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Wrinkle force microscopy: a machine learning
based approach to predict cell mechanics
from images

Honghan Li'3, Daiki Matsunaga 138 Tsubasa S. Matsui!, Hiroki Aosaki!, Genki Kinoshita!, Koki Inoue’,
Amin Doostmohammadi® "2 & Shinji Deguchi® '®

Combining experiments with artificial intelligence algorithms, we propose a machine learning
based approach called wrinkle force microscopy (WFM) to extract the cellular force dis-
tributions from the microscope images. The full process can be divided into three steps. First,
we culture the cells on a special substrate allowing to measure both the cellular traction force
on the substrate and the corresponding substrate wrinkles simultaneously. The cellular forces
are obtained using the traction force microscopy (TFM), at the same time that cell-generated
contractile forces wrinkle their underlying substrate. Second, the wrinkle positions are
extracted from the microscope images. Third, we train the machine learning system with
GAN (generative adversarial network) by using sets of corresponding two images, the
traction field and the input images (raw microscope images or extracted wrinkle images), as
the training data. The network understands the way to convert the input images of the
substrate wrinkles to the traction distribution from the training. After sufficient training, the
network is utilized to predict the cellular forces just from the input images. Our system
provides a powerful tool to evaluate the cellular forces efficiently because the forces can be
predicted just by observing the cells under the microscope, which is much simpler method
compared to the TFM experiment. Additionally, the machine learning based approach pre-
sented here has the profound potential for being applied to diverse cellular assays for
studying mechanobiology of cells.
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mechanical cues in the surrounding microenvironment to

regulate their functions such as proliferation, differentia-
tion, apoptosis, and pro-inflammation!=®. In response to the
mechanical cues, cells often adjust their cytoskeletal tension such
that many of the mechanical information are translated into a
level of inherent cellular traction forces, and in turn into intra-
cellular signals regulating the related functions®”-%. Traction
forces, thus related to various cell functions, are generated by the
activity of nonmuscle myosin II and actin filaments that deter-
mine cellular contractility>!10-12. Because these proteins work
downstream of diverse signaling pathways, it is often difficult to
predict how the force may change upon perturbations to parti-
cular molecules such as gene mutations and drug administration.
Thus, technologies allowing for efficiently evaluating the cellular
traction force are expected to enhance comprehensive under-
standing of the force-related pathways.

We previously developed a wrinkle assay, a modified version of
the method originally reported by Harris and colleagues!>14, in
which the silicone substrates are spatially treated with uniform
oxygen plasma to allow them to buckle upon the forces exerted by
cells!>-17,

As the individual wrinkles are lengthened with the increase in
the forces!®, the wrinkle length, detected for example by a
machine learning approach!?, can be used as a measure of the
relative change in the force caused by perturbations, such as
specific gene mutations. This technology is promising in that
these experiments are performed easily to potentially enable a
high-throughput analysis on the force-related pathways or drug
screening. For instance, the force measurements with dozens of
different drugs can be done simultaneously by implementing the
wrinkle assay in a multiwell plate2. However, the interpretation
of the wrinkle length was not necessarily straightforward in terms
of quantitatively measuring the magnitude and direction of
traction forces. Although the geometrical information of
wrinkles21-23, such as wavelengths, would give an estimation for
the force magnitude and direction, the geometry is still not

There is now growing evidence showing that cells sense
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enough to predict the local force distribution in a subcellular scale
that is important to understand the cellular mechanotransduction
and the morphological changes of cells. To overcome this lim-
itation in quantification, here we describe a new machine learning
system, wrinkle force microscopy (WFM), that converts the
wrinkle information taken by a microscope into the actual cellular
force distributions. For the initial training data, the cellular
traction forces are obtained using the traction force microscopy
(TFM), and we train the machine learning system with GAN
(generative adversarial network) so that the network understands
the way to convert the input microscope images to the force
distributions from the training data. After sufficient training, the
network can be utilized to predict the cellular forces just from
the input images. The system would be a powerful tool to evaluate
the cellular forces efficiently because the forces can be predicted
by simply imaging the cells under the microscope, which is much
simpler method compared to the TFM experiment.

Results

Full picture of WFM. Our goal is to construct a machine learning
system that can predict the cellular force distributions from the
microscope image or the extracted substrate wrinkles. The full
process can be divided into three steps as shown in Fig. 1. First,
we culture the cells (A7r5; embryonic rat vascular smooth muscle
cells) on a silicone membrane substrate and measure both the
cellular traction force and the substrate wrinkles simultaneously.
As shown in Fig. 1(a), the cellular traction forces are obtained
using TEM?42>, and cells generate wrinkles because the surface of
PDMS (polydimethyl siloxane) layer is hardened by the plasma
irradiation19-20.26.27  Second, the wrinkle positions are extrac-
ted from the microscope images as shown in Fig. 1(b) by using
our SW-UNet (small world U-Net)!, which is a convolutional
neural network (CNN) that reflects the concept of the small world
networks?82%. Third, the machine learning system utilizing
GAN?0 js trained to understand a way to convert the microscope
image, or the extracted wrinkle image, to the cellular force

extracted wrinkles

(generator)

prediction

Fig. 1 Overview of the methods and procedures that are utilized in the wrinkle force microscopy (WFM). a Schematic of our experimental setup. A
silicone membrane, which can evaluate the cellular force distribution (obtained by TFM) and the surface wrinkles simultaneously, is utilized in this work.
b The surface wrinkles are extracted from the microscope images by using our machine learning system (SW-UNet). ¢ The machine learning system
(GAN) is trained to understand the relation between the input images (raw microscope image, or extracted wrinkle images) and corresponding output
images (cellular force distribution). d After sufficient training, WFM can predict the force distributions only from the microscope images.
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Fig. 2 Three examples of the simultaneous measurement of wrinkles and
traction forces. Each column a-c describes (from left to right) raw image,
wrinkles (red lines), displacement field and traction force field. The white
scale bar in the first column images is 20 pm. The blue and green lines
inside the second column images describe the principal direction of the
wrinkle and the traction, respectively.

distributions as shown in Fig. 1(c). After the training, the net-
work can be utilized to predict the cellular forces just from the
microscope images as shown in Fig. 1(d).

Simultaneous measurement of wrinkles and traction forces.
Before applying the machine learning system, we begin by con-
sidering the results of the simultaneous force and wrinkle char-
acterization. Figure 2 summarizes representative results obtained
by the experiment and analysis. Due to the pairwise inward
pulling generated by cellular traction force (fourth column), the
substrates exhibit displacements toward the cell center (third
column). As the result of the contraction, the wrinkles
emerge mostly underneath the cells (second column). When the
cell size is small, the majority of wrinkles are aligned in a same
direction as in Fig. 2(a), while they tend to point in different
directions when the cell size is large and the traction is strong as
in Fig. 2(c).

Figure 3(a) shows the probability distribution function (PDF)
of the traction magnitude of N x M samples, where N = 103 is the
number of the images and M = 26 x 26 is the number of the force
observation points. The average traction is 50.3+57.1 [Pa]
(mean * standard deviation). Figure 3(b) shows that the wrinkle
length has a positive correlation with the mean traction of the
images, which is in agreement with our previous experimental
measurements2®, where the relationship between the wrinkle
length and applied force was experimentally investigated using
microneedles. The mean traction is simply obtained by averaging
the norm of the traction of the image as

_ 1M
F =gl 0

where m is the index of the observation points. The wrinkle
length is measured by counting the number of pixels after
skeletonizing the wrinkle images2°. The wrinkle extincts when the
mean traction in an image is less than 10 Pa, which is comparable
to the noise level or the resolution of the current TFM.

In order to analyze the principal direction of the traction, we
construct a symmetric stress tensor for each image as

M
)= 372 A 5 )+ ) 5)) @)

where f = (f,, f,) is the traction force, r = x,, — x, is the relative
vector from the image center x, and n = r/|r| is the normal vector.
By diagonalizing the tensor, we obtain the principal direction of
the traction ¢, (shown in Fig. 2, second column with green
lines on the bottom right corner) together with the corresponding
principal traction magnitude f,, from the eigenvalue that has the
largest norm. At the same time, we obtain the principal direction
of the wrinkles ¢,, (also shown in Fig. 2, second column with blue
lines on the bottom right corner) from the 2D-FFT (fast Fourier
transform) image of the wrinkles: ¢, is an angle that is
perpendicular to the direction that has a largest power spectrum.
Figure 3(c) shows that the traction force is contractile (f, <0) and
is almost linearly related to the wrinkle length (correlation
R=-082 in a range f,<—5 Pa). While earlier work!8:26
predicted a linear relationship between the traction force and
the wrinkle length, analytical treatment?! showed that the
relationship should be quadratic. The linear relation that is
measured here validates a more recent theoretical prediction
based on far-from threshold theory of wrinkling®! and is
consistent with the experiments on droplets on polystyrene
films32. As such, the wrinkles can be used for one qualitative
marker or indicator for rough estimation of the cellular traction
magnitude. Figure 3(d) shows that the two angles ¢, and ¢,, are
perpendicular most of the time. Since the wrinkle direction is
perpendicular to that of the force dipoles, the wrinkle would be
also practical to qualitatively predict the force directions, as
previously done elsewhere!®18. Therefore, the length and
direction of wrinkles provide a qualitative measure of the
magnitude and direction of forces exerted by cells on the
substrate, respectively.

Topological features of the wrinkle also give us insights into the
force distributions. As shown in Fig. 4(a), some cells exhibit
wrinkles in a single region (top) while the others show several
separated regions of wrinkles (bottom). By categorizing the cell
images (total 34 images) into two types as clustered patterns (9
images) and dispersed patterns (25 images), we summarize the
difference in the force distributions in Fig. 4(b, c): the average
force f and force isotropy I are larger (significant difference only
for f: p=1.15x10"2<0.05, . p=142x10"1) for clustered

pattern, where isotropy is evaluated as I = |f,,/ f;““l and f;““ is

the smaller eigenvalue of S;;. The wrinkles are generated by the
pairwise forces that are transmitted via focal adhesions. When the
wrinkles are dispersed, cells tend to be elongated, as seen in the
pictures, and we conjecture that the cells might not be strong
enough to generate continuous wrinkles as the clustered ones.
This result suggests that the topological features of the wrinkles
contain rich information about the force distributions.

Finally, the correlations between cellular properties and
characters of contractile forces are summarized in Table 1. Since
each variable has moderate positive correlations (~0.5) with all
other variables, it can be concluded that the cells are circular
when the size is larger, and both force magnitude and isotropy
increase with the cell size. Taken together, these results show that
wrinkles can provide qualitative information about the magni-
tude, direction, and distribution of traction forces that cells
generate. Nevertheless, a quantitative relation between the
wrinkles and traction forces is missing.

Traction force prediction using GAN. Next, we employ the
machine learning-based approach to provide a quantitative
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Fig. 3 Quantitative analysis of the traction forces and wrinkles. a Probability distribution function (PDF) of the traction magnitude. b The wrinkle length
as the function of the mean traction f. Note that the wrinkle length is evaluated by counting the number of pixels after skeletonizing the wrinkle images.
¢ The wrinkle length as the function of the principal traction f,. d Probability distribution function of the angle differences between the wrinkle direction ¢,,
and the traction ¢s. The figure suggests that the direction of the wrinkles is predominantly perpendicular to the principal direction of the force.
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Fig. 4 Topological features of wrinkles relate to force distributions. a Three examples of cells that exhibit clustered wrinkles or dispersed wrinkles. b The
average force f and ¢ force isotropy | for two groups of cells; cells that exhibits clustered or dispersed wrinkles. Note that asterisk symbols denote the
significance p <0.05 (*); two-sided unpaired t-test. The data numbers are n=9 (cluster) and 25 (dispersion), respectively. The box plots describe
minimum, first quartile, meadian, third quartile and maximum. Black dot is an outlier.

measure of the forces from the microscope images of wrinkles.

Table 1 Correlations between cellular properties (area, We train the network and evaluate the performance of the force
roundness) and force characters (force isotropy, estimation using our GAN network. Figure 5 compares the pre-
magnitude). dicted force distributions which were estimated by the three

different methods. As also shown in Fig. S1, we trained the net-
work with two different input images, the raw microscope images

area  roundness force isotropy force magnitude (second column in Fig. 5) and the extracted wrinkle images (third

area 1000 0.626 0.584 0.610 column), to compare the performance. We also evaluated the
.routndness ) 1_'000 ?51038 82'22 force distribution using a standard encoder-decoder type CNN
Isotropy ) : and show the results in the fourth column. The figure shows that
magnitude - - - 1.000

all the three methods reproduce approximately the same force
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direction as the ground truth (first column), and the forces are
perpendicular to the wrinkles.

Figure 6(a) compares the traction of ground truth ftrue and
GAN prediction fpred'Ct (input image: microscope images), and it

shows that the predlctlon is highly correlated with the experi-
mental data. Note that we used N = 252 training image sets and 3
test images for the evaluation. The total error is calculated by
averaging the error of 15 test images, which are obtained by

traction [Pa]
0 50 100 150
| eee—

ground truth GAN (microscope)  GAN (wrinkle) CNN (microscope)

Fig. 5 Prediction of the traction forces from microscope images. Each
column a-c shows the result of the traction force predictions by using
different methods (from left to right): ground truth, GAN prediction (input:
microscope image), GAN prediction (input: extracted wrinkle images), and
CNN prediction (input: microscope image). See further examples in
Movies S1-S4.
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Fig. 6 Quantification of the errors in prediction. a Comparison of the ground truth fey

repeating the evaluation 5 times with randomly selected different
test images. The correlation coefficient R averaging 15 test images
is 0.84-0.88 for GAN and 0.82-0.84 for CNN as shown in
Fig. 6(b), and it suggests that there are striking agreements. In
order to further quantify the error in the force estimation, we
introduce two errors: the error in the force magnitude ¢ and the
force direction g. The error &is defined to evaluate the difference
in the force magnitude between the ground truth f'"¢ and the
prediction fPredict ag;

lfpredlct ftrue |
E ftrue =
m

where M =26 x26 is the number of observation points, w,, =

firue /f is the weight function and f is the average force in the
image which is defined in Eq. (1). Note that we introduce this
weight function in order to put weight on the evaluation of large
vectors rather than small vectors, which give huge errors even for
small differences. Figure 6(c) shows that the error is 38-41% for
GAN, and it has better performance compared to the encoder-
decoder type simple CNN, which has an error of 50%. There is no
obvious difference in the two input images (microscope images
and wrinkle images), and this result indicates that the
performance of the force estimation would not improve
drastically by explicitly teaching the wrinkle position to the
machine learning system. A comparison of the distributions
between the prediction and ground truth is shown in Supple-
mentary Fig. 1. Next, we evaluate the angle difference between the
predicted force and the ground truth as

1M
gpredlct
Mo

-, (3)

gy = ngue | w,, (4)

where 6 = arctan(f, /f,) is the force direction. Figure 6(d) shows

that the errors are 19-23° for GAN, and again shows better
performance compared to conventional CNN (gg = 24-28°). Note
that the spatial distribution of errors & and &g is shown in
Supplementary Figs. 2 and 3. As for a traditional CNN, the loss
function is designed to measure the error between predicted
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tue and the predicted traction )‘pred'ct Dashed line shows a condition

feredict — ftrue Note that we randomly reduced the number of data point 1/5 for the V|S|b|I|ty b Correlation coefficient R between )‘true and fp'ed‘Ct ¢, d Errors of
the predicted traction compared to the ground truth data: ¢ error in the traction magnitude & and d the traction direction &4. Note that bars show average
errors £ standard deviations among the sample number n =15, and gray dots indicate the original data. The description m.s. denotes the microscope images.
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results and ground truth, and these criteria for the error are fixed
during the training. In the case of GAN, the loss function can
adapt to the specific problem dynamically because of the
discriminator network, and this difference brings GAN a better
score as shown in the figure. It is important to note that we have
so far acquired a minimal required amount of training (original
data: ~100) to demonstrate the novel concept of cellular force
detection from microscope images. These errors will be
minimized by increasing the number of the training data. As
demonstrated above, WFM succeeded in estimating the force
distribution just from the input images with limited levels of
errors in real time. Supplementary movies S1-S4 further show the
application of the proposed system in providing high throughout,
real time measure of the traction force distributions during
dynamic cell locomotion.

Discussion

We proposed a machine learning-based system, WEM, that can
predict cellular force distributions from microscope images. The
full process can be divided into three steps. First, we culture the
cells on a plasma-irradiated silicone substrate and measure both
the cellular traction force and the substrate wrinkles simulta-
neously. The cellular traction forces are obtained using the TEM,
while cells generate wrinkles on the underlying substrates. Sec-
ond, the wrinkle positions are extracted from the microscope
images by using SW-UNet. Third, we train the GAN system by
using sets of corresponding two images, the force distributions
and the input images (raw microscope images or extracted
wrinkle images), as the training data. The network understands
the way to convert the input images to the force distributions
from the training. After sufficient training, the network can be
utilized to predict the cellular forces just from the input images.

The relationship between morphology and biological functions
of living creatures has long been an intense subject of research33.
This topic has been investigated at the individual cellular level as
well?73%35_ in which cellular contractile forces were implicated in
diverse functions including proliferation, differentiation, apop-
tosis, and tumorigenesis. Given its complicated nature, however,
the general relationship associated with cellular forces remains
poorly understood. In this regard, the technology described here
has a potential to drastically advance research in this field as it
allows for easier acquisition of the cellular traction force data.
Indeed, compared to elongated cells, we found a stronger ten-
dency for circular cells to produce contractile forces that are more
isotropic and are higher in magnitude. Thus, WFM is expected to
be applicable, in addition to drug screening as we discuss below,
for extensively probing how the forces generated by cells is related
to their functions including maintenance of morphological
phenotypes.

It is instructive to discuss limitations and advantages of the
proposed approach. In this paper we have presented data for a
stiffness range 5.4—16.3 kPa. In principal, it is recommended to
do the training again for different stiffness in most of the cases,
except limited cases described below. As we have described in the
Methods section “Wrinkle mechanics”, conditions for the wrinkle
generation would be identical if the stiffness ratio is the same for
new experiment: Ey/E) = E,/E, , where E, and E,, denote the
Young's modulus for the elastomer and the oxidized surface layer,
respectively. E Therefore, the only thing one needs to modify is to
multiply E!/E? to the force that the WEM predicted for this case.
When the stiffness ratio is not fixed E)/E), # E,/E,,, WEM
cannot directly predict the force distribution since the wavelength
A (Eq. [9]) and the critical strain for the wrinkle generation . (Eq.
[11]) are different for this condition. Although it might be still
possible to estimate the strain considering the condition

differences, it is still difficult to do the direct prediction as before.
Additionally, since the wrinkle patterns are determined only from
the traction distributions, we expect the same principle can be
applied to other cell lines unless the cells have comparable sizes
with those used in the training data. When the cell size is not
comparable, the model should be trained once again since wrinkle
patterns with similar length scale might not be included in the
training data. Supplementary Fig. 4 also shows the distribution of
traction force for MEF (Mouse embryonic fibroblast), which has a
comparable size with A7r5 cells (training data).

Comparing with the TFM experiment (test data), the predic-
tion using our system is highly correlated with the experimental
data, with the averaged correlation coefficient of 0.84-0.88 and
with 38-41% errors in the force magnitude prediction and angle
errors 19-23° in the force direction. We expect that this error
would decrease further by increasing the number of training
images. The WFM would be a powerful tool to evaluate the cel-
lular forces efficiently because the forces can be predicted just by
observing the cells, which is much simpler method compared to
performing the TFM experiment every time needed.

TFM is one of the most used methods to evaluate the cellular
forces in mechanobiology study, but as the accuracy of the
measurement depends on the successful acquisition of the refer-
ence positions of the micro-beads that are obtained by removing
the cells after each of the experiments in conventional TFM, this
method is limited in throughput. The novel GAN-based system
proposed here overcomes this limitation as it provides the nearly
same information, with the high levels of the correlations with the
experimental data and the limited levels of the errors on the cell
mechanics. Importantly, this is achieved only from the still
images that are acquired by plating the cells on the silicone
substrate without taking care of the reference as the substrate
surface is known to become planar again upon the absence of the
cellular forces in a reversible manner. Given that early stages of
drug screening require testing of a massive number of candidate
compounds?0, our system, with the potentially high-throughput
data analysis capability, will be useful particularly in such
screening studies. It is important to note that our WFM is not the
one that essentially competes with TFM, but the huge advantage
of the proposed system is focused on its capability to provide data
equivalent to the TFM (with a level of the errors) and thereby
circumvent performing the TFM that needs considerable tech-
nical care. Rather, because the machine learning system depends
on the training data, further innovations in TFM such as super-
resolution imaging3®37 are potentially introduced to our system
to synergetically output more sophisticated data. Thus, our
approach presents a versatile framework that integrates the
sophisticated experimental techniques and the efficient
measurements.

Materials and Methods
Step 1: simultaneous measurement of traction forces and wrinkles. Based on
our previous studies!®19-20.26.27 we prepared the substrate that can reversibly
generate wrinkles upon application of cellular forces. First, a circular cover glass is
treated with oxygen plasma (SEDE-GE, Meiwafosis) to hydrophilize the surface
and is desiccated after fluorescent micro-beads (0.2 pm in diameter, carboxylate
yellow-green fluorescent beads; Invitrogen) in water solution are distributed on the
surface. Second, parts A and B of CY 52-276 (Dow Corning Toray) are mixed at a
weight ratio of 1.2:1 and poured onto the cover glass to create a PDMS layer with a
height of 30-40 um. Third, the cover glass is placed in a 60 °C oven for 20 h to cure
the PDMS. Fourth, oxygen plasma is applied uniformly along the surface of the
PDMS layer to create an oxide layer that works as the substrate for cell culture.
Finally, the substrate is coated with 10 ug/mL collagen type I solution for 3 h.
For the TFM measurement, fluorescent micro-beads are attached to the
substrate surface as position markers to measure the substrate deformations. The
beads need to be firmly adhered to the surface so that cells would not move the
beads due to endocytosis. In this work, the covalent bonding between the surface
and the beads of 0.001% v/v are performed by following two steps: (i) silane
coupling of the substrate surface using 3-Aminopropyltrimethoxysilane and (ii) the
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covalent bonding formation due to carbodiimide. The beads adhered on the glass
surface are monitored to keep the reference position even after removing the cell
using 0.25% Trypsin (Trypsin + Imm mmol/I EDTA-4Na solution; Fuji Wako
Pure Chemical Corporation).

Cell culture and microscope setup. A7r5 cells (purchased from ATCC) were
maintained at 37 °C in a stage incubator (INUF-IX3W; Tokai Hit) under a
humidified 5% CO, incubator. An inverted microscope (1X73; Olympus) with a
confocal unit (CSU10; Yokokawa Electric) and oil immersion lens (phase contrast,
UPlanFLN 60x/1.25 Oil Iris Ph3, Olympus Corporation) are used to capture the
cells and fluorescent beads. During the experiment, DMEM(L)+10% FBS+Peni-
cillin-Streptomycin (Fuji Wako Pure Chemical Corporation) is used as the culture
medium.

Note that the proliferation (Supplementary Fig. 5) and migration
(Supplementary Fig. 6) with three different substrates (CY with mixed ratio 1.2:1,
CY with 1.0:1 and glass) are evaluated, and we confirmed that the wrinkles have no
fatal or harmful effect on the cell nature.

Traction force microscopy (TFM). The software Image]/Fiji*® and its plugin
FTTC (Fourier transform traction cytometry)3?40 are used to evaluate the force
field from the displacement field. The substrate is considered as a soft elastic
isotropic material that follows the linear elastic theory. First, the displacement of
the substrate surface u is measured by tracking the movement of the fluorescent
beads using PIV (particle image velocimetry). The spatial resolution of the force
distribution is 3.44 pm x 3.44 um. Second, the traction field is obtained from the
displacement field by solving the governing equation for the elastic halfspace!42
given by

u(@) = / Gl HSY) )

where ¢ is the traction force, x and y are the positions of the displacement and the
traction force, respectively. G is the Green’s function that is given by

14+ ((1 -’ +ur? vr,r, )

nEr? (1 =) +vr;

G(x) (©)

I,

where E is the Young’s modulus, v is the Poisson’s ratio, r = (r,, 7,) = x — y is the
relative position vector and r = |r|. The software FFTC solves Eq. (5) in the Fourier
space, which is given by

i=(GT6+ 2D 6T @)

where tilde symbols denote the variables in Fourier space, A is the regularization
parameter®? and I is the unit tensor. In order to evaluate the optimal parameter A
for the Tikhonov regularization, the L-curve criterion*23 is applied. Note that E is
experimentally determined!® to be 5400 Pa and v is assumed 0.5 (incompressible)
that is a typical value for PDMS material.

Step 2: Wrinkle extraction. We use a method SW-UNet!®, which is a CNN based
on U-Net# to extract wrinkle patterns from the microscope image as shown in
Fig. 1(b). As the training data, we prepare 236 sets of corresponding two images
(microscope image and manually labeled wrinkle image). The number of data is
increased to 2596 by using the image augmentation techniques. We used NVIDIA
Titan RTX to accelerate the training process, and the Adam optimizer is utilized.
Note that the procedure until Step 2 was already developed and utilized in our
previous papers!®20, and GAN-based force estimation is newly presented in

this work.

Step 3: prediction of traction force based on GAN-based system. Assume that
we have N, sets of corresponding images and data; the input images (microscope
images, or extracted wrinkle images) and the force distributions as shown in
Supplementary Fig. 7. We effectively have the number of training data set 2N,
because the wrinkle image has only 1D information at each pixel (intensity I(x, y);
see also images in Fig. S1) while the force distributions have 2D information (2D
force, flix, y) = {f.(x, ), f,(x, »)}). We designed the network to evaluate the cellular
force only for a single axis at one time and focus only on the x-directional force at
each evaluation. An input image I; is used as the training data set (I;, f,) and (I, 5
where I is an image that rotates I; by 90 degrees.

The force distributions are converted to gray scale images that have intensities

I(f ;) = aarctan <‘%> + I (8)

where a =81.2, b=50.0, I,,;,g = 255/2 are the coefficients for the conversions, and
fa is the components of the force d =x, y. The force distributions in grayscale,
which are generated from the test images, can be converted back to the force using
this equation. As the training data, we prepared N =252 sets (63 original images)
of corresponding two images. Note that 63 images are acquired from experiments
on five different days and seven different dishes. We increased the number of
training data by rotating the images: 63 x 4 = 252. Python programs using

TensorFlow and training data are provided in the following Github link https://
github.com/Minatsukiyoshino/Wrinkle_force_microscopy.

Wrinkle mechanics. The wrinkle mechanics?? can be discussed by simplifying the
current substrate as an elastomer (Young’s modulus: E,,) with a stiff oxidized
surface layer (Young’s modulus E, thickness /). Note that the Poisson’s ratio v of
both materials are considered to be the same for simplicity. Substrate compression
results in a sinusoidal buckling with a wavelength A and amplitude A as

£ \1/3
%:2"<3TP> ! ©)

1/2
1) (10)

where ¢, is the critical strain that the wrinkle emerges, which is defined as

2/3
e = _L[3Em) a1
¢ 4 EP

The wavelength in our present system typically in a range A = 2—4um while the
thickness of the oxidized layer & is assumed to be in an order of 100 nm*>. By
assuming the ratio as A/h ~ 30, we can give estimations on the stiffness ratio as
E,/E,, ~ 300 and the critical strain as .~ — 0.01. Note if one needs to observe 20
wrinkles for each cell with a size ~100 um, the stiffness ratio should be E,/E,, <
1500 from Eq. [(9)]. Since the maximum strain is nearly e = —0.05 in the
experiment, the maximum amplitude of wrinkles is assumed to be A ~ 200 nm.

If the substrate stiffness is different from the trained condition, the system needs
to be trained once again with a new set of data. However, the trained system is still
applicable when the stiffness ratio E,/E,, of a new substrate is the same as the
trained condition since the criteria for wrinkle generation would be identical, as
shown in Egs. [(9)] and [(11)]. By multiplying the ratio of Young’s modulus, we
can estimate the force distribution for this case.

GAN structure. Our goal is to convert a physical quantity (wrinkle geometry) to
another physical quantity (force distribution). Even though the mechanical formula-
tion between the two quantities is given, it is not necessarily straightforward to solve
this inverse problem because of its complex nonlinear dynamics?!4, Instead, we
achieve this purpose by training our machine learning system to understand the
underlying mechanical rules. Considering this conversion of the physical quantity as
an image “translation”, we utilize GAN (generative adversarial network)*” in this work.

GAN mainly consists of two networks, generator G and discriminator D as
shown in Fig. S1, and the network is trained by a competition of two networks.
Goal of the generator G is to generate fake images (fake force distributions G(x))
from the input images x (microscope images or extracted wrinkle images) and tries
to mimic the real images y (real force distributions), while the discriminator D tries
to distinguish true and fake images from the group of images. As the training
proceeds, the generator learns how to produce fake images that are difficult to be
distinguished by the discriminator from the real images, and the discriminator
learns the rules to distinguish true/fake images. Once the training is completed, the
trained generator G can now be used as the translator to predict the force
distribution from the input images x even for test images, which were not included
in the training process.

In the present work, we design the generator G with a form of encoder-decoder
which is based on U-Net*4, and Markovian discriminator (PatchGAN)*8 is utilized
as the discriminator D. The generator G converts the input images x to the fake
force distribution images G(x). The images of force distribution, y or G(x), and the
input images x are concatenated into a single image as the input of the
discriminator. The two networks G and D are trained based on the labels of real/
fake, and we utilize the loss function £ that is used in pix2pix3%:

L(G,D) = E, [log D(x, y)] + E[log(1 — D(x, Gx)] + AL, (y,G(x)) ~ (12)

where I is the expected value, L;(G) is the L1 distance between generated images
G(x) and ground truths y and A = 100 is the weight for the L1 term. The first term
E[log D] denotes the expected probability that the discriminator categorizes y as the
real data, while the second term [E[log(1 — D(x, G(x)))] denotes the probability that
the discriminator categorizes the generated image G(x) as the fake data. The goal of
the generator G is to minimize £ while the discriminator D tries to maximize it.

We use the training parameters as follows: 100 training epochs (batch size = 1),
&=0.0002 learning rate for generator and discriminator, the parameters f3; = 0.5
and f3, = 0.9 are used for the Adam optimizer. The whole learning process is again
accelerated by Nvidia Titan RTX.

Statistics and reproducibility. 66 cell images and corresponding force distribu-
tions are collected from the experiments of 5 different days and 7 different inde-
pendently prepared dishes. The test data (3 cells) are randomly selected from the
dataset, and all others (63 cells) are utilized as the training data. By changing the
test data, the training and error evaluation were repeated 5 times. The sample
numbers 7 for each analysis are listed in the figure caption. The p value of the
unpaired t-test is evaluated with Microsoft Excel.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data for the graphs and charts in the figures are available in Supplementary
Data 1, and any remaining information can be obtained from the corresponding author
upon reasonable request. The machine learning code along with the training dataset that
generated all the cell mechanical information in Fig. 5 and Fig. 6 can be found on GitHub
(https://github.com/Minatsukiyoshino/Wrinkle_force_microscopy/).

Code availability
The source codes of Wrinkle Force Microscopy (WFM) are publicly available on GitHub
(https://github.com/Minatsukiyoshino/Wrinkle_force_microscopy).
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