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ABSTRACT
Purpose To develop a rib and clavicle fracture detection 
model for chest radiographs in trauma patients using a 
deep learning (DL) algorithm.
Materials and methods We retrospectively collected 
56 145 chest X- rays (CXRs) from trauma patients in a 
trauma center between August 2008 and December 
2016. A rib/clavicle fracture detection DL algorithm was 
trained using this data set with 991 (1.8%) images 
labeled by experts with fracture site locations. The 
algorithm was tested on independently collected 300 
CXRs in 2017. An external test set was also collected 
from hospitalized trauma patients in a regional hospital 
for evaluation. The receiver operating characteristic curve 
with area under the curve (AUC), accuracy, sensitivity, 
specificity, precision, and negative predictive value of the 
model on each test set was evaluated. The prediction 
probability on the images was visualized as heatmaps.
Results The trained DL model achieved an AUC of 
0.912 (95% CI 87.8 to 94.7) on the independent test 
set. The accuracy, sensitivity, and specificity on the given 
cut- off value are 83.7, 86.8, and 80.4, respectively. On 
the external test set, the model had a sensitivity of 88.0 
and an accuracy of 72.5. While the model exhibited a 
slight decrease in accuracy on the external test set, it 
maintained its sensitivity in detecting fractures.
Conclusion The algorithm detects rib and clavicle 
fractures concomitantly in the CXR of trauma patients 
with high accuracy in locating lesions through heatmap 
visualization.

INTRODUCTION
Traumatic rib fractures are the most frequently 
observed injuries resulting from widespread thoracic 
trauma.1 These fractures hold clinical significance 
as they are associated with considerable pulmonary 
morbidity, mortality, and may result in long- term 
disabilities.2 3 Rapid assessment and management 
are crucial to patient outcomes.4 Historically, ther-
apeutic options for rib fractures have been limited 
to conservative management, including analgesia, 
pulmonary hygiene, oxygen delivery, and allowing 
time for wound healing.5 Unlike rib fractures, clavic-
ular fractures are also common insults after chest 
trauma. Misdiagnosis is not common, but when it 
occurs, it can lead to long- term limitations in range 
of motion and decreased quality of life.6 7 Providing 

high- quality clinical care and effective trauma treat-
ment relies not only on the expertise of physicians 
but also on the valuable insights obtained from 
various imaging modalities. Prompt and accurate 
diagnosis, coupled with appropriate management, 
is critical for the survival of trauma patients. Plain 
film chest X- ray (CXR) is a commonly employed 
imaging modality in evaluating patients with trau-
matic injuries initially. It holds diagnostic value for 
assessing orthopedic injuries in the chest region, 
including fractures on ribs, clavicle fractures, and 
other related injuries. However, a high rate of 
misdiagnosis of rib fractures has been reported, 
above 50%,8 9 which can have consequences such 
as inadequate pain control and the development of 
respiratory complications, including post- traumatic 
pneumonia resulting from undetected rib frac-
tures.10–12 CT is considered the gold standard for rib 
fracture detection. However, these modalities may 
pose additional challenges, such as increased radi-
ation exposure, higher medical costs, and are only 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Rib and clavicle fractures frequently occur as 
part of thoracic injuries, and their accurate 
diagnosis is often challenging when relying 
solely on chest plain film radiography.

 ⇒ Although deep learning (DL) has demonstrated 
significant breakthroughs in clinical assistance, 
its application within the trauma field remains 
relatively limited.

WHAT THIS STUDY ADDS
 ⇒ This study introduces chest X- ray- FrNET, a DL 
algorithm that demonstrates a high sensitivity 
and acceptable accuracy in the detection of rib 
and clavicle fractures.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The development of a versatile and multitask 
DL algorithm has the potential to greatly 
influence clinical practice by providing valuable 
support to physicians in the management of 
patients with rib and clavicle fractures.

 ⇒ This innovation may lead to improvements in 
patient care, diagnostic accuracy, and overall 
outcomes in the field of fracture assessment.
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available in advanced medical institutions. Thus, improving the 
accuracy of CXR diagnosis is crucial to enhancing patient care 
quality and preventing unnecessary radiation exposure.

Deep learning (DL), a rapidly evolving subfield of machine 
learning, has gained significant attention in medical image anal-
ysis.13 DL has demonstrated successful outcomes in various clas-
sification tasks, including classification of abnormalities in chest 
radiography,14 15 and interpretation of neural images.16 17 The 
application of high- performance DL in computer- aided diagnosis 
(CAD) holds the potential to streamline human labor, enhance 
diagnostic consistency and accuracy, personalize patient treat-
ment, and improve patient- doctor relationships18 19 However, a 
major challenge in developing DL algorithms for medical image 
analysis is acquiring large- scale annotations of medical images, 
which is often labor- intensive and requires specialized exper-
tise.20 21 In response, several studies have focused on training deep 
convolutional neural networks using weak labels,22–24 which can 
be obtained automatically or semiautomatically from medical 
records at a low cost. In the context of fracture detection, some 
studies have used weakly supervised learning to identify specific 
categories of fractures in defined regions, demonstrating compa-
rable accuracy to physicians.25–28 Nevertheless, a comprehensive 
and valuable CAD should possess a universal capability to detect 
various abnormalities within a single image. Currently, only 
a limited number of algorithms have showcased the ability to 
simultaneously detect abnormalities spanning multiple catego-
ries in an image.

In this study, we introduced CXR-FxNet, a DL- based detec-
tion algorithm trained using a weak labeling data set and limited 
number of expert annotations. We apply the concept of knowl-
edge distillation in algorithm design to empower the perfor-
mance of fracture detection. CXR- FxNet exhibits the ability to 
detect multiple trauma- related radiographic findings on CXRs, 
including clavicle and rib fractures.

MATERIALS AND METHODS
Development data set and image level label acquisition
The development data set was established by retrospectively 
reviewing the data in the trauma registry of trauma center A 
(Chang Gung Memorial Hospital, Linkou) recorded from May 
2008 to December 2016. The demographic and trauma- related 
data, including age, gender, date of injury, and final diagnosis, 
were recorded. The first anteroposterior CXR, which is essential 
for evaluating the image modality for trauma patients, taken after 
the patient’s arrival, was acquired from the picture archiving and 
communication system (PACS) repository. To ensure the image 
quality, we established criteria to guarantee that all included 
CXRs encompassed essential landmarks, including the C- spines, 
bilateral shoulder joints, and both sides of the diaphragms. 
Images which do not fulfil these criteria will be excluded from 
the data set. The images were deidentified and converted to 
Portable Network Graphics format for further processing.

All the CXRs were paired with a patient record in the trauma 
registry. The weak image- level label was parsed from a simple 
test- matching Python script using the International Classifica-
tion of Diseases, Ninth Revision, Clinical Modification diagnosis 
code and the text of the final diagnosis to identify the presence 
of rib or clavicle fracture in the registry. Part of those images 
from patients with rib or clavicle fractures were delivered to 
two trauma surgeons specializing in thoracic trauma including 
rib and clavicle fracture with 15 years and 12 years of expe-
rience for further fracture site annotation. The image set with 
precise fracture site labeling was named ‘expert labeled set’, and 

the other images with the image- level label only were named 
‘weakly labeled set’. The images chosen for expert review were 
randomly selected. Each image was assigned a randomly gener-
ated number, and the annotator labeled them sequentially to 
minimize bias in the selection process.

Fracture site annotation
The assessment of the images was conducted in conjunction 
with clinical diagnoses, radiologist- generated reports, and find-
ings obtained through advanced imaging modalities, including 
anteroposterior oblique projection and chest CT scans. The 
reviewers were tasked with delineating a bounding box encom-
passing each identified fracture site of the rib and clavicle, 
designating the said box as either a ‘rib fracture’ or ‘clavicle 
fracture’. In instances where multiple fracture sites were found, 
multiple annotations were applied accordingly. In instances 
where multiple fracture sites were found, every fracture site will 
be labeled with a bounding box accordingly. If contemporary 
posterior and anterior fractures are presented, the fracture sites 
will be labeled by different bounding boxes.

Test data sets
To independently evaluate the algorithm performance, we 
collected CXR from the same trauma center in 2017 using a 
similar process as the development data set. Since the clavicle 
fracture is relatively easy to identify, we focused on evaluating 
model performance on rib fracture identification. By sample 
size calculation, with a target accuracy of our model at 75% 
on power 0.8 with a 0.05 significance level, we performed a 
random selection process to choose 150 patients with fracture 
as positive images, matched with 150 patients without frac-
tures, and collected as an ‘independent test set’ from hospital 
A. We also acquired another CXR data set from hospitalized 
trauma patients in regional hospital B (Chang Gung Memorial 
Hospital, Taipei) from 2018 to 2022 as an ‘external test set’. 
The test set was independently collected from Hospital A and 
Hospital B which consisted of all expert- labeled images. All the 
test set images were reviewed by the experts and annotated with 
bounding boxes to confirm the diagnosis and location. All the 
images from patients younger than 18 years old were excluded.

Algorithm design
The foundational architecture of CXR- FxNet is predicated on 
a ‘knowledge distillation’ DL paradigm.29 The objective is to 
leverage the ‘weakly labeled set’ to its fullest potential, enhancing 
the model’s performance derived from the comparatively limited 
‘expert labeled set’. The fundamental architecture of the DL 
network incorporates the Feature Pyramid Network with a 
DenseNet- 121 backbone. We use two models simultaneously 
in the training process. First, the model was initially pretrained 
with the expert- labeled set. The performance was limited due to 
the relatively small number of images. Next, the ‘weakly labeled 
set’ and the ‘expert labeled set’ were both used in the semisuper-
vised training. The teacher and student models were initialized 
with the pretrained weights. Then, weakly labeled images were 
applied to both models. The predicted locations generated by 
the teacher model were adjusted with a sharpening algorithm 
and compared with the student model. The student model has 
also trained with the expert- labeled images in the same step. 
All the above information was integrated to adjust the student 
model and teacher model. After repeated training, the model 
converged to the best performance as figure 1 presents.



3Cheng C- T, et al. Trauma Surg Acute Care Open 2024;9:e001300. doi:10.1136/tsaco-2023-001300

Open access

Statistical analysis and software
All the models were developed on a workstation with a single 
Intel Xeon E5- 2650 v4 CPU (Central Processing Unit)@2.2 
GHz, 128 GB RAM (Random Access Memory), and 4 NVIDIA 
Quadro RTX 8000 GPUs (Graph Processing Unit). Python V.3.6 
and PyTorch V.1.6 under the operating system Ubuntu 18.04 
LTS (Long Term Support). were used to design the algorithm. 
The statistical analysis was performed using R V.4.1.0 with 
the packages ‘pROC’ and ‘table one’. The performance of the 
models was evaluated with the receiver operating characteristic 
(ROC) curve with area under the curve (AUC). The 95% CI of 
AUC was calculated using 2000 stratified bootstrap replicates. 
The accuracy, sensitivity, specificity, precision, and negative 
predictive value of the model on each test set were calculated 
with the two cut- off thresholds chosen on the independent 
test set with a high- sensitivity point and high- specificity point 
according to the clinical needs. The performance of the physi-
cians was expressed with median with IQR and compared with 
CXR- FxNet with Mann–Whitney U test. The categorical param-
eters were compared with the χ2 test. A vale of p<0.05 indicated 
statistical significance.

RESULTS
We acquired a data set comprising 56 145 CXR images spanning 
from 2008 to 2016 at the trauma center A, as shown in figure 2. 
After the application of diagnostic codes and keyword matching, 
a total of 6886 images (15.2%) were identified as positive for 
rib/clavicle fractures, and the remaining 45 259 images (84.8%) 
were classified as negative. Among the positive cases, 991 CXRs 
were meticulously annotated by our domain experts, resulting 
in the delineation of 2740 bounding boxes corresponding to 
fracture sites, yielding an average of 2.8 boxes per image. There 

are 146 patients who had both rib and clavicle fractures, 580 
patients who had rib fractures only, and 185 patients who had 
clavicle fractures only. There are no patients who had bilateral 
clavicle fractures. Therefore, there are 331 clavicle bounding 
boxes and 2409 rib bounding boxes.

To construct our independent test set, we conducted a random 
selection process, drawing 300 CXRs from a patient pool of 
6223 individuals treated at trauma center A in the year 2017. 
The selection was performed to maintain a balanced 1:1 ratio of 
CXRs with and without rib/clavicle fractures, as visually repre-
sented in figure 3. Detailed demographic attributes for each data 
set are concisely summarized in table 1. The CXR- FxNet showed 
an AUC of 91.2% (95% CI 87.7% to 94.7%) on the independent 
test set. The ROC curve is displayed in figure 4. The accuracy, 
sensitivity, specificity, precision, and negative predicted value on 
the high- sensitivity point are 83.3%, 87.5%, 79.1%, 81.1%, and 
86.0%, respectively. The model achieved 97.3% specificity but 
a lower sensitivity of 71.1% on the high- specificity point. The 
details of the performance are displayed in table 2.

The external test set, obtained from hospital B, comprised 
200 CXRs, evenly divided into 100 cases with rib/clavicle frac-
tures and 100 without. Notably, the demographic characteristics, 
encompassing age and gender, exhibited significant disparities 
when compared with the data sets from hospital A. The patient 
cohort at hospital A skewed towards a younger age profile and 
was predominantly male. When evaluated on this external data 
set, CXR- FxNet demonstrated comparable sensitivity (88.9% vs 
87.5%) but exhibited diminished accuracy compared with the 
independent test set (74.2% vs 83.3%) on the high- sensitivity 
cut- off. On the high- specificity cut- off, the model had compa-
rable accuracy (80.8% vs 84.3%) but lower specificity (90.9% 
vs 97.3%) on the external data set. The CXR- FxNet detected 

Figure 1 The foundational architecture of CXR- FxNet: A knowledge distillation deep learning paradigm to enhance a model’s performance using 
both a limited ‘expert labeled set’ and a more extensive ‘weakly labeled set’. The model, based on Feature Pyramid Network with a DenseNet- 121 
backbone, is pretrained with the expert- labeled set. Subsequent semisupervised training involves using both sets. The teacher model predicts locations 
on weakly labeled images, adjusting them with a sharpening algorithm. These predictions are then compared and integrated to fine- tune both the 
teacher and student models through repeated training until optimal performance is achieved. CXR, chest X- ray.
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all the clavicle fractures. Among the 32 clavicle fractures in 
the independent test set, at the high- sensitivity cut- off point, 
only 1 (3.1%) of the clavicle fractures was missed. At the high 
specificity point, only 3 (9.4%) of the clavicle fractures were 
missed. Figure 5 illustrates a heatmap generated by CXR- FxNet. 
Notably, this model has exhibited the capability to concurrently 
detect multiple fractures within a single CXR. Furthermore, the 

model demonstrates the capacity to identify abnormalities even 
in cases where the fracture site exhibits no displacement.

DISCUSSION
A well- designed CAD algorithm can potentially reduce medical 
errors and facilitate accurate diagnoses.25 30 However, there is 

Figure 2 The selection of the development data set. CXR, chest X- ray.

Figure 3 The test data set in this study for evaluation of the rib fracture detection performance. CXR, chest X- ray
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currently a lack of generalized and comprehensive algorithms for 
interpreting chest radiography in the trauma domain. Although 
DL algorithms have shown promise in detecting abnormalities 
in radiographs, there is still a gap between developing scientif-
ically sound algorithms and their practical implementation in 
real- world settings.31 In this study, we developed an algorithm 
based on a novel weak- supervised DL method that achieved high 
performance in identifying multitasks of trauma- related skeletal 
radiographic findings on CXRs to fit the clinical requirement. 
CXR- FxNet achieved an AUC of 91.2% in an independent data 
set and showed the ability to localize rib and clavicle fractures 
in CXR.

Accurate diagnosis is essential, as failure to do so could result 
in a bleak prognosis. The utilization of this algorithm presents 
an opportunity to make timely improvements in clinical perfor-
mance and safety. DL has gained substantial traction in the 

medical field, however, the application of DL in trauma assess-
ment is still somewhat limited in real- world clinical scenarios.32–34 
DL algorithms in the medical field must exhibit performance 
comparable to that of physicians to generate meaningful clinical 
benefits.35 Current available applications were still focused on 
detecting skeletal fractures of the pelvis and extremities.28 36 37 
Previous studies have demonstrated that algorithms can achieve 
similar performance to physicians in detecting various fractures 
on radiographs, including proximal humerus fractures,38 wrist 
fractures,25 and hip fractures.39 This highlights the potential of 
CXR- FxNet to assist in the identification of these fractures. 
Indeed, the use of the CXR- FxNet algorithm can provide real- 
time recommendations to front- line physicians as they manage 
multiple trauma patients in a chaotic emergency environment, 
where misdiagnoses can occur.40 Specifically, in the case of rib 
fractures, our algorithm has the capability to detect multiple 
rib and clavicle fractures as in figure 5. This feature proves 
particularly valuable in healthcare institutions that may lack 
access to consulting specialists or experienced medical staff.41 
By providing timely and accurate insights, the algorithm can 
enhance the diagnostic capabilities of front- line physicians and 
contribute to improved patient care in such settings.

In contrast to extremity radiographs, CXR shows complex 
anatomy, with frequent multiple injury sites and pathologies. The 
soft tissue components such as mediastinum and foreign cathe-
ters ex chest tube might induce misdiagnosis. In the contempo-
rary medical environment,28 developing separate algorithms for 
each type of anomaly present in a single image is not feasible. 
Consequently, there is a pressing need for universal solutions 
tailored to specific clinical scenarios in emergency CXR. Due 
to the complex anatomy, the development of DL is very rare 
in thoracic trauma. Most applications focus on chest CT algo-
rithms for diagnosing rib fractures.12 19 42–48 Although the models 
based on chest CT exhibited commendable performance, there 
were still certain limitations. First, medical costs, availability, 
and radiation exposure considerations limit the widespread use 
of CT in trauma evaluations, as it is not typically employed as 
the primary survey tool in most parts of the world. Second, the 
considerable volume of images and data associated with CT 
poses challenges. When we are training the DL algorithm using 
CT images, the data amount can be tens to hundreds of times 
larger compared with CXR. Consequently, the complexity of 
the calculations, the high computational power requirements, 
and the difficulty of integrating into the medical examination 

Table 1 Characteristics of each data set

Development data sets Test data sets

Weakly labeled set Expert labeled set Independent test set External test set

Image numbers, n 55 154 991 300 198

Age, mean (SD) 46.63 (20.20) 51.36 (18.36) 52.45 (20.38) 60.40 (18.82)

Gender, n (%)

  Male 34 822 (63.1) 279 (28.2) 193 (64.3) 98 (49.5)

  Female 20 332 (36.9) 712 (71.8) 107 (35.7) 100 (50.5)

Rib fracture, n (%)

  Yes 3161 (5.7) 726 (73.3) 150 (50.0) 89 (44.9)

  No 51 834 (94.0) 265 (26.7) 150 (50.0) 109 (55.1)

Clavicle fracture, n (%)

  Yes 2674 (4.8) 331 (33.4) 32 (10.7) 19 (9.6)

  No 52 328 (94.9) 660 (66.6) 268 (89.3) 181 (90.4)

Year of image acquisition 2008–2016 2008–2016 2017 2018–2022

SD, Standard deviation.

Figure 4 The ROC curve of CXR- FxNet. AUC, the area under curve; 
CXR, chest X- ray; ROC, receiver operating characteristic.
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process are the limitations that these algorithms cannot be used 
on a global scale. Unlike CT, CXR is much more readily avail-
able in any hospital and it was looked at as the primary modality 
for evaluating trauma patients. Here we have introduced CXR- 
FxNet, which can offer some advantages. First, the CXR- FxNet 
algorithm demonstrates the capability to accurately identify and 
localize various trauma- related abnormalities. Its ability to detect 
multiple categories of abnormalities simultaneously, across 
multiple locations within an image, enhances physicians' confi-
dence in the algorithm and facilitates its widespread adoption 
in clinical practice. Second, CXR- FxNet used CXR instead of 

CT which helps reduce computational demands and standardize 
image quality. This approach allows for consistent diagnostic 
capabilities even in hospitals with limited medical information 
resources. In contrast to models relying on CT images, our DL 
model is more lightweight, accessible, and user- friendly, enabling 
a broader range of people to use it conveniently. For the insti-
tutes that can afford DL calculation server and PACS systems, 
the requirements and costs of information systems can decrease 
compared with high computation- requiring systems. For those 
unable to afford this additional equipment, the model can be set 
up on the cloud. We’ve also designed a website (website link:
http://140.129.68.84:8081/) for easy online setup for public use 
and validation. The health providers can upload the CXR images 
taken with their cameras or mobile phones to the web and 
receive the DL model- assisted feedback within seconds. In this 
study, we also found an interesting result as previous research 
suggests that DL algorithms may be beneficial for younger and 
less experienced physicians.With the help of the DL algorithm, 
junior staff are able to locate fracture sites with performance 
comparable to that of experienced physicians.

The development of DL models in the medical field is often 
hindered by limited data size and the lack of clear labeling. The 
image- level label is relatively easy to acquire through medical 
records, but the detailed expert label on the image is exces-
sively expensive. Weakly supervised methods have emerged as 
a potential solution, offering the ability to achieve a reasonably 
high baseline performance even with large but somewhat noisy 
data sets. In this study, we not only explored the use of weakly 
supervised methods relying solely on image- level information 
but also assessed the impact of incorporating bounding box 
annotated images on model performance. We tried the teacher- 
student knowledge distillation method in the current study to 
improve the model performance with few expert annotations. 
This evaluation aimed to analyze whether adding high- quality, 
detailed annotations could further enhance the model’s accuracy 
compared with relying solely on weakly supervised methods. As 
a result, we found that adding more detailed information to the 
model reduced the need for training images and yielded better 
results.

Limitations
In addition to achieving excellent performance in the detection of 
rib and clavicle fractures, our algorithm represents the first study 
to successfully develop an algorithm capable of detecting such 
fractures from CXR, to the best of our knowledge. However, it 
is important to acknowledge the limitations of this algorithm. 
The primary limitation stems from the scarcity of training data 
available. DL algorithms are data- driven and rely on large data 
sets to effectively address problems. Despite implementing a 
weak labeling algorithm, this limitation could not be entirely 
overcome. Due to time and cost constraints, radiologists were 

Table 2 The performance of CXR- FxNet on each test set

High sensitivity cut- off High specificity cut- off

Independent test set External test set Independent test set External test set

Accuracy %, (95% CI) 0.833 (0.786 to 0.874) 0.742 (0.676 to 0.802) 0.843 (0.797 to 0.883) 0.808 (0.746 to 0.860)

Sensitivity %, (95% CI) 0.875 (0.812 to 0.923) 0.889 (0.810 to 0.943) 0.717 (0.638 to 0.787) 0.707 (0.607 to 0.794)

Specificity %, (95% CI) 0.791 (0.716 to 0.853) 0.596 (0.493 to 0.693) 0.973 (0.932 to 0.993) 0.909 (0.834 to 0.958)

Precision %, (95% CI) 0.811 (0.743 to 0.868) 0.688 (0.600 to 0.766) 0.965 (0.912 to 0.990) 0.886 (0.795 to 0.947)

NPV %, (95% CI) 0.860 (0.790 to 0.914) 0.843 (0.736 to 0.919) 0.770 (0.703 to 0.828) 0.756 (0.669 to 0.830)

CI, Confidence interval; CXR, chest X- ray; NPV, negative predictive value.

Figure 5 Visualization examples of CXR- FxNet. (A) True negative 
prediction. The arrow shows the model was not misleading by monitor 
leads and wires. (B) True positive prediction. The model detected one 
minimally displaced single fracture site. (C) True positive prediction of 
multiple fracture sites. The model simultaneously detected left clavicle 
fracture, left posterior third to sixth rib fractures, left lateral third to 
seventh rib fractures, and right lateral fifth and seventh rib fractures. 
(D) False negative prediction. The model missed left minimally displaced 
ninth and tenth rib fractures. (E) False positive prediction. The model 
mistakenly identified an artifact as a fracture site.

http://140.129.68.204:8081/
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not used for image review and labeling. Two experienced trauma 
surgeons specializing in rib management undertook this task, 
with potential limitations in achieving standard labeling levels. 
No inter- rater reliability assessment is another limitation for data 
labeling for this study. Another limitation is the retrospective 
nature of this single- institute image review study. The population 
and image collection process were confined to a specific setting, 
potentially introducing biases that limit the direct applicability of 
our findings to other institutes with different population distri-
butions. Moreover, the images were randomly selected based on 
the clinical diagnosis from the registry, so that the presence of 
selective bias cannot be completely excluded.

DL algorithms are often referred to as ‘black boxes’ 
because their primary function is to establish relationships 
between given data and outcomes. To address this issue, 
recent research has focused on interpretable DL techniques. 
In our study, we incorporated a visual heatmap highlighting 
areas of possible abnormality to aid doctors in understanding 
the algorithm’s decision- making process. However, it is 
important to note that in real- world scenarios, physicians 
make diagnoses by radiographic findings and by clinical 
information such as patient histories and physical examina-
tions. The true benefit of this algorithm should be evaluated 
in a prospective randomized clinical trial, considering the 
comprehensive clinical environment.

CONCLUSION
This study demonstrates that a universal trauma- related 
detection algorithm for CXR can be trained and scalable 
with limited weakly supervised annotations and performs 
well on both clinical scenario distribution data sets and 
balanced data sets. This is the first algorithm to detect rib 
and clavicle fractures simultaneously and can prevent misdi-
agnosis of these injuries in practical applications. Future 
prospective studies are needed to validate whether the 
application of this CXR- FxNet as a computer- aided diag-
nostic system in clinical scenarios leads to more accurate 
diagnosis and facilitates the management of trauma patients.
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