial License (https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits 
properly cited. For commercial re-use, please contact reprints@oup.com for reprints and 
ia the Permissions link on the article page on our site—for further information please contact 


	Graphical abstract
	Introduction
	APPIC
	Discussion
	Conclusions
	Data availability
	Acknowledgements
	Funding
	Conflict of interest statement
	References

