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Abstract

Background: To initiate the development of a machine learning algorithm capable of comparing segments of pre
and post pamidronate whole body MRI scans to assess treatment response and to compare the results of this
algorithm with the analysis of a panel of paediatric radiologists.

Methods: Whole body MRI of patients under the age of 16 diagnosed with CNO and treated with pamidronate at
a tertiary referral paediatric hospital in United Kingdom between 2005 and 2017 were reviewed. Pre and post
pamidronate images of the commonest sites of involvement (distal femur and proximal tibia) were manually
selected (n =45). A machine learning algorithm was developed and tested to assess treatment effectiveness by
comparing pre and post pamidronate scans. The results of this algorithm were compared with the results of a
panel of radiologists (ground truth).

Results: When tested initially the machine algorithm predicted 4/7 (57.1%) examples correctly in the multi class
model, and 5/7 (71.4%) correctly in the binary group. However when compared to the ground truth, the machine
model was able to classify only 33.3% of the samples correctly but had a sensitivity of 100% in detecting
improvement or worsening of disease.
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Conclusion: The machine learning could detect new lesions or resolution of a lesion with good sensitivity but
failed to classify stable disease accurately. However, further validation on larger datasets are required to improve the

specificity and accuracy of the machine model.
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Key messages

e When tested initially the machine learning model
was able to classify half the test images accurately.

e On comparison with the ground truth, the machine
model was able to classify only 33.3% of the samples
correctly but had a sensitivity of 100% in detecting
improvement or worsening of disease.

Background

Chronic non-bacterial osteitis (CNO) is an auto inflam-
matory bone disorder characterised by the presence of
sterile bone lesions. With increasing knowledge of the
disease it has emerged that a whole body magnetic res-
onance imaging (WB-MRI) is a useful tool for diagnosis
and also for assessing response to treatment [1, 2]. How-
ever, access to WB-MRI can be variable across different
centres. Typical MRI (preferably Short Tau Inversion
Recovery sequences (STIR)) non-specific features in-
clude bone marrow oedema, bone expansion, lytic areas
and/or periosteal reaction [3, 4]. Analysing whole body
MRIs can be time consuming as it requires extensive
coverage of the whole skeleton and is also subject to
diagnostic variability. Diagnostic confusion can occur in
children with normal variants such as residual haemato-
poietic bone marrow or physiological stress response as
well as organic pathologies such as lymphoproliferative
disorders or infective osteomyelitis [5]. Developing a ma-
chine algorithm trained to compare scans pre and post
treatment can be helpful in generating more consistent
results.

Artificial intelligence is becoming increasingly popular
in the field of radiology across various subspecialties.
Deep learning with convolutional neural networks
(CNNs) is gaining attention for its high performance in
recognizing images. Recent studies have shown a per-
formance level almost comparable to practicing radiolo-
gists [6-8]. For instance, deep learning had higher
sensitivities but lower specificities than radiologists in
classifying lymph node metastasis on PET-CT [9].

However, implementation of Al on a larger scale is
largely limited by the amount of data available to train the
algorithm. This is more apparent with rare diseases where
automated labelling algorithms are virtually absent and
only a limited number of human readers have expertise in
such areas. None of the studies published so far have

trialled deep learning in CNO. CNNs require large data-
sets which are difficult to obtain in rare diseases like
CNO. For such diseases, alternatives like careful data aug-
mentation, cross-validation and regularization can be used
to reduce over fitting during machine training.

The objective of our study was twofold. The first aim
was to develop a machine learning algorithm capable of
comparing segments of pre and post pamidronate im-
ages derived from whole body MRI to assess treatment
response and then validate the predictive model retro-
spectively on a randomly selected dataset of scans. The
second goal was to compare the results of this algorithm
with the ground truth. A panel of radiologists was
formed to analyse the same set of images and the panel
overall majority decision was considered the ground
truth.

Methods

Whole body MRI of patients under the age of 16 diag-
nosed with CNO at a tertiary referral paediatric hospital
in United Kingdom between 2005 and 2017 were retro-
spectively reviewed. MRIs were acquired from clinical
1.5T scanners and included coronal two-dimensional
STIR T2 sequence images. Only those who received
pamidronate were included in the study. WB MRI was
usually performed at diagnosis and after completion of
treatment to assess response. As a proof of concept
study the pilot only utilised coronal images of the knee
component of the WB MRI study, which is the com-
monest site of involvement in this disease. Also, these
sites are relatively less complex to analyse in contrast to
other areas such as wrists and ankles. Treatment re-
sponse was ascertained by comparing each site against
itself on the follow up scan. The MRI dataset was pro-
vided in DICOM format, each scan consisting of ap-
proximately one thousand individual images depicting
cross-sections of the body. From this initial data, a
pared-down dataset was manually curated by selecting
one to two representative images with clear views of the
knee and long bones of the leg from each MRI scan. In
some cases, patients had no high-quality representative
images because all leg and knee images were extremely
blurry or noisy; these scans were omitted from the set.
The retrieved dataset was augmented by swapping the
order of pairs (pre and post pamidronate scans), and by
using techniques such as Gaussian noise and random
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linear stretching to create more training images. Swap-
ping order of pairs was done to leverage more data in
order to help the system improve on performance and
also to stabilize the behaviour of the model. Addition of
Gaussian noise makes images more blurry and linear
stretching magnifies an image by zooming in. These ma-
noeuvres help the machine learning model become more
robust to detect changes by telling it automatically
which areas to focus on without really impacting the
images.

Disease sites of the training and test samples were la-
belled using OsiriX DICOM viewer software and this
was performed by a single radiologist for standardisation
purposes. Disease progression labels were manually cu-
rated based on the information provided by this index
radiologist. A machine learning algorithm was developed
to assess treatment effectiveness by comparing pre and
post pamidronate scans and classify them as:

e ‘Improved’ - when there was a reduction in number
of lesions or decrease in signal intensity of existing
lesions and there were no new lesions.

e ‘Regressed’ or “Worse’- when there were new lesions
or increase in signal intensity of existing lesions.

e ‘Stable’ or ‘Persistent’ - when there was no change in
signal intensity and there were no new lesions.

The machine learning model comprises of two compo-
nents followed by an ensemble method. An ensemble
method combines the predictions of multiple models (in
this case two models) either simply or by smartly
weighting each component fed to it. In this paper we
have used soft weighting, which considers the probabil-
ities produced by component models, whereas hard vot-
ing considers only the predicted class. The algorithm has
been summarised in Fig. 1. Each component is a
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machine learning model. The upper component extracts
features, embeddings and representations from proc-
essed images using a pertained network. The specific
pre-trained network used is mentioned in Fig. 1. Pre-
training refers to using large models which have been
trained on general data (and these are extremely popular
models), for example if we wanted to learn the represen-
tation of a cat vs. a dog, it would help if we were able to
convert these actual images into abstract representations
of each other such that in the new space all images of
cats are close to each other and far away from all images
of dogs (and vice versa). After learning these representa-
tions from the image we feed this into a linear logistic
model to produce a probability score. This output is fed
into the ensemble. The lower component uses clustering
to produce embeddings. These embeddings are the clus-
ters which each image belongs to. Clustering is an un-
supervised method which finds similar images in a
dataset and labels them to be belonging to the same
cluster. These clustering methods are only performed on
processed images by popular image processing tech-
niques such as Speeded Up Robust Features (SURF) and
Scale Invariant Feature Transform (SIFT). This process
is called a bag of visual words. This representation is fed
into a Support Vector Machine (SVM) to produce a
probability score. SVM is a supervised machine learning
algorithm which can be used for both classification or
regression challenges. When provided with training data
a line which divides a plane into different parts is gener-
ated and on either side of this line lie different classifica-
tion groups. This output is also fed into the ensemble.
In the first half of the exercise, the algorithm was tested
on a dataset of seven pairs of images which were different
from those used for training the machine model. Results
were compared to the disease progression labels derived
from the assessment of the index radiologist. Multi-class
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Fig. 2 Pre and post pamidronate treatment MR images. Pre and post- pamidronate WB-MRI images of a 15 year old girl who presented with
significant right knee pain and was diagnosed with CNO following a bone biopsy. Her symptoms resolved completely following four cycles of
pamidronate. 2a — The coronal STIR MR image shows extensive high signal predominantly of the distal right femoral metaphysis consistent with
intra-osseus oedema. A smaller area of the medial epiphysis is affected without features of cortical destruction or significant soft tissue
component. 2b — Almost complete resolution of the metaphyseal high signal is in keeping with treatment response. The epiphyseal component
is also no longer visible. In our exercise, the machine algorithm and panel of radiologists concurred that lesions resolved post treatment

and binary models were generated for each of the inde-
pendent methods used to develop the algorithm. The mul-
ticlass model classified scans as improved (I), regressed/
worse (R) or stable (S) separately whereas the binary
model grouped regressed and stable together.

In the second half of the exercise, five radiologists
(panel of four radiologists from our hospital and one

independent radiologist) were asked to review the same
test images using a checklist and classify pre and post
treatment scans as improved, regressed or stable (Fig. 2).
The index radiologist was excluded from this exercise.
All the radiologists were blinded to clinical information.
The frequency of panel findings was then calculated.
Inter-observer agreement was calculated using the Fleiss
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kappa coefficient. A kappa score of more than 0.6 was
taken as consensus and this was considered as ground
truth. Results of the machine learning algorithm were
then compared to the ground truth. Statistical analysis
was performed using Microsoft Excel version 12.0.

Results

Images of the knee (including the distal end of the femur
and proximal tibia) derived from WB MRI of 45 patients
treated with pamidronate were retrieved. Scans of poor
quality were excluded from the initial dataset leaving
scans of 28 patients. From this dataset, 55 pairs of im-
ages were manually curated of which 7 test samples were
hand -selected for assessing final model quality at the
end of development. The test samples did not overlap
with those in the development set. The remaining 48
samples were amplified. This augmented data set in-
cluded 56 training samples and 25 validation samples. In
the second half of the exercise, one sample was excluded
from the test sample (since 2 of the 7 test samples were
of the same patient), reducing the number to 6. Data
collection has been summarised in Fig. 3.

a) Results of the machine learning model: The
ensembled models predicted 4/7 (57.1%) examples
correctly in the multi class model, and 5/7 (71.4%)
correctly in the binary group. Consistently, all
multi-class models were unable to properly predict
class S (stable). Area under curve (AUC) for Class I
was 0.89, Class R was 0.91 and Class S was 0.68.
Scan interpretations by radiologists and the ma-
chine learning algorithm have been summarised in
Table 1.

b) Results of comparison of machine learning model vs.
ground truth: Results have been summarised in
Table 2. The machine learning model was able to
classify 2/6 (33.3%)examples correctly.

Discussion

The machine model was able to classify half the test im-
ages correctly in the first half of this exercise. However,
results of the multiclass group were not at par with the
binary group. This may be due to a smaller number of
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Table 2 Comparison of machine learning algorithm against the
ground truth

Machine Algorithm Value

Sensitivity (%) Improved 100
Regressed 100
Stable 0
Specificity (%) 40
Positive Likelihood Ratio 1.67
Negative Likelihood Ratio 0

2527310 727)
100
333

Positive Predictive Value (%)
Negative Predictive Value (%)

Accuracy (%)

samples in the ‘stable’ class, or to difficulty extracting
features representative of this class compared to ‘im-
proved’ or ‘regressed’ classes which had a better AUC.

In the second half of the exercise, the machine model
was able to classify only 33% of the examples correctly
but demonstrated a high sensitivity (100%) in detecting
improvement or worsening of disease. However specifi-
city (40%) and accuracy (50%) were low. In particular,
the model failed to classify stable disease correctly. This
may be due to their poor ability in recognising normal
variants that can produce signal changes similar in ap-
pearance to CNO as there is no ground truth relating to
radiology that states a bright lesion on MRI is CNO. For
example in other parts of the body such as hands and
feet bright signals can be considered as normal [10, 11].

Our study has a few limitations. The dataset was
quite small and was further split to create two groups
for machine training and testing. Acknowledging the
small sample size, our results are only an indication
of the performance of the machine algorithm and lar-
ger studies in collaboration with other centres are re-
quired to validate these observations. Only images
around the knees and not the whole body were in-
cluded. Hand selected images may not be representa-
tive of the actual labels generated from the WB-MRIL
This can be attributed to the difference between static
images and a stack or sequence of images. Also, im-
ages used for machine training were annotated by

Table 1 Classification of scans by radiologists and machine learning algorithm

Serial Number InRa® Machine Interpretation Re® 1 Re 2 Re 3 Re 4 Re 5 Kappa coefficient Consensus
1 I R S R S S S 06 S
2 S R S [ S S S 06 S
3 R R S S S S S 1 S
4 I I I [ I I I 1 I
5 R R R R R R R 1 R
6 S I S S S S S 1 S

2Index Radiologist, ® Reader
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only one radiologist. Further research is needed to ex-
pand the study to whole body MRIs, to validate the
model prospectively in real time and to determine its
utility in clinical setting.

Conclusion

This is but a small step towards a developing a poten-
tially useful technology that may assist radiologists in
many different multifocal disease entities currently diag-
nosed with WBMRI. However, further research is
needed to expand the study to whole body MRIs, to val-
idate the model prospectively in real time and to deter-
mine its utility in clinical setting.
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