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ABSTRACT: Accelerated molecular dynamics (aMD) simulations greatly improve the efficiency of conventional molecular
dynamics (cMD) for sampling biomolecular conformations, but they require proper reweighting for free energy calculation. In
this work, we systematically compare the accuracy of different reweighting algorithms including the exponential average,
Maclaurin series, and cumulant expansion on three model systems: alanine dipeptide, chignolin, and Trp-cage. Exponential
average reweighting can recover the original free energy profiles easily only when the distribution of the boost potential is narrow
(e.g., the range ≤20kBT) as found in dihedral-boost aMD simulation of alanine dipeptide. In dual-boost aMD simulations of the
studied systems, exponential average generally leads to high energetic fluctuations, largely due to the fact that the Boltzmann
reweighting factors are dominated by a very few high boost potential frames. In comparison, reweighting based on Maclaurin
series expansion (equivalent to cumulant expansion on the first order) greatly suppresses the energetic noise but often gives
incorrect energy minimum positions and significant errors at the energy barriers (∼2−3kBT). Finally, reweighting using cumulant
expansion to the second order is able to recover the most accurate free energy profiles within statistical errors of ∼kBT,
particularly when the distribution of the boost potential exhibits low anharmonicity (i.e., near-Gaussian distribution), and should
be of wide applicability. A toolkit of Python scripts for aMD reweighting “PyReweighting” is distributed free of charge at http://
mccammon.ucsd.edu/computing/amdReweighting/.

■ INTRODUCTION

Accelerated molecular dynamics (aMD) is an enhanced
sampling technique that works by flattening the molecular
potential energy surface, often by adding a non-negative boost
potential when the system potential is lower than a reference
energy. The boost potential, ΔV decreases the energy barriers
and thus accelerates transitions between different low-energy
states.1 With this, aMD is able to sample distinct biomolecular
conformations and rare barrier-crossing events that are not
accessible to conventional molecular dynamics (cMD)
simulations. AMD has been successfully applied to a number
of biological systems2 and hundreds-of-nanosecond aMD
simulations have been shown to capture millisecond-time
scale events in both globular and membrane proteins, such as

the bovine pancreatic trypsin inhibitor (BPTI)3 and a G-protein
coupled receptor (GPCR).4

In addition to enhanced conformational sampling, it is
appealing to reweight aMD simulations to recover the original
free energy landscapes of functional biomolecules. In theory,
frames of aMD simulations can be reweighted by the
Boltzmann factors of the corresponding boost potential (i.e.,
eΔV/kBT) and averaged over each bin of selected reaction
coordinate(s) to obtain the canonical ensemble, an algorithm
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termed “exponential average” here. However, exponential
reweighting is known to suffer from large statistical noise in
practical calculations5 because the Boltzmann reweighting
factors are often dominated by a very few frames with high
boost potential.
In an effort to avoid the energetic noise, scaled molecular

dynamics (scaled MD) has been developed to flatten the
biomolecular potential energy surface using a single scaling
factor, enabling population-based reweighting and significantly
improving the reweighted free energy profiles as demonstrated
on alanine dipeptide and chignolin.5d While scaled MD
provides a great advantage for simulation reweighting, it scales
the system potential uniformly and does not allow selective
acceleration of biomolecular conformational changes as does
aMD, for example, applying boost potential to protein dihedrals
only1a or subdomains of a protein.6 Moreover, small numerical
errors can also occur in the reweighting of scaled MD
simulations and are the subject of an ongoing study.
AMD has also been combined with replica exchange (i.e.,

REXAMD) for optimal conformational sampling and free
energy calculations of protein−ligand binding.7 REXAMD
provides an approach to calculate the free energy directly from
the simulation replica with zero boost potential (i.e.,
unaccelerated).7c However, it has been shown that including
statistics collected from accelerated runs can improve the final
reweighted free energies.7b Moreover, REXAMD can be
challenging in practice, as the optimal acceleration parameters
for each replica are a priori not known. Thus, accurate
reweighting of aMD simulations is still of key interest for free
energy calculations. Such need also emerges in using aMD
enhanced sampling simulations to build Markov state models.8

Importantly, aMD does not require any predefined reaction
coordinate(s), unlike other biased free energy calculation
methods, including the umbrella sampling,9 metadynamics,10

adaptive biasing force (ABF) calculations,11 and orthogonal
space sampling.12 Thus, aMD can be advantageous for
exploring the biomolecular conformational space without a
priori knowledge or restraints and calculating the system free
energy landscape through postsimulation analysis. However,
the biasing potential applied in aMD simulations is on the order
of tens to hundreds of kcal/mol, which is much greater in
magnitude and wider in distribution than that of other biasing
simulation methods that make use of predefined reaction
coordinates (e.g., several kcal/mol). This leads to grand
challenge for accurate reweighting of aMD simulations. A
thorough analysis of the advantages and disadvantages of
different algorithms for aMD reweighting is still lacking. Open
questions include how to effectively suppress the energetic
noise encountered in exponential reweighting, and what are the
limiting parameters for accurate reweighting of aMD
simulations in terms of system size and levels of acceleration.
Note that the reweighting algorithms discussed in this study
shall be applicable to all biasing simulation methods for
recovering the original free energy profiles.
In previous aMD studies of proteins, Maclaurin series

expansion was applied to approximate the exponential term
eΔV/kBT and it was found less noisy than the exponential
reweighting.3 Furthermore, Shen and Hamelberg showed that
cumulant expansion effectively smoothed the free energy
profiles of alanine dipeptide obtained from aMD simulations.5a

Cumulant expansion has also been widely used in free energy
calculations of biomolecules in nonequilibrium simulations
based on the Jarzynski’s equality,13 for example, fast-growth

thermodynamic integration14 and steered molecular dynam-
ics.15 Particularly, when the boost potential or its equivalent
follows Gaussian distribution, the cumulant expansion to the
second order is exact for calculating the average of exponentials.
This has been known as “Gaussian fluctuation approximation”
and applied to calculate electrostatic free energies of solutes in
solution.16

Here, reweighting algorithms including the exponential
average, Maclaurin series, and cumulant expansion are
compared systematically for analyzing aMD simulations of
three extensively studied biomolecular model systems, that is,
alanine dipeptide, chignolin, and Trp-cage. The latter two are
known to be fast-folding proteins.17 The distributions of boost
potential applied in the aMD simulations are analyzed in detail
to address the limiting parameters for accurate aMD
reweighting.

■ METHODS

Accelerated Molecular Dynamics. Accelerated molecular
dynamics (aMD) enhances the conformational sampling of
biomolecules, often by adding a non-negative boost potential to
the system when the system potential is lower than a reference
energy:1,5b
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where α is the acceleration factor. As the acceleration factor α
decreases, the energy surface is flattened more and
biomolecular transitions between the low-energy states are
increased.
Two versions of aMD that provide different acceleration

levels of biomolecules are termed “dihedral-boost”1a and “dual-
boost”.1b In dihedral-boost aMD, boost potential is applied to
all dihedrals in the system with input parameters (Edihed, αdihed).
In dual-boost aMD, a total boost potential is applied to all
atoms in the system in addition to the dihedral boost (i.e.,
Edihed, αdihed; Etotal, αtotal). Previous applications have suggested
the following parameters for proper acceleration of conforma-
tional changes in globular proteins3 and they are used in this
study of alanine dipeptide, chignolin and Trp-cage
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where Nres is number of protein residues, Natoms is the total
number of atoms, and Vdihed_avg and Vtotal_avg are the average
dihedral and total potential energies calculated from short cMD
simulations, respectively.

Energetic Reweighting. For an aMD simulation of a N-
atom biomolecular system, the probability distribution along a
selected reaction coordinate(s) A(r) is written as p*(A), where
r denotes the atomic positions {r1,···,rN}. Given the boost
potential ΔV(r) of each frame, p*(A) can be reweighted to
recover the canonical ensemble distribution, p(A), as
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where M is the number of bins, β = 1/kBT and ⟨eβΔV(r)⟩j is the
ensemble-averaged Boltzmann factor of ΔV(r) for simulation
frames found in the jth bin. The above equation provides an
“exponential average” algorithm for reweighting of aMD
simulations. As the Boltzmann reweighting factors are often
dominated by high boost potential frames, the distribution of
ΔV is characterized by its standard deviation σΔV and the range
δΔV=ΔVmax − ΔVmin. The reweighted potential of mean force
(PMF) is calculated as F(Aj) =−(1/β) ln p(Aj).
Furthermore, the exponential term can be approximated by

summation of the Maclaurin series of boost potential ΔV(r)
with the reweighting factor rewritten as
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where the subscript j has been suppressed. The Maclaurin series
expansion up to the 5th−10th order has been used in practice
to reweight aMD trajectories.3 The reweighted PMF profiles
are typically less noisy than those obtained from exponential
average reweighting.
Finally, the ensemble-averaged reweighting factor can also be

approximated using cumulant expansion:14,18
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The free energy can then be derived from cumulant expansion
as
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where F*(Aj) is the modified free energy surface sampled in the
aMD simulation and the constant Fc = (1/β) ln Σj = 1

M ⟨eβΔV(r)⟩j.
In principle, reweighting using cumulant expansion is able to

greatly suppress the energetic noise, since it collectively
reweights many data points along the chosen reaction
coordinate(s). Note that the Maclaruin series expansion is
equivalent to cumulant expansion on the first order:
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When the distribution of boost potential ΔV within a bin
satisfies the Gaussian distribution, cumulant expansion to the
second order provides an accurate approximation of the
exponential reweighting factor. In this study, we introduce a
quantity called “anharmonicity”,19 γ to characterize the
distribution of aMD boost potential as follows. Given ΔV for
frames found in one bin of the selected reaction coordinate(s),
the normalized probability distribution can be obtained p(ΔV)
and its entropy is calculated as
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Assuming ΔV satisfies exactly Gaussian distribution, for which
the boost potential achieves perfect sampling, its maximum
entropy is given by
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where σ is the standard deviation of the ΔV distribution. Then,
the distribution anharmonicity, γ of boost potential ΔV is
obtained as
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When γ is zero, the boost potential follows ideal Gaussian
distribution and cumulant expansion to the second order is
expected to provide accurate reweighted free energy profiles. As
γ increases, the ΔV distribution becomes less harmonic and the
reweighted PMF obtained from cumulant expansion to the
second order deviates from the original free energy profile.
Thus, γ serves as an effective indicator of aMD reweighting
accuracy using cumulant expansion to the second order.

Simulation Protocols. All cMD and aMD simulations of
alanine dipeptide, chignolin, and Trp-cage were performed
using AMBER with the ff99SB force field on GPUs20 using the
SPFP precision model.21 The simulated systems were built
using the Xleap module of the AMBER package. Alanine
dipeptide and chignolin were constructed as described
previously.5d For Trp-cage, the amino acid sequence was
obtained from the PDB code 2JOF22 and an extended
polypeptide was built as the starting structure. By solvating
the structures in a TIP3P23 water box that extends 8 to 10 Å
from the solute surface, the alanine dipeptide system contained
630 water molecules, 2211 waters for chignolin, and 11 355
waters for Trp-cage. The total number of atoms in the three
systems are 1912, 6773, and 34 370 for alanine dipeptide,
chignolin, and Trp-cage, respectively (Table 1).
In AMBER simulations of the three systems, bonds

containing hydrogen atoms were restrained with the SHAKE
algorithm24 and thus a 2 fs time step was used. Weak coupling
to an external temperature and pressure bath was used to

Table 1. Biomolecular Model Systems Simulated with Accelerated Molecular Dynamics (aMD) in the Present Studya

system Nres Natoms cMD aMD dihedral/dual-boost ΔVavg (kcal/mol) σΔV (kcal/mol) δΔV (kcal/mol)

alanine dipeptide 2 1912 1000 ns 20 ns × 5 dihedral-boost 3.1 1.8 11.7
20 ns × 5, 1000 ns dual-boost 4.2 2.1 18.5

chignolin 10 6773 1000 ns × 2 300 ns × 3 dual-boost 8.5 3.2 31.9
Trp-cage 20 34 370 1000 ns × 2 500 ns × 4 dual-boost 38.8 7.0 70.8

aNres and Natoms are the number of residues and system atoms, respectively. ΔVavg, σΔV, and δΔV are the average, standard deviation, and range
(maximum−minimum) of the aMD boost potential, ΔV.
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control both temperature and pressure.25 The electrostatic
interactions were calculated using the PME (particle mesh
Ewald summation)26 with a cutoff of 8.0 Å for long-range
interactions.
The three systems were initially minimized for 2000 steps

using the conjugate gradient minimization algorithm and then
the solvent was equilibrated for 50 ps in isothermal−isobaric
(NPT) ensemble with the solute atoms fixed. Another
minimization was performed with all atoms free and the
systems were slowly heated to 300 K over 500 ps. Final system
equilibration was achieved by a 200 ps isothermal−isovolu-
metric (NVT) and 400 ps NPT run to ensure that the water
box of simulated systems had reached the appropriate density.
Then, production simulations were performed in the NVT
ensemble. The aMD acceleration parameters were calculated
using the first 100 ns cMD simulation of each system.
For alanine dipeptide, one 1000 ns cMD simulation and five

independent 20 ns dihedral-boost and dual-boost aMD
simulations were obtained for calculating free energies. One
of the five dual-boost aMD simulations was also extended to
1000 ns as a converged reference. For chignolin, two
independent 1000 ns cMD simulations and three independent
300 ns dual-boost aMD simulations were compared. For Trp-
cage, two independent 1000 ns cMD simulations and four
independent 500 ns dual-boost aMD simulations were obtained
for comparison. The simulation frames were saved every 0.2 ps
for trajectory analysis. A summary of the simulations is listed in
Table 1.
PMF profiles were calculated for backbone dihedrals Φ and

Ψ in alanine dipeptide, Φ4 and Ψ4 for Pro4 in chignolin, and
Φ12 and Ψ12 for Pro12 in Trp-cage. Two-dimensional PMF
profiles of (Φ, Ψ) in alanine dipeptide were also analyzed. In
case of multiple independent cMD/aMD simulations, PMF
profiles obtained by averaging the independent runs were used.
Calculations using five different bin sizes 3, 6, 9, 12, and 15 for
backbone dihedrals in alanine dipeptide (Supporting Informa-
tion Figure S1) showed that when the bin size is 3, the number
of sampling points can be smaller than 10 with no converged
free energy values for several bins in the energy barrier region at
Φ = 0° (see Supporting Information Figure S1A). As the bin

size is increased to 6 or above, the free energy profiles exhibit
slight variations. Furthermore, with increasing bin size the
anharmonicity is found to decrease monotonically (Supporting
Information Figures S1C and S1D), because of the fact that
more data points with similar distribution width are collected in
each bin. Therefore, a bin size of 6 is selected to balance
between reducing the anharmonicity and increasing the bin
resolution. When the number of simulation frames within a bin
is lower than a certain limit (i.e., cutoff), the bin is not
sufficiently sampled and thus excluded for reweighing. The
cutoff can be determined by iteratively increasing it until the
minimum position of the PMF profile does not change. The
final cutoff was set as 10, 50, and 500 for reweighting of aMD
simulations on alanine dipeptide, chignolin, and Trp-cage,
respectively.
For Chignolin and Trp-cage, the root-mean-square deviation

(RMSD) of the protein Cα atoms relative to the experimentally
determined folded structure were calculated from each cMD
simulation and plotted in Supporting Information Figure S6.
Folding of the two proteins were observed in all the presented
simulations with RMSD decreased to ∼2 Å. This justifies that
conformations of the two fast-folding proteins are well sampled.
Furthermore, averaging of the two independent cMD runs for
each system is presented. The error bars provide an estimate of
the simulation accuracy. The RMSD plots for aMD simulations
of both Chignolin and Trp-cage are obtained as well in the
Supporting Information Figure S7, depicting more frequent
folding of the two fast-folding proteins. AMBER trajectories
were analyzed using the ptraj tool. A toolkit of Python scripts
“PyReweighting” was used to reweight the aMD simulations to
calculate both 1D and 2D free energy profiles.

■ RESULTS AND DISCUSSION

Using exponential average, Maclaurin series and cumulant
expansion, reweighting of aMD simulations yields PMF profiles
of backbone dihedrals Φ and Ψ in alanine dipeptide, Φ4 and Ψ4
for Pro4 in chignolin, and Φ12 and Ψ12 for Pro12 in Trp-cage.
The two proline residues in chignolin and Trp-cage are located
in the middle region of the protein chain and conformational
changes in their backbone dihedrals have been suggested to

Figure 1. (A) Scheme representation of backbone dihedrals Φ and Ψ in alanine dipeptide. (B) The probability distribution of boost potential ΔV
obtained from five independent 20 ns dihedral-boost aMD (aMD) and dual-boost aMD (aMD_DB) simulations.
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play a key role in the protein folding.17 The reweighted PMF
profiles of aMD simulations are compared with those of long-
time scale cMD simulations to examine accuracy of the three
different aMD reweighting algorithms.
Alanine Dipeptide. The PMF profiles of backbone

dihedrals Φ and Ψ in alanine dipeptide (Figure 1A) obtained
by reweighting five independent 20 ns dihedral-boost and dual-
boost aMD simulations are compared with those of a 1000 ns
cMD simulation. In the dihedral-boost aMD simulations, the
boost potential, ΔV has an average of 3.1 kcal/mol, which is
lower than that of the dual-boost aMD (4.2 kcal/mol).

Furthermore, the normalized distribution of ΔV is not
symmetric with the left wing truncated at 0 kcal/mol and
right wing stretched to 11.7 kcal/mol (Figure 1B). Due to shift
of ΔV to higher values, the left wing of the ΔV distribution is
less truncated in dual-boost aMD simulations than in the
dihedral-boost aMD. The standard deviation of ΔV in dual-
boost aMD is 2.1 kcal/mol, which is slightly higher than that of
dihedral-boost aMD (1.8 kcal/mol).
In the dihedral-boost aMD simulations, the distribution of

ΔV is narrow with a range δΔV ≤ 12 kcal/mol (20kBT).
Exponential average reweighting is able to recover the original

Figure 2. Free energy profiles of backbone dihedrals Φ and Ψ in alanine dipeptide calculated by reweighting five independent 20 ns dihedral-boost
aMD simulations using (A, B) exponential average, (C, D) Maclaurin series expansion to the 10th order, (E, F) cumulant expansion to the 1st, 2nd,
and 3rd orders. The free energy profiles obtained from a 1000 ns cMD simulation are also plotted for comparison.
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free energy profiles of Φ (Figure 2A) and Ψ (Figure 2B) as
obtained from 1000 ns cMD simulation, except that one local
energy well of Φ centered at 48° is increased by ∼1 kcal/mol,
suggesting insufficient sampling of this region with dihedral-
boost aMD. Using Maclaurin series expansion to the 10th
order, the reweighted PMF profiles differs most in Ψ with
position of the energy minimum shifted from 0° to 24° and the
energy barriers lowered by ∼1 kcal/mol (Figure 2D), as well as
in Φ with the −72° energy minimum lowered by ∼0.5 kcal/mol
(Figure 2C). With cumulant expansion, reweighting on the first
order that is equivalent to Maclaurin series expansion produces
lower PMF with incorrect minimum positions, while expansion
up to the third order overestimates the PMF values relative to

the energy minimum in both Φ (Figure 2E) and Ψ (Figure 2F).
In comparison, cumulant expansion to the second order
provides the closest PMF in Φ with two energy wells centered
at −150° and −72° accurately reproduced, but PMF of the 48°
local energy well exhibits significant increase similar to that of
the exponential average reweighting (Figure 2E). Moreover, the
second-order cumulant expansion overestimates energy barriers
of Ψ by ∼1 kcal/mol at both −120° and 90° as shown in Figure
2F.
In dual-boost aMD simulations, exponential average

reweighting leads to significantly overestimated PMF with
incorrect minimum positions and high fluctuations in both Φ
and Ψ (Figures 3A and B). This originates from the fact that

Figure 3. Free energy profiles of backbone dihedrals Φ and Ψ in alanine dipeptide calculated by reweighting five independent 20 ns dual-boost aMD
simulations using (A, B) exponential average, (C, D) Maclaurin series expansion to the 10th order, (E, F) cumulant expansion to the 1st, 2nd, and
3rd orders. The profiles are plotted similarly as in Figure 2.
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the Boltzmann reweighting factors are dominated by a few high
boost potential frames (ΔV − ΔVmin = ∼12−18 kcal/mol as
shown in Figure 1B). Using Maclaurin series expansion to the
10th order (cumulant expansion on the first order), the

reweighted PMF profiles are less noisy, but they do not
reproduce the accurate energy minimum values in Φ (Figure
3C) or the original minimum position in Ψ (Figure 3D), and
the energy barriers are underestimated by ∼1−2 kcal/mol. In

Figure 4. Distribution anharmonicity of boost potential ΔV of frames found in each bin of (A) Φ and (B) Ψ in the dihedral-boost aMD (aMD) and
dual-boost aMD (aMD_DB) simulations of alanine dipeptide.

Figure 5. Two-dimensional free energy profiles of backbone dihedrals (Φ, Ψ) in alanine dipeptide calculated from (A) 1000 ns cMD simulation and
reweighting of 1000 ns dual-boost aMD simulation using (B) Maclaurin series to the 10th order and (C) cumulant expansion to the 2nd order. (D)
The distribution anharmonicity of ΔV of frames found in each bin of (Φ, Ψ) in the 1000 ns dual-boost aMD simulation.
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contrast, while cumulant expansion to the third order still leads
to deviated PMF profiles, expansion to the second order
recovers the most accurate PMF profiles with negligible
fluctuations that agree excellently with the original obtained
from 1000 ns cMD simulation (Figures 3E and F). Reweighting
of a converged 1000 ns dual-boost aMD simulation leads to
closely similar results, as shown in Supporting Information
Figure S3.
Next, we analyze the distribution anharmonicity, γ of ΔV for

aMD trajectory frames found in each 6°-bin of Φ and Ψ (see
details in Methods). In the region of 0°−90° for Φ, the
anharmonicity γ of the dihedral-boost aMD simulations is
significantly higher than that of the dual-boost aMD (Figure
4A). This justifies the finding that less accurate PMF profiles
are obtained from dihedral-boost aMD simulations using
cumulant expansion to the second order than from the dual-
boost aMD. Moreover, in the two regions of Ψ energy barriers
at −120° and 90° (especially the central barrier at −120°),
dihedral-boost aMD exhibits marked higher anharmonicity

(Figure 4B), which appears as an indicator of incorrectly
reweighted PMF in these regions as shown in Figure 2F.
Overall, γ is close to zero in most regions of Φ and Ψ except
the energy barriers in the dual-boost aMD simulations. ΔV
satisfies near-Gaussian distribution in these regions, for which
sufficient conformational sampling is achieved and highly
accurate PMF is recovered through cumulant expansion to the
second order.
The two-dimensional PMF profiles of (Φ, Ψ) in alanine

dipeptide are presented in Figure 5. From the 1000 ns cMD
simulation, the global energy minimum is identified at (−150°,
0°) and another four local minima at (−78°, −6°), (−150°,
156°), (−66°, 150°), and (48°, 30°) (see Figure 5A). In
comparison, the exponential average reweighting produces
highly fluctuating PMF with large magnitudes of 20−40 kcal/
mol in the 20 ns dual-boost aMD simulation (Supporting
Information Figure S4A), even in the converged 1000 ns aMD
simulation (Supporting Information Figure S4B). For re-
weighted PMF profiles using Maclaurin series and cumulant

Figure 6. Chignolin: (A) scheme representation of backbone dihedrals Φ4 and Ψ4 of the only proline residue (Pro4) and (B) the probability
distribution of boost potential ΔV obtained from three independent 200 ns dual-boost aMD simulations. Trp-cage: (C) scheme representation of
backbone dihedrals Φ12 and Ψ12 of Pro12 that is located in the middle of the protein chain and (D) the probability distribution of boost potential
ΔV from four independent 500 ns dual-boost aMD simulations.
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expansion, because the 20 ns dual-boost aMD simulation
appears to lack converged sampling, as shown in Supporting
Information Figure S5, results obtained from the 1000 ns aMD

simulation are presented in Figure 5. With Maclaurin series
expansion to the 10th order, the reweighted PMF profile agrees
reasonably well with the original in the overall shape, but it

Figure 7. Free energy profiles of backbone dihedrals Φ4 and Ψ4 in chignolin calculated from reweighting three independent 300 ns dual-boost aMD
simulations using (A, B) exponential average, (C, D) Maclaurin series expansion to the 10th order, (E, F) cumulant expansion to the 1st and 2nd
orders. The free energy profiles obtained from two independent 1000 ns cMD simulation are also plotted for comparison. The distribution
anharmonicity of ΔV in the aMD simulations are plotted in (G) Φ4 and (H) Ψ4.
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differs most in the relative PMF values and the global minimum
is incorrectly predicted at (−72°, −60°) as shown in Figure 5B.
The calculated root-mean-square error (RMSE) is 1.24 kcal/

mol. In contrast, using cumulant expansion to the second order,
the global minimum is correctly reproduced at (−150°, 0°),
similarly for the other four local energy minima (Figure 5C).

Figure 8. Free energy profiles of backbone dihedrals Φ12 and Ψ12 in Trp-cage calculated by reweighting four independent 500 ns dual-boost aMD
simulations: (A, B) exponential average, (C, D) Maclaurin series expansion to the 10th order, (E, F) cumulant expansion to the 1st and 2nd orders.
The free energy profiles obtained from two independent 1000 ns cMD simulation are also plotted for comparison. The distribution anharmonicity of
ΔV in the aMD simulations are plotted in (G) Φ12 and (H) Ψ12.
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The reweighted PMF profile is closely similar to the original
with RMSE of 0.68 kcal/mol. Figure 5D plots the
anharmonicity of ΔV distribution in each bin of (Φ, Ψ) in
the 1000 ns dual-boost aMD simulations. Low anharmonicity
values (typically <0.1) are found in the sampled conformational
space except the energy barrier regions, which again justifies the
accurate aMD reweighting using cumulant expansion to the
second order.
In summary, exponential average reweighting is accurate only

when distribution of the boost potential is narrow with the
range δΔV ≤ 20kBT as found in dihedral-boost aMD simulation
of alanine dipeptide. This is consistent with many previous
aMD studies.1a,5a,27 However, conformational changes of
biomolecules can be limited by slow diffusion of the
surrounding solvent molecules. Thus, dual-boost aMD has
been developed to accelerate the dihedral transitions and slow
diffusive motions concurrently.1b While dual-boost aMD
provides acceleration at a higher level and greatly improves
the conformational sampling,2b,4a boost potential of much
wider distribution is applied in the simulations (see Figure 1B
and Table 1). In this case, the exponential reweighting generally
leads to high energetic noise because the Boltzmann
reweighting factors are dominated by a few high boost potential
frames. Although the Maclaurin series expansion greatly helps
suppressing the energetic noise with the distribution range of
the reweighting factors reduced by ∼5 orders of magnitude (see
Supporting Information Figure S2A), it often misses reproduc-
ing the correct energy minimum positions and the PMF errors
can be as large as ∼2−3kBT. The large noise of aMD
reweighting factors can be suppressed using cumulant
expansion as well (Supporting Information Figure S2B).
When distribution of the boost potential exhibits low
anharmonicity, reweighting using cumulant expansion to the
second order is able to recover highly accurate free energy
profiles within the statistical errors of ∼kBT. Using cumulant
expansion to the third order, the reweighted PMF profiles are
rather deviated from the original even in the converged 1000 ns
dual-boost aMD simulation (Supporting Information Figures
S3E, F), largely due to propagation of small errors in the
estimates of the third order cumulants.
Chignolin and Trp-cage. Apart from the alanine dipeptide,

reweighting of aMD simulations is further analyzed on two fast-
folding proteins (chignolin and Trp-cage) as compared with
1000 ns reference cMD simulations (see Methods). Partic-
ularly, free energy profiles are calculated for backbone dihedrals
of Pro4 in chignolin (Φ4 and Ψ4 in Figure 6A) and Pro12 in
Trp-cage (Φ12 and Ψ12 in Figure 6C). With increasing system
size, higher boost potential ΔV is applied in aMD simulations
of chignolin and Trp-cage than in the alanine dipeptide
simulations (Table 1). For chignolin, the ΔV has an average of
8.5 kcal/mol with 3.2 kcal/mol standard deviation, exhibiting a
wide distribution from 0 to 31.9 kcal/mol (Figure 6B). For
Trp-cage, the ΔV is further increased to an average of 38.8
kcal/mol with a broad distribution (σΔV =7.0 kcal/mol),
ranging from 13.6 to 80.1 kcal/mol (Figure 6D).
In dual-boost aMD simulations of chignolin, reweighting

using exponential average leads to high fluctuations in both Φ4
and Ψ4, as shown in Figure 7A and B. The energy wells are
poorly reproduced and the energy barrier of Ψ4 at 75° is
overestimated by ∼6 kcal/mol. Again, this originates from the
broad distribution of ΔV, for which the Boltzmann reweighting
factors are dominated by the high boost potential frames with
ΔV = 20−32 kcal/mol. Using Maclaurin series expansion to the

10th order, the reweighted PMF profiles are less noisy, but they
differ most in the energy barrier region of Ψ4 near 75° by ∼2
kcal/mol (Figure 7D). With cumulant expansion, since the
reweighted PMF profiles using expansion to the third order
exhibit large energetic noise as seen in Figure 3E and F, they are
not presented for chignolin, also for Trp-cage below. Cumulant
expansion on the first order generates deviated PMF profiles,
similar to the Maclaurin series expansion. In comparison, PMF
profiles obtained from cumulant expansion to the second order
exhibits better agreement with those of 1000 ns cMD
simulations with errors of ∼0.5 kcal/mol (Figure 7E and F).
High fluctuations are observed in the energy barrier region of
Ψ4 centered at 75° (Figure 7F), which is strongly correlated
with the increased anharmonicity of the ΔV distribution found
in the energy barrier region (Figure 7H). In the energy well
regions of Φ4 centered at −72° and Ψ4 at −30° and 150°, the
anharmonicity of ΔV distribution stays low at ∼0.05 (Figure
7G and H). This justifies the accurate PMF obtained in these
regions through cumulant expansion to the second order.
For Trp-cage, high energetic noise is found in the reweighted

PMF profiles obtained through exponential average (Figure 8A
and B), similar to those of alanine dipeptide and chignolin.
Based on Maclaurin series expansion to the 10th order, the
reweighted PMF profiles are much less noisy, but the PMF
values of Φ12 in the energy barrier region −12°−12° differ most
from the cMD simulations by ∼2 kcal/mol, and the energy
minimum position of Ψ12 is shifted from −18° to −36° (Figure
8C and D). In comparison, cumulant expansion to the second
order provides reweighted PMF profiles that are similar to the
original as obtained from the 1000 ns cMD simulations within
∼kBT statistical errors (Figure 8E and F). High fluctuations
observed in the energy barrier regions are also strongly
correlated with the increased anharmonicity of the ΔV
distribution as shown in Figure 8G and H. In summary,
reweighting based on cumulant expansion to the second order
provides the most accurate reweighted PMF profiles compared
with the exponential average and Maclaurin series expansion.

■ CONCLUSIONS
AMD is an efficient enhanced sampling technique that has been
demonstrated to capture millisecond-time scale events in both
globular and membrane proteins. Unlike many other biased
sampling methods, aMD is able to explore the conformational
space of biomolecules without the requirement of predefined
reaction coordinate(s). However, accurate reweighting of aMD
simulations has been a long-standing problem.5a

In this study, we systematically compared the currently used
aMD reweighting algorithms, including the exponential average,
Maclaurin series and cumulant expansion, with simulations on
three model systems, that is, alanine dipeptide, chignolin and
Trp-cage. In the dihedral-boost aMD simulations of alanine
dipeptide, the boost potential exhibits a relatively narrow
distribution with a range δΔV ≤ 12 kcal/mol, for which
exponential average is able to recover the original PMF profiles
within errors of ∼1 kcal/mol. In the dual-boost aMD
simulations of alanine dipeptide, chignolin and Trp-cage, larger
boost potentials of broader distribution (δΔV ≥ 18 kcal/mol)
are applied. The exponential reweighting factors are dominated
by a small number of simulation frames with the largest ΔV,
leading to highly noisy PMF profiles. Reweighting based on the
Maclaurin series expansion that is equivalent to cumulant
expansion on the first order greatly suppresses the energetic
noise, but the energy minimum positions are often incorrectly

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500090q | J. Chem. Theory Comput. 2014, 10, 2677−26892687



reproduced and the PMF values exhibit errors of ∼1−2 kcal/
mol in the systems examined. In contrast, cumulant expansion
to the second order normally recovers the most accurate PMF
profiles (within ∼kBT of the original), particularly when the
distribution of ΔV satisfies near-Gaussian distribution. In this
context, anharmonicity of the ΔV distribution, γ can serve as an
indicator of the accuracy of aMD reweighting using cumulant
expansion to the second order.
For simulations of larger systems (e.g., proteins with several

hundred residues and hundreds-of-thousand to millions of
atoms), significantly higher boost potential with broad
distribution (e.g., δΔV ≈ 100−200 kcal/mol) often occurs
with the current aMD scheme and accurate reweighting
remains challenging.5c In future developments, the anharmo-
nicity of the ΔV distribution, γ could be used to propose new
formula for aMD boost potential such that accurate reweighting
can be achieved. Furthermore, the postprocessing of aMD
trajectories could be optimized to minimize the anharmonicity
of the boost potential distribution, for instance through the
selection of a good set of multidimensional reaction
coordinates. In general, we expect cumulant expansion to find
great use in the reconstruction of accurate free energy profiles
from aMD simulations.
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Kolossvaŕy, K. F. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X.
Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang,
M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R.
Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A.
Kovalenko, and Kollman, P.A. AMBER 12; University of California:
San Francisco, 2012; (b) Gotz, A. W.; Williamson, M. J.; Xu, D.;
Poole, D.; Le Grand, S.; Walker, R. C. Routine Microsecond Molecular
Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J.
Chem. Theory Comput. 2012, 8 (5), 1542−1555. (c) Salomon-Ferrer,
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