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Abstract 

The clinical responses observed following treatment with immune checkpoint inhibitors (ICIs) support immuno-
therapy as a potential anticancer treatment. However, a large proportion of patients cannot benefit from it due to 
resistance or relapse, which is most likely attributable to the multiple immunosuppressive cells in the tumor microen-
vironment (TME). Myeloid-derived suppressor cells (MDSCs), a heterogeneous array of pathologically activated imma-
ture cells, are a chief component of immunosuppressive networks. These cells potently suppress T-cell activity and 
thus contribute to the immune escape of malignant tumors. New findings indicate that targeting MDSCs might be 
an alternative and promising target for immunotherapy, reshaping the immunosuppressive microenvironment and 
enhancing the efficacy of cancer immunotherapy. In this review, we focus primarily on the classification and inhibitory 
function of MDSCs and the crosstalk between MDSCs and other myeloid cells. We also briefly summarize the latest 
approaches to therapies targeting MDSCs.
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Background
The tumor microenvironment (TME) releases multiple 
soluble factors that mediate normal myeloid differentia-
tion and convert myeloid cells into immunosuppressive 
cells. This creates a tumor-promoting ‘macroenviron-
ment’, which substantially limits the efficacy of cancer 
immunotherapy [1]. MDSCs are a cluster of cells with 
potent immunosuppressive effects widely distributed in 
the spleen and tumor tissues of tumor-bearing mice or 
the peripheral blood and tumor sites of cancer patients 
[2]. Under normal physiology, bone marrow cells dif-
ferentiate from multipotent hematopoietic stem cells 

(HSCs) into diverse mature subsets, and macrophages, 
dendritic cells (DCs), and granulocytes are the terminally 
differentiated cells [3]. In contrast, in cancer conditions, 
the tumor microenvironment renders MDSCs incapable 
of differentiation, resulting in a population of immature 
heterogeneous cells [4]. Recent studies have increas-
ingly emphasized that high concentrations of MDSCs 
are dramatically related to poor prognosis, cancer devel-
opment and responses to immunotherapies in patients 
with breast, colorectal, and lung cancers and hematologic 
malignancies [5–8]. In the next section, we specifically 
discuss the classification and suppressive mechanisms 
of MDSCs. In addition, we emphasize the sophisticated 
crosstalk of MDSCs with bone marrow-derived cells and 
present clinically promising therapies targeting MDSCs.
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Phenotypes and classifications of MDSCs
As early as 1978, it was found in tumor-bearing mice 
that coculture of activated T cells with bone marrow 
cells suppressed T cells [9]. Later, this group of cells with 
immunosuppressive function, which accumulated sig-
nificantly in the peripheral blood of cancer patients, was 
renamed immature myeloid cells (IMCs) and myeloid 
suppressor cells (MSCs ) [10, 11]. To avoid confusion, 
Gabrilovich et  al. proposed the term MDSCs, which 
more precisely reflects the origin and function of these 
cells [12]. First, they were characterized in mice by the 
coexpression of CD11b and Gr 1 [13]. Then, based on the 
different expression levels of Ly6G and Ly6C, two differ-
ent epitopes binding to Gr1, MDSCs were identified as 
two distinguished subsets: polymorphonuclear- (PMN-) 
and monocytic- (M-) MDSCs [14].

In mice, PMN-MDSCs are defined as 
CD11b+Ly6G+Ly6Clo, and M-MDSCs are defined as 
CD11b+Ly6G−Ly6Chi. Intriguingly, a recent study iden-
tified a new group of monocyte lineage precursors that 
differentiated into a substantial subset of PMN-MDSCs, 
and they were designated as monocyte-like precursors 

of granulocytes (MLPGs) [15]. In addition, several other 
markers have been associated with the MDSCs pheno-
type (Fig.  1). CD49d, a member of the integrin protein 
family, is only detected on M-MDSCs, not PMN-MDSCs. 
Haile et al. proposed that CD49d could substitute for Gr1 
and, together with CD11b, better classify MDSCs [16].

MDSCs then received increasing attention in clini-
cal practice. A number of studies have demonstrated 
that increased levels of MDSCs positively correlated 
with poor prognosis and clinical stage in patients with 
breast cancer, hepatocellular carcinoma, thyroid car-
cinoma, and non-small cell lung carcinoma (NSCLC ) 
[17–20]. MDSCs are of great value in predicting thera-
peutic effects in multiple solid tumors [21–23]. Human 
MDSCs lack typical markers of mature immune cells 
(Lin−, HLA-DR−) but express CD33, CD34, CD11b and 
IL-4Rα (CD124) [24, 25]. However, because human cells 
do not express Gr1, the phenotypes of human MDSCs 
remain controversial. Currently, human PMN-MDSCs 
are defined as CD11b + CD14− CD15+ CD66b+ and 
human M-MDSCs as CD11b+ CD14+ HLA-DR−/low 
CD15 − [14].

Fig. 1  The phenotypes of PMN-MDSCs and M-MDSCs. In mice, PMN-MDSCs are defined as CD11b+Ly6G+Ly6Clo, and M-MDSCs are defined as 
CD11b+Ly6G−Ly6Chi. Human PMN-MDSCs are defined as CD11b + CD14− CD15+ or CD11b+ CD14 - CD66b+, and human M-MDSCs are defined as 
CD11b+ CD14+ HLA-DR−/low CD15−. In addition, several other markers have been associated with the MDSCs phenotype, such as CD49d, LOX1 and 
IL-4Rα
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The majority of MDSCs are PMN-MDSCs, accounting 
for more than 75%, with M-MDSCs accounting for only 
10–20 % [26]. Youn et  al. examined the shared mecha-
nism of MDSCs amplification in 10 diverse tumor mod-
els. Preferential expansion of PMN-MDSCs was shown 
in almost all tumor models, though the extent of ampli-
fication differed [27]. It is worth noting that M-MDSCs 
have a greater capacity for immunosuppression than 
PMN-MDSCs [27–29]. PMN-MDSCs preferentially use 
reactive oxygen species (ROS) and arginase I (ARG1) 
to mediate immunosuppression and are independent 
of inducible nitric oxide synthase (iNOS) [30], while 
M-MDSC-mediated inhibition mostly relies on nitric 
oxide (NO) and the suppressive cytokines IL-10 and 
TGF-β [4, 26] (Fig. 1). Importantly, MDSCs differentially 
drive immune suppression in a sex-specific manner. Male 
mice possessed elevated M-MDSCs in the tumor tissues, 
while females exhibited enhanced PMN-MDSCs in the 
peripheral circulation [31].

MDSCs phenotypes are similar to those of neutro-
phils and monocytes, making it a priority to identify 
MDSCs from other myeloid cells in peripheral blood 
(Table  1). PMN-MDSCs and neutrophils share mostly 
identical morphology and phenotype. However, PMN-
MDSCs express M-CSFR and a CD244 molecule with 
higher ARG1 activity and lower phagocytic activity than 
neutrophils [32]. They can be separated by density gra-
dients, with PMN-MDSCs in the low-density Ficoll gra-
dient fraction of peripheral blood mononuclear cells 
(PBMCs) and neutrophils in the high-density fraction 
[33]. Additionally, one study indicated that LOX-1 could 
distinguish the population of human PMN-MDSCs from 
granulocytes, which is thought to be a marker of human 
PMN-MDSCs [34]. Since monocytes are CD14+CD15− 
HLA-DR+ and M-MDSCs are CD14+ HLA-DR−, human 
M-MDSCs can be isolated based on the presence of 
MHC class II molecules [33]. Table 2.

Although research on MDSCs has spanned for dec-
ades, key questions remain as to whether these cells are 

the precursors of well-established normal myeloid cells 
and whether there are other unidentified myeloid sub-
populations of these cells [35].

Expansion and activation of MDSCs
The conflicting results described above have been 
reported in a few other studies. The amplification pro-
cess of MDSCs is complex, and the exact process of how 
MDSCs are generated from bone marrow and eventually 
become a population of cells with immunosuppressive 
function has become a highlight of this field.

MDSCs are derived from HSCs, common myeloid 
progenitors (CMPs) and granulocyte-macrophage pro-
genitors (GMPs ) [36]. GMPs then differentiate into gran-
ulocyte progenitors (GPs) and monocytic progenitors 
(MPs) in response to multiple tumor-induced growth fac-
tors, cytokines and other factors [37] (Fig.  2). Although 
the molecular mechanisms of MDSCs expansion have 
been intensively studied over the years, the exact details 
remain unclear. An increasingly large number of schol-
ars favor the two-signal model, which suggests that the 
generation of MDSCs is a sequential but overlapping 
process induced by two different signal transduction 
pathways [38]. One pathway dominates the proliferation 
of MDSCs, whereas the second pathway contributes to 
MDSCs activation.

MDSCs expansion
Previous studies have shown that the proliferation of 
MDSCs is mostly driven by tumor-derived growth fac-
tors, which include GM-CSF, G-CSF, M-CSF, VEGF and 
IL-6 [39] (Fig. 3). Under physiological conditions, GM-
CSF promotes myelopoiesis, and G-CSF and M-CSF 
are both in charge of differentiation [40]. While it was 
known as early as 1999 that GM-CSF alone is capable 

Table 1  The phenotypes of murine PMN-MDSCs, neutrophils, 
M-MDSCs and monocytes

PMN-MDSCs Neutrophils M-MDSCs Monocytes

CD11b + + + +
Ly6G + + – –

Ly6C – – + +
Gr1 +/high + +/low +
F4/80 – – +/− +
CD84 + + – –

CD49d – – + –

Table 2  The phenotypes of human PMN-MDSCs, neutrophils, 
M-MDSCs and monocytes

PMN-MDSCs Neutrophils M-MDSCs Monocytes

CD11b + + + +
CD14 – – + +
CD15 + + – –

CD66b + + – –

HLA-DR – + −/low +
CD33 + + + +
IL-4Rα 
(CD124)

– – + +

CD16 – + – –

CD84 + + – –

LOX1 + – – –
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of eliciting these inhibitory cells [41], the details of 
how GM-CSF triggers an increase in MDSCs remained 
poorly understood until a preclinical experiment indi-
cated that GM-CSF amplified GMP and was the main 
factor promoting the CD11b+MDSCs immunosuppres-
sive pathway [42]. Further studies revealed that GM-
CSF predominantly invoked Gr-1 int/low MDSCs, while 
G-CSF drove the proliferation of Gr-1high MDSCs [42]. 
Another study demonstrated that G-CSF favored the 
production of MDSCs and whole-body amplification 
in a mouse breast cancer model [36]. VEGF severely 

impairs DC maturation and is responsible for the 
amplification of MDSCs [43]. IL-6 has been found to 
be positively correlated with peripheral blood MDSCs 
levels. Notably, all these experiments were conducted 
in  vitro. Almand et  al. measured the plasma concen-
trations of six cytokines, M-CSF, GM-CSF, IL-6, IL-10, 
TGF-β, and VEGF, in patients with head and neck squa-
mous cell carcinoma (HNSCC), NSCLC, and breast 
cancer. They discovered that only elevated VEGF lev-
els were statistically correlated with the expansion of 
MDSCs [44].

Fig. 2  The origin of MDSCs. MDSCs are derived from HSCs, common myeloid progenitors (CMPs) and granulocyte–macrophage progenitors 
(GMPs). GMPs then differentiate into granulocyte progenitors (GPs) and monocytic progenitors (MPs). In response to multiple tumor-induced 
cytokines, MDSCs were developed through signaling pathways such as STAT3, IRF8 and C/EBPβ
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The cytokines discussed above then trigger several 
transcription factors, mainly signal transducer and 
activator of transcription 3 (STAT3), C/EBPβ and 
IRF8 [26, 38].

STAT3
STAT3 was the first transcription factor found to be 
associated with MDSCs amplification in tumors. STAT3 
upregulates the expression of the antiapoptotic genes 
Bcl-xL, c-myc and cyclin D to disrupt the normal differ-
entiation of myeloid cells, thus augmenting the popula-
tion of MDSCs [45, 46]. Additionally, STAT3 can directly 
bind to the ARG1 promoter to increase ARG1 expres-
sion and ROS production [47]. Previous studies have 
confirmed that the hyperactivation of the JAK–STAT3 
pathway mediated the abnormal differentiation of DCs 
and thus increased the accumulation of MDSCs [48, 
49]. In addition to upregulation, STAT3 downregulation 

caused by activated CD45 phosphatase was found in 
M-MDSCs, leading to a unique result of differentiation 
into TAMs [50]. In an inducible STAT3 knockout mouse 
model, multiple immune cell lineages showed enhanced 
antitumor activity when tested individually [51]. JSI-124, 
a selective JAK/STAT3 inhibitor, significantly reduced 
the presence of MDSCs and promoted their differentia-
tion, suggesting that the inhibition of JAK/STAT3 sign-
aling overcame the differentiation block [52]. However, 
the studies mentioned above utilized MDSCs in vitro or 
from cells isolated from lymphoid organs. Kumar et  al. 
found that STAT3 activity of MDSCs is relatively lower 
in tumor sites than in the spleen and blood of patients 
[50]. Moreover, inhibition of STAT3 decreased splenic 
MDSCs, but no significant change in MDSCs was found 
in the tumor site [53]. Using a spontaneous medullo-
blastoma transgenic murine model, the prevalence of 
PMN-MDSCs was reduced after STAT3 disruption, but 

Fig. 3  The mechanism of MDSCs expansion. The proliferation of MDSCs is mostly driven by GM-CSF, G-CSF, M-CSF, VEGF and IL-6. Additionally, 
several downstream factors are involved in regulating MDSCs expansion. Of particular interest is S100A9, STAT3, C/EBPβ and IRF8
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the number of M-MDSCs increased instead of decreased 
[54]. Therefore, the mechanistic details of how STAT3 
impacts MDSCs in the TME require more intensive 
investigation.

In addition, several factors downstream of STAT3 may 
be engaged in regulating MDSCs expansion. Of par-
ticular interest is the proinflammatory protein S100A9 
together with its dimerization partner S100A8, which is 
strongly upregulated in multiple tumors, including colon, 
breast, and prostate cancers [55]. S100A8/A9 directly 
binds to p47phox and p67phox, enhancing the activation of 
NOX2 and thus leading to increased ROS production to 
increase inhibitory functions [29]. S100A8/A9 was also 
shown to bind to a receptor located on the MDSCs mem-
brane to promote MDSCs migration. After blocking the 
conjugation of S100A8/A9 to its receptor, the number of 
MDSCs in peripheral blood was found to be decreased 
[56]. Another experiment found no amplification of 
MDSCs in the peripheral blood or spleen of S100A9-
deficient tumor-bearing mice, confirming previous find-
ings [57]. In contrast, overexpression of S100A9 in mice 
resulted in the accumulation of MDSCs, and increased 
secretion of IL-10 and TGF-β [58]. Taken together, 
these experiments illustrate the vital role of S100A8/A9 
in MDSCs amplification. However, the specific details 
remain to be explored more deeply.

C/EBPβ
CCAAT/enhancer-binding protein (C/EBP) β, a member 
of the C/EBP transcription factor family, is implicated 
in cell proliferation, differentiation and apoptosis [59, 
60]. C/EBPβ has fundamental roles in myelopoiesis and 
emergency granulopoiesis, the level of which increases 
excessively at later stages of myeloid differentiation [61, 
62]. IL-6-mediated C/EBPβ downregulates the expres-
sion of immunosuppressive genes such as ARG1, iNOS 
and NOX2, thus regulating MDSCs differentiation and 
function [63]. C/EBPβ has been reported to contribute to 
the generation of MDSCs in the bone marrow and spleen 
by activating microRNA-21 and microRNA-181b expres-
sion [64]. C/EBPβ is also closely associated with GM-CSF 
and G-CSF expression in myeloid cells and regulates the 
immunoregulatory activity of MDSCs [65, 66]. Moreo-
ver, Strauss et al. found that retinoic acid-related orphan 
receptor 1 (RORC1) orchestrated myelopoiesis by pro-
moting C/EBPβ and PMN-MDSCs accumulation [67]. In 
contrast, C/EBPβ-deficient mice have decreased splenic 
CD11bhiMDSCs. Surprisingly, M-MDSCs were the most 
reduced population, indicating that the main vital impact 
of C/EBPβ is on the differentiation of M-MDSCs [68]. 
There is a consensus that C/EBPβ is indispensable for 
MDSCs proliferation. However, the exact stage at which 

C/EBPβ particularly affects MDSCs still needs to be 
addressed.

IRF8
Interferon regulatory factor-8 (IRF-8), also called inter-
feron consensus sequence binding protein (ICSBP), is 
crucial for normal myelopoiesis. Mice with a null muta-
tion of IRF-8 exhibit deregulated hematopoiesis, ulti-
mately leading to chronic myelogenous leukemia [69]. 
Unexpectedly, a previous experiment demonstrated that 
IRF-8-deficient mice exhibited remarkable accumula-
tion of MDSCs. In another study using both implantable 
and transgenic mouse models, IRF-8 was observed to 
play an integral role in the tumor-induced expansion of 
MDSCs [70]. In addition, IRF8 also functions as a nega-
tive regulator in human MDSCs of breast cancer patients. 
Downregulation of IRF-8 was demonstrated to induce 
PMN-MDSCs production. In  vivo IRF-8 overexpression 
specifically attenuated MDSCs expansion and enhanced 
antitumor efficacy via the STAT3 and STAT5 signaling 
pathways [71, 72]. Notably, IRF-8 promotes monocyte 
and dendritic cell differentiation but limits granulocyte 
development [73]. A recent study demonstrated that 
IRF8 overexpression in vivo selectively led to GPs prolif-
eration and PMN-MDSCs expansion without appreciable 
expansion of MPs and M-MDSCs [71].

MDSCs activation
Notably, MDSCs acquire immunosuppressive activ-
ity only after activation. The second signal govern-
ing MDSCs activation is primarily proinflammatory 
cytokines produced by the tumor stroma or activated T 
cells, including IFN-γ, IL-1β, IL-4, IL-13, and PGE2. The 
signaling pathways involved in MDSCs activation include 
STAT6, nuclear factor-κB (NF-κB) and STAT1 [29] 
(Fig. 4).

IFN-γ is released by CD3/28-triggered activation of T 
cells, and due to the presence of IFN-γ, MDSCs become 
immune dysfunctional [74]. STAT1 is the most crucial 
downstream transcription factor of IFN-γ. Indeed, IFN-γ 
is strictly required for the activation and function of 
PMN-MDSCs, and is dependent on the STAT1 pathway 
or NO production. However, blocking IFN-γ only par-
tially antagonizes the immune dysfunction of M-MDSCs 
[30]. IFN-γ and IL-13 were found to synergistically initi-
ate immunosuppressive pathways of MDSCs. IFN-γ pref-
erentially promotes iNOS expression, while IL-13 has a 
greater tendency to upregulate ARG1 [25]. Importantly, 
both enzymes are upregulated when IL-13 and IFN-γ 
are simultaneously or sequentially added. The inflam-
matory mediator IL-1β was shown to be a cytokine that 
induced the recruitment of MDSCs and, in particular, 
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promoted the activation of MDSCs. Another study dem-
onstrated that the PGE2 receptor expressed in MDSCs 
induced ARG1 expression, and using a COX2 inhibitor 
decreased the level of ARG1 in  vitro and in  vivo [75]. 
PGE2 is indispensable for the functionality of MDSCs. 
Indeed, blocking COX-2, an enzyme that catalytically 
synthesizes PGE2, potently revived the ability to suppress 
T-cell function mediated by MDSCs [76, 77]. Tumor-
derived PGE2 has been shown to drive the suppressive 
phenotype of M-MDSCs through upregulation of NF-κB 
[78]. Moreover, PGE2 activated the Ras/Erk pathway and 
increased the level of TGF-β to activate the suppressive 
functions of MDSCs on NK cells [79].

Upregulation of genes associated with the ER stress 
response is a prominent feature of MDSCs. The ER stress 

response is highly conserved and serves to defend cells 
from a variety of emergency damages, such as hypoxia 
and infection [80]. MDSCs isolated from tumor-bearing 
mice and cancer patients were identified to upregulate 
downstream effectors of the ER stress response, espe-
cially C/EBP-homologous protein (CHOP ) [81]. Another 
study showed that CHOP deficiency impaired inhibitory 
activity in MDSCs and decreased the expression of IL-6, 
C/EBPβ, and pSTAT3. Additionally, exogenous IL-6 res-
cued MDSCs activity in Chop-deficient mice [82]. Con-
sistent with these observations, the administration of ER 
stress inducers increased the expansion of MDSCs and 
their inhibitory function.

Recently, HMGB1 and PPARγ were found to exert an 
important role in the function of MDSCs [39]. HMGB1 

Fig. 4  The mechanism of MDSCs activation. Notably, only after activation can MDSCs acquire immunosuppressive activity. MDSCs activation is 
primarily associated with IFN-γ, IL-1β, IL-4, IL-13, PGE2 and ER stress sensors. The signaling pathways involved in MDSCs activation include STAT6, 
nuclear factor-κB (NF-κB) and STAT1
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released by MDSCs was reported to, by activating NF-κB, 
promote the differentiation of MDSCs, increase secretion 
of IL-10, and decrease the expression of L-selectin on cir-
culating T cells, exerting immunosuppressive effects [83]. 
Overexpression of PPARγ led to the expansion of PMN-
MDSCs with immunosuppressive activity, which was also 
associated with the NF-κB pathway [84].

Immunosuppressive mechanism of MDSCs
Previous studies have demonstrated that MDSCs specifi-
cally and effectively inhibit antigen-specific CD8+ T-cell 
function with decreased IFN-γ production, and this 
effect is dependent on the interaction between MDSCs 
and the T cells [85, 86]. Using immortalized murine 
CD11b + /Gr1 + cells, Bronte et  al. found that MDSCs 
reduce the generation of T cells and suppress tumor 
immunity by triggering the apoptotic cascade of T cells 
[87]. They followed up their study by demonstrating that 
MDSCs halted the cell cycle of T cells, leading to apop-
tosis through proliferation blockade, rather than directly 
killing the cells [88]. Summarizing experimental murine 

models and clinical findings to date, MDSCs exert their 
T-cell suppression mainly through the high expression of 
ARG1, iNOS and ROS [89–94] (Fig. 5).

ARG1
Two arginine isozymes exist in mammals. ARG1, abun-
dantly observed in the cytoplasm of hepatocytes, is an 
important element in the urea cycle. In comparison, 
ARG2 exists in mitochondria and is barely expressed in 
the liver [95]. MDSCs express high levels of ARG1, rather 
than ARG2, which is induced by Th2-type cytokines such 
as IL-4 and IL-13 [96]. ARG1 catalyzes the synthesis of 
urea and L-ornithine from L-arginine, the latter being 
an essential substrate for cell cycle processes. Therefore, 
extracellular L-arginine, an essential amino acid for T-cell 
activation, is substantially diminished [97]. Except in 
the case of T-cell anergy, L-arginine depletion decreases 
the expression of the CD3-associated ζ chain, suppress-
ing T-cell proliferation [98–100]. Interestingly, one study 
demonstrated that MDSCs in the spleen downregulated 
the CD3-associated ζ chain of CD4+ T cells but not 
CD8+ T cells [101]. To investigate the mechanisms by 

Fig. 5  The mechanisms by which MDSCs inhibit T-cell antitumor immunity. MDSCs exert their T-cell suppression mainly via the high expression of 
ARG1 and iNOS and the production of ROS. In addition to biochemical metabolism, MDSCs also induce immunosuppression by upregulating PD-L1 
expression and secretion of TGF-β
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which L-arginine deletion induces the inability of T cells 
to proliferate，Rodriguez et  al. found that L-arginine 
starvation arrested the cell cycle from G1 to S phase by 
impairing the expression of cyclin D [102]. These data 
are consistent with the observation that MDSCs produc-
ing high ARG1 exist in patients with renal cell carcinoma 
and express lower levels of T-cell receptor (TCR) and 
CD3-associated ζ chain [103], indicating that ARG1 plays 
a critical role in immunosuppression of MDSCs both in 
mice and in patients. In addition, depletion of cystine and 
cysteine is also involved in the immunosuppressive effect 
of MDSCs. MDSCs importing cystine but not releasing 
cysteine restrict the levels of cysteine in the TME, thus 
limiting T-cell activation [104].

iNOS
There are three isoforms of nitric oxide synthase (NOS), 
neuronal NOS (nNOS), endothelial NOS (eNOS), and 
iNOS [105]. The first two isoforms are constitutively 
expressed. In contrast, iNOS is only expressed when 
stimulated and is highly associated with poor prognosis 
in malignant cancers [106]. iNOS competes for the same 
substrate as ARG1 and metabolizes L-arginine to citrul-
line and NO, which is a key messenger in tumor progres-
sion and T-cell activation [107, 108]. NO generated by 
MDSCs was found to abolish the IL-2 receptor signaling 
pathway and nitrate the TCR, resulting in immunosup-
pressive activity [109]. However, unlike ARG1 induced by 
Th2 cytokines, iNOS is induced by Th1 cytokines such as 
IFN-γ, TNF-α and IL-1 β [110]. This confirms the previ-
ous finding that blockade of IFN-γ eliminates the com-
plete suppression of PMN-MDSCs and partial effect of 
M-MDSCs [30]. The intracellular signal transduction 
pathways involved are the NF-κB and JAK-STAT path-
ways [111]. Moreover, a new possible mechanism was 
proposed in which iNOS critically downregulated vas-
cular E-selectin, impairing T-cell recruitment to tumors 
and antitumor immunity [112]. Similarly, the chemokine 
receptor CCR2 expressed by MDSCs and CCL2 produced 
by tumor cells have been implicated in a vital role in the 
recruitment of MDSCs into tumors [113]. iNOS+ MDSCs 
cause CCL2 nitration and inhibit T-cell migration.

Recent studies have revealed that the network of the 
two enzymes, ARG1 and iNOS, working together may be 
unique to MDSCs [114]. ARG1 overexpression led to a 
translational arrest of the mRNA for iNOS and reduced 
iNOS activity; while iNOS is overexpressed, ARG1 was in 
turn inhibited, and NO was further released in adjacent 
cells [114].

Reactive oxygen species (ROS)
Previous studies have provided multiple lines of evi-
dence supporting the critical role of ROS in MDSCs 

immunosuppression [115, 116]. The ROS levels of 
MDSCs isolated from tumor-bearing mice were found to 
be significantly higher than those isolated from healthy 
mice. The main producer of increased ROS is NADPH 
oxidase (NOX2), which is composed of two membrane 
proteins and at least four cytosolic proteins, including 
p47phox and p67phox [117]. Several dramatically increased 
NOX2 subunits, directly regulated by STAT3, were found 
to result in ROS production [118]. The biochemical 
metabolisms of MDSCs produce ROS, including super-
oxide (O2−), hydrogen peroxide (H2O2), and peroxyni-
trite (ONOO−) [6]. H2O2 is a major contributor to this 
increased pool of ROS. Indeed, inhibiting ROS in MDSCs 
completely reversed MDSCs immunosuppression, sug-
gesting that MDSCs suppress the CD8+ T-cell response 
via the production of ROS [119]. Moreover, H2O2 pro-
duced by MDSCs also had an impact on CD3-associated 
ζ chain expression and function [120]. ONOO− also 
causes DNA damage as well as nitration of various pro-
teins, such as TCR, CD3 and CD8 [117].

In addition to the biochemical metabolisms discussed 
above, MDSCs also induce immunosuppression by 
upregulating PD-L1 expression and secretion of TGF-β. 
The percentage of PD-L1 expression is noticeably higher 
on tumor-infiltrating MDSCs than splenic MDSCs [121]. 
Another study demonstrated that tumor-derived PD-L1 
expression was limited to M-MDSCs and that these cells 
directly eliminated CD8+ T cells in  vitro [122]. Moreo-
ver, in the presence of MDSCs, the surface molecules of 
B cells are remodeled, with prominently increased PD-L1 
expression, subsequently inducing T-cell dysfunction 
[123]. MDSCs were found to potently inhibit NK-cell 
cytotoxicity, which requires direct intercellular contact 
to suppress perforin production rather than granzyme B 
[124]. In orthotopic live tumor models, hepatic NK-cell 
cytotoxicity and secreted IFN-γ were remarkedly dam-
aged. Furthermore, MDSCs induce NK-cell anergy via 
membrane-bound TGF-β [125]. However, Nausch et  al. 
unexpectedly found that F4/80+MDSCs in mice could 
instead initiate NK cells and augment IFN-γ secretion 
[126].

The plasticity of MDSCs
Plasticity is a distinct characteristic of MDSCs (Fig.  6). 
In the last few years, three major cell populations have 
gained attention as major negative regulators of the 
immune response: tumor-associated macrophages 
(TAMs), MDSCs, and CD4+ regulatory T cells (Tregs) 
with the same immunoinhibitory functions that limit 
the effectiveness of ICI therapy [127–132]. MDSCs can 
influence the proliferation of Tregs, inhibiting T-cell 
activation. Tregs represent a group of special T cells 
that are divided into two main groups: natural Tregs and 
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adapted Tregs. The former is produced in the thymus 
and is developmentally dependent on the expression of 
the forkhead box transcription factor (FOXP3). CD115+ 
F4/80+ MDSCs, cocultured with IFN-γ and IL-10, were 
shown to induce FOXP3+ Tregs in vivo [11].

TAMs are the second most well-described myeloid 
cell population negatively affecting immunotherapy. The 
relationship between TAMs and MDSCs has not been 
fully established, but TAMs may be partially derived 
from MDSCs [110]. Compared to TAMs, MDSCs exhibit 
high Gr1 expression and low F4/80 expression. After 
migration to a tumor site, MDSCs are capable of differ-
entiating into TAMs, limiting the efficacy of the immune 
response by inducing T-cell apoptosis [133, 134]. MDSCs 
isolated from the spleen of tumor-bearing mice arrive 
at the tumor site and became F4/80+ TAMs, character-
ized by constitutive expression of ARG1 and iNOS [133]. 
A recent study found that HIF-1α was a key component 
of this differential process [135]. Hypoxia selectively 
increase the expression of PD-L1, an extremely impor-
tant target in ICIs, in MDSCs via HIF-1α directly bind-
ing to the PD-L1 proximal promoter [121]. Moreover, 
recent reports suggested that significant downregulation 
of STAT3 is a major factor in regulating this kind of dif-
ferentiation. Hypoxia-induced CD45 protein tyrosine 
phosphatases caused upregulation of HIF-1α and down-
regulation of STAT3, facilitating the differentiation of 

M-MDSCs into TAMs [50]. Another study indicated that 
circulating M-MDSCs were essential for TAMs accumu-
lation [136]. Additionally, M-MDSCs can differentiate 
into mature macrophages and DC [137]. Ginderachter 
et  al. demonstrated that M-MDSCs in the spleen could 
turn into M2 macrophages [138]. Inhibition of STAT3 in 
MDSCs facilitates their conversion to mature DCs [139].

It is well known that IL-17 is the key cytokine pro-
duced by Th17 cells [140]. One study found that MDSCs 
producing IL-1β, IL-6, and IL-23 promoted the differen-
tiation of Th17 cells, which is critically NO-dependent 
[141]. Furthermore, innate γδT17 cells were demon-
strated to be the major cellular source of IL-17, promot-
ing the accumulation of MDSCs in human colorectal 
cancer [142].

Cancer-associated fibroblasts (CAFs) can polarize 
monocytes and convert them into MDSCs by increasing 
oxidative stress, with suppression of CD8+ T-cell activity 
and the production of IFN-γ. Furthermore, in the pres-
ence of a NOX2 inhibitor, CAF-induced MDSCs were 
found to attenuate ROS production and restore anti-
tumor immunity [143]. Additionally, MDSCs have the 
ability to nonspontaneously differentiate into fibroblasts 
in the lung under the influence of CD4+ T cells [144]. 
Knockout of KLF4, a transcription factor that is crucial 
to monocyte differentiation and tumor development, 
decrease the generation of MDSCs and MDSC-derived 

Fig. 6  The plasticity of MDSCs. MDSCs can induce Tregs and differentiate into TAMs, as well as mature DCs and M2 macrophages. Moreover, MDSCs 
were found to be derived from CAFs under the influence of IL-6 and turned into fibrocytes in the lung. MDSCs can also differentiate into osteoclasts 
and have a complex crosstalk with Th17 cells
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fibrocytes in the lung, reducing pulmonary metasta-
sis [145]. Indeed, these fibrocytes, mediating immune 
suppression via indoleamine oxidase (IDO) and Tregs 
expansion, have been described as a novel subset of can-
cer-induced MDSCs in patients with metastatic cancer 
[146, 147]. In addition, a study using a bone metastasis 
mouse model suggested that MDSCs are capable of dif-
ferentiating into functional osteoclasts both in  vivo and 
in vitro, mechanistically dependent on NO [148].

Harnessing MDSCs for therapy
MDSCs perform an essential function in tumor-associ-
ated immune suppression, which subsequently greatly 
limits the therapeutic effectiveness of cancer immuno-
therapy [149]. Therefore, how to eliminate these cells and 
reconstitute the immunosuppressive microenvironment 
has become a focus of research in this field. Current clini-
cal therapies targeting MDSCs are mainly focused on four 
aspects: depleting MDSCs, differentiating MDSCs, inhib-
iting MDSCs immunosuppressive activity, and blocking 
MDSCs expansion or activation [150, 151] (Fig. 7).

Depletion of MDSCs
Chemotherapy can eliminate immunosuppressive cells 
from the TME [152]. Gemcitabine and 5-fluorouracil 

selectively induced the apoptosis of MDSCs in the spleen 
and tumor site and enhanced the antigen-specific pro-
duction of IFN-γ by intratumor CD8+ T cells [153]. Car-
boplatin and paclitaxel reduced the abnormally increased 
circulating MDSCs and fostered vigorous antitumor 
responses in advanced cervical cancer patients [154]. How-
ever, these agents are not specific to MDSCs and affect all 
rapidly proliferating cells, including effector T cells.

Gemtuzumab ozogamicin (GO) is a CD33-targeted 
antibody–drug conjugate (ADC) linked to calicheamicin, 
that specifically targets the membrane antigen CD33 and 
releases a derivative of the cytotoxic calicheamicin com-
ponent after internalization, leading to tumor cell death 
[155, 156]. GO has been approved for the treatment 
of CD33+ acute myeloid leukemia and had an accept-
able safety profile in multiple clinical trials [157–159]. 
Although human PMN-MDSCs and M-MDSCs are tran-
scriptomically distinct, CD33 is a common target for 
MDSCs regardless of subtype. GO was found to increase 
the death of MDSCs, providing a clinically plausible 
approach to deplete MDSCs in cancer patients [160].

Differentiating MDSCs
MDSCs differentiation is regulated by complex signals, 
but the specific regulatory mechanisms are not well 

Fig. 7  The MDSC-targeting therapeutic strategies. Current clinical therapies targeting MDSCs are mainly focused on four aspects: depleting MDSCs, 
differentiating MDSCs, inhibiting MDSCs immunosuppressive activity, and blocking MDSCs expansion or activation
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understood. All-trans retinoic acid (ATRA) was previ-
ously found to show potent activity on MDSCs [85]. 
In  vivo administration of ATRA significantly decreased 
the presence of MDSCs by differentiating MDSCs into 
mature myeloid cells [161]. ATRA was also shown to 
abrogate MDSC-mediated immunosuppression [162, 
163]. To determine the mechanism of this effect, Nefe-
dova et al. found that ATRA specifically upregulated the 
gene expression of glutathione synthase (GSS) and glu-
tathione (GSH) accumulation in MDSCs [116]. Indeed, 
inhibiting GSH synthesis blocked the effect of ATRA on 
MDSCs [116]. In preclinical models, ATRA was shown to 
remove MDSCs for improvement of efficacy of antiangio-
genic therapies in breast cancer [164]. Ipilimumab, a fully 
humanized antibody targeting cytotoxic T-lymphocyte 
antigen-4 (CTLA-4), was the first approved therapy in 
advanced melanoma patients [165]. However, melanoma 
wields substantial immunosuppressive mechanisms, 
especially an increase in circulating MDSCs, limiting 
the efficacy of ipilimumab [166]. In a randomized phase 
II clinical trial, ipilimumab monotherapy or ipilimumab 
plus ATRA was used to treat patients with advanced mel-
anoma. ATRA combined therapy was found to signifi-
cantly reduce the frequency of circulating MDSCs with 
a safe profile (NCT02403778 ) [167]. However, the poor 
solubility and fast metabolism of ATRA limits its appli-
cations in cancer immunotherapy. HF1K16, a pegylated 
liposome formulation of ATRA with a great dose load-
ing capacity and sustained drug release property, is 
under phase I clinical trial for its safety and tolerability 
(NCT05388487).

In addition, CpG oligonucleotides (ODNs), a Toll-like 
receptor 9 (TLR9) agonist, directly induces the activation 
of the immune response [168]. One study examined the 
effect of CpG ODN on MDSCs and found a decline in the 
frequency and inhibitory activity of M-MDSCs partly for 
inducing the differentiation of M-MDSCs into M1-like 
macrophages [169]. IFN-α stimulated by CpG is a key 
effector for the induction of MDSC maturation in  vitro 
[170]. Notably, the codelivery of CpG ODN and TLR7/8 
agonists more significantly reduced the frequency of 
M-MDSCs compared with monotherapy [171]. Another 
study showed that low concentrations of paclitaxel nei-
ther increased MDSCs apoptosis nor blocked MDSCs 
generation but stimulated MDSCs differentiation toward 
mature DCs [172].

Inhibition of MDSCs immunosuppression
Targeting the biochemical pathways of MDSCs, such 
as with ARG1, iNOS, COX2 and TGF-β inhibitors, is a 
good strategy to improve the effectiveness of various 
immunotherapies [173]. In several mouse tumor mod-
els, the phosphodiesterase-5 (PDE5) inhibitor sildenafil, 

tadalafil and vardenafil downregulates the expression of 
ARG1 and iNOS, reversing MDSC-induced immunosup-
pression and restoring antitumor immunity [173, 174]. 
Subsequently, sildenafil has also been shown to reduce 
MDSCs in a transgenic mouse melanoma model [175]. 
Moreover, multiple clinical trials have demonstrated that 
tadalafil reduces MDSCs concentrations and augments 
general and tumor-specific immunity in both HNSCC 
and metastatic melanoma patients [176–178].

Recently, the impact of histone deacetylase inhibitors 
(HADCi) on MDSCs has attracted a great deal of atten-
tion [179, 180]. A corrective analysis of a randomized, 
phase II trial in patients with breast cancer demonstrated 
that entinostat, a class I HADCi, decreased the frequency 
of circulating PMN-MDSCs and M-MDSCs [181]. A pre-
clinical study showed that entinostat targeted MDSCs 
and increased the efficacy of ICIs in murine colorec-
tal and breast cancers [182]. Entinostat reprogrammed 
tumor-infiltrating MDSCs by significantly inhibiting the 
expression of ARG1, iNOS and COX2 and suppressing 
the function of immunosuppressive MDSCs, thereby 
overcoming immune resistance [183, 184].

In addition, the COX2 inhibitor celecoxib blocks 
MDSCs suppressive function and delays tumor develop-
ment by decreasing the expression of ARG1 [185]. Pre-
clinical studies have shown that ARG inhibitors, which 
reverse the inhibition of T cells by blocking L-arginine 
depletion, reduce tumor growth in mouse models [186]. 
A phase I study (NCT02903914) was initiated to test the 
antitumor activity of ARG inhibitors alone or combined 
with anti-PD-1. IDO orchestrates immunosuppressive 
effects through recruitment and activation of MDSCs in 
a Treg-dependent manner. A selective IDO inhibitor was 
found in vivo to reverse tumor growth by decreasing the 
numbers of tumor-infiltrating MDSCs and abolishing 
their suppressive function [187].

Blockade of MDSCs accumulation
Given the essential role of STAT3 in MDSCs accumu-
lation, blocking STAT3 is a promising approach for 
MDSC-targeted immunotherapy. AZD9150, an antisense 
oligonucleotide designed to downregulate the expres-
sion of STAT3 mRNA, shows potent antitumor activ-
ity in patients with lymphoma and NSCLC [188, 189]. 
Preclinical data have provided evidence that AZD9150 
accompanied with PD-L1 antibody displayed enhanced 
the antitumor activity [190]. These data provide a ration-
ale for testing this combination in the clinic. AZD9150 is 
now being investigated in several phase I/II clinical trials 
in combination with ICIs.

In addition, clinical trials with sunitinib, a tyrosine 
kinase inhibitor, revealed that it could target MDSCs 
by blocking VEGF, a promotor for MDSCs expansion 
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described above. Sunitinib significantly reduced MDSCs 
in patients with renal cell carcinoma [191]. Moreover, 
sunitinib was found to abrogate highly increased MDSCs, 
enhancing the efficacy of stereotactic body radiotherapy 
(SBRT) in patients with oligometastases [192].

MDSCs are recruited into the TME via interactions 
between chemokines and chemokine receptors [193]. 
M-MDSCs are recruited via CXCR4-CXCL12, CXCR2-
CXCL5/CXCL8, and CCR2-CCL2 signaling, whereas 
CXCR1-CXCL8, CXCR2-CXCL8, and CCR5-CCL5 axes 
contribute to the recruitment of PMN-MDSCs [194, 
195]. Targeting these chemokine receptors may prevent 
the accumulation of MDSCs in the TME. Inhibition of 
CXCR2 has been shown to rescue MDSCs trafficking and 
enhance anti-PD-1 efficacy in murine glioblastoma and 
rhabdomyosarcoma [196, 197]. Moreover, CXCR4 block-
ade has been shown to synergize with anti-PD-1 therapy 
in several mouse models [198]. A phase IIa, open-label, 
two-cohort clinical trial was conducted to assess the 
safety, efficacy and immunobiological effects of BL-8040, 
a CXCR4 antagonist. Notably, the CXCR4 antagonist 
decreased the number of MDSCs [199].

Benefiting from the advent of quantitative tools, such 
as single-cell RNA sequencing (scRNA-seq) and high-
dimensional cytometry, additional phenotypes and ther-
apeutic targets of MDSCs have progressed considerably 
[200]. In a mouse model of melanoma, GCN2, an envi-
ronmental sensor controlling transcription and transla-
tion, was shown to be required for the phenotypes and 
function of MDSCs, making it an attractive target for 
decreasing MDSCs [201]. Depletion of GCN2 increased 
the inflammatory pathway with the strongest impact 
on the IL-1β pathway [201]. Another study found that 
MDSCs drove glioblastoma growth in a sex-specific man-
ner. M-MDSCs could be targeted with antiproliferative 
agents in males, whereas IL-1β inhibitors were identi-
fied as potential drug candidates to target PMN-MDSCs 
in females. Strikingly, anti-IL-1β treatment counter-
acted PMN-MDSC-mediated immunosuppression and 
potently prolonged the survival of female mice, further 
providing the rationale for clinical testing of IL-1β inhibi-
tors in cancer patients [31]. Using scRNA-seq, Alshe-
taiwi et  al. delineated the molecular features of MDSCs 
in a mouse model of breast cancer and identified CD84 
and JAML as several novel surface markers for faithful 
MDSC detection [202]. CD84 is a member of the sign-
aling lymphocytic activation molecule (SLAM) family 
of cell-surface immunoreceptors, broadly expressed on 
most immune cell subsets [203]. JAML is a member of 
the junctional adhesion molecule (JAM) family and is 
expressed on neutrophils and monocytes [204].

Although these emerging quantitative tools provide 
numerous of previously unappreciated insights into the 

targets and biology of MDSCs, there are potential limi-
tations here [205]. One limitation is that scRNA-seq 
may lack the surface protein information, thereby lead-
ing to misnamed or misclassified MDSC subtypes.

Conclusion
The complexity of the tumor immune microenviron-
ment has been gradually revealed by the combination 
of scRNA-seq and spatial omics [206, 207]. Not only 
the compositions and molecular features, but also the 
spatial architecture of immune components in the 
TME determine antitumor activity [208]. MDSCs, as 
a key component in the TME, are now recognized as 
an emerging target for anticancer immunotherapy, 
and their role in cancer development and treatment 
response is increasingly appreciated. However, due to 
ambiguous phenotypes, great heterogeneity and the 
complex network of origin and function, current ther-
apeutic strategies targeting MDSCs are only partially 
effective [209]. There is a critical urgency to address 
the complexity and heterogeneity of MDSCs to develop 
novel clinical targets and strategies. In the coming 
years, it will be seen whether targeting MDSCs com-
bined with ICIs may overcome the existing limitations 
of cancer immunotherapy.
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