
AS SOC I AT I ON STUD I E S ART I C L E

Mitochondrial DNA sequence characteristics modulate
the size of the genetic bottleneck
Ian J. Wilson1,†, Phillipa J. Carling1,2,†, Charlotte L. Alston2,3,
Vasileios I. Floros4,5, Angela Pyle1,2, Gavin Hudson1,2, Suzanne C.E.H. Sallevelt6,
Costanza Lamperti7, ValerioCarelli8,9, LaurenceA. Bindoff10,11, DavidC. Samuels12,
PassornWonnapinij13,MassimoZeviani4,7, RobertW.Taylor2,3,Hubert J.M.Smeets6,
Rita Horvath1,2 and Patrick F Chinnery2,4,5,*
1Institute of Genetic Medicine, 2Wellcome Trust Centre for Mitochondrial Research and 3Institute of
Neuroscience, Newcastle University, Newcastle upon Tyne, UK, 4Medical Research Council Mitochondrial Biology
Unit, Cambridge, UK, 5Department of Clinical Neurosciences, School of Clinical Medicine, University of
Cambridge, Cambridge, UK, 6Department of Clinical Genetics, Research Schools GROW/CARIM, Maastricht
UniversityMedical Center, Maastricht, Netherlands, 7Division ofMolecular Neurogenetics, National Neurological
Institute ‘C. Besta’, Milano, Italy, 8IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna,
Italy, 9Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna,
Bologna, Italy, 10Department of Neurology, Haukeland University Hospital, Bergen, Norway, 11Department of
Clinical Medicine (K1), University of Bergen, Bergen, Norway, 12Vanderbilt Genetics Institute, Department of
Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, TN, USA and 13Department of
Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand

*To whom correspondence should be addressed at: Department of Clinical Neurosciences, University of Cambridge, Addenbrookes Biomedical Campus,
Cambridge CB2 0QQ, UK. Tel: +44 1223217091; Fax: +44 122333694; Email: pfc25@medschl.cam.ac.uk

Abstract
With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in
∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide
range in the severity of clinical phenotypes seen in families transmittingmtDNAdisease, consistent with a genetic bottleneck
during transmission. Although preliminary evidence from human pedigrees points towards a random drift process
underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA
mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these
observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother–child
pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis
controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection
during transmission but show that differentmtDNAmutations segregate at different rates in human pedigrees. m.8993T>G/C
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segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic
bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily
determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees
transmitting pathogenic mtDNA mutations.

Introduction
First described in 1988, point mutations of mitochondrial DNA
(mtDNA) have emerged as a major cause of maternally inherited
human disease (1,2). Pathogenic mtDNA mutations causing a
severe multisystem phenotype are usually heteroplasmic, with
a mixture of mutated and wild-type mtDNA present in the
same individual. The percentage level of mutatedmtDNA largely
determineswhether a biochemical defect is expressed on a cellu-
lar level, and the inherited level of heteroplasmy correlates more
or less with the severity of the clinical phenotype (3).

Rapid intergenerational shifts in the level of mtDNA hetero-
plasmy levels were first observed in Holstein cows (4,5) and subse-
quently documented in human pedigrees transmitting pathogenic
mtDNA mutations. A restriction in the number of mitochondrial
genomes repopulating the female germ line (the mtDNA bottle-
neck) is thought to explain this phenomenon, supported by obser-
vations in mice (6,7). Although the initial analysis of human
pedigrees implied differences in the mtDNA bottleneck between
different families (8), the analysis of aggregate data did not support
earlier reports (9). Limited data analysis pointed towards a random
genetic driftmechanismacting onall heteroplasmicmtDNAmuta-
tions (9), but in some instances, there appeared to be evidence of
selection in favourofmutated genomes (10), even afterminimising
the effects of ascertainment bias. These conflicting data lead to
two fundamental unanswered questions: do all mtDNAmutations
behave the same during inheritance, and is there selection for or
against different levels of heteroplasmy? Clarifying the underlying
trends is key to providing reliable recurrence risks for patientswith
mtDNA diseases, and understanding the underlying mechanisms
involved may open new avenues for preventative treatment in the
future (11).

To address this issue,wehave performed the largest analysis of
inheritedmtDNAheteroplasmicmutations in humans todate. Our
findings show that differences in the behaviour of the mtDNA
bottleneck between specific pathogenic mtDNA mutations,
explaining the variability in clinical inheritance pattern observed
in human pedigrees transmitting different mtDNA mutations.

Results
Determining the potential impact of ascertainment bias

Given previous concerns about ascertainment bias when study-
ing the inheritance of heteroplasmy in human pedigrees (9),
first we performed a simulation experiment to determine the
possible consequences of identifying pedigrees through a clinic-
ally affected child. We then determined whether the standard
approach of omitting the affected proband minimizes any bias
to an acceptable level.

The simulations were based on an established model for the
mtDNA genetic bottleneck usingmeasurements of heteroplasmy
made in human oocytes for neutral alleles (i.e. with no selection)
(12,13). We studied the difference in heteroplasmy level between
a mother and child (ΔM-O) in simulated pedigrees in silico, with
three possible strengths of the mtDNA genetic bottleneck
(where bottleneck parameter, b = 0.9, is a weak bottleneck; b = 0.7
is an intermediate strength bottleneck; and b = 0.2 is a strong

bottleneck). We then modelled the effects of ascertaining the
whole pedigrees (Fig. 1) using three forms of ascertainment: (1)
through a mother (AAM), (2) through an affected child (AAC) or
(3) through the other unaffected child, but disregarding data con-
tributed by the affected child (AOC)—the latter mimicking the
conventional approach used to minimize ascertainment bias by
omitting to analyse data from an affected proband. For a full
description, see the Materials and Methods and Figure 1.

The simulations confirmed previous assumptions (9) that as-
certainment through an affected child (AAC) leads to a skewed
distribution of ΔM-O, creating the false impression that there is
selection bias in favour of the mtDNA mutation (Fig. 2, blue line
compared with the grey histogram). This was most prominent
when the bottleneck was narrow (i.e. b was low, a strong bottle-
neck). However, when families were ascertained through the
mother (AAM), or the data from the affected child (AOC) were not
included, the ΔM-O distribution resembled the entire data set
before sampling (Fig. 2, red and green lines compared with the
grey histogram), showing that omission of the proband (AAC)
minimized the ascertainment bias.

Analysis of human pedigree data

To generate the largest data set possible, we studied pedigrees
derived from a meta-analysis of published data [n = 532
mother–child pairs transmitting five common heteroplasmic
mtDNA mutations: m.11778G>A (n = 117), m.3460G>A (n = 74),
m.8344A>G (n = 96), m.8993T>G/C (n = 117) and m.3423A>G
(n = 128), citations shown in the Material and Methods]; and 45
new unpublished mother–child pairs [m.8344A>G (n = 9),
m.8993T>G/C (n = 2) and m.3243A>G (n = 34)] measured in two
centres. Given that there was no obvious difference between
the twodata sets (Fig. 3), wemerged all of the data andminimized
ascertainment bias by analysing separately data with and with-
out the clinically affected probands. The final data set included
467 mother–child pairs for the uncorrected data. m.3243A>G
was analysed before and after correcting for the known decrease
in leucocyte heteroplasmy levels for this specific mutation using
the published approach (14). For this correction, only individuals
with a heteroplasmy level of <95% were included to avoid pairs
where themother or offspring values corrected to >100%. This re-
duced the sample size ofm.3243A>G from 137 to 99 pairs. The en-
tire data set was used to determine the likely size of the
bottleneck parameter, b, using the model described previously
(12,13), incorporating the laboratory assay and laboratory site as
covariates. Bayesian statistical analyses were performed using
JAGS (15).

Foreachmutation, the average change inheteroplasmywasnot
significantly different fromzero, consistent with no selection for or
against the mtDNA mutations during transmission. The posterior
differences in bottleneck strength, b, are shown in Figure 4. As pre-
dicted from the simulations, the bottleneck strength was overesti-
mated (i.e. b is low, a narrower bottleneck) when we included pairs
ascertained through a clinically affected proband. However, after
the exclusion of affected probands, we observed a difference in
the strength of the bottleneck parameter, b, estimated for different
mtDNA mutations. m.8993T>G/C showed the largest difference,
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closely followed by m.3460A>G. A two tailed Bayesian hypothesis
test was used to determine whether the bottleneck parameter, b,
was significantly stronger for m.8993T>G/C than for m.11778G>A,
m.8344A>G and m.3460G>A. This test gave estimated posterior
probabilities of 0.031, 0.044 and 0.54. The bottleneck parameter dis-
tribution for the uncorrected m.3243A>G data was distorted, likely
due to the known confounding effect of changing heteroplasmy le-
vels with age (Fig. 4, far right hand panel) (14). We therefore used
age-corrected data in the Bayesian hypothesis test comparing the
bottleneck parameter, b, form.8993T>G/C tom.3243A>G, which re-
vealed an estimated posterior probability of 0.001. No other tests
reached statistical significance at the 5% level.

Discussion
Our analysis accounted for several sources of potential variabil-
ity, including different analytical techniques to measure hetero-
plasmy levels, different laboratories, differences between
individual pedigrees themselves and differences in maternal
age (16). Having minimised the likely effects of ascertainment
bias, we observed different rates of heteroplasmy segregation
during maternal transmission between mtDNA mutations. Pa-
tients harbouring the m.8993T>G/C mutation showed more
rapid segregation of heteroplasmy levels than any of the other
mutations. Although this trend has been suspected for some
time (17), the analysis we present here provides the first direct
comparison and a formal demonstration that m.8993T>G/C be-
haves differently to other pathogenic mtDNA mutations. Given
that the size of the mitochondrial genetic bottleneck is the pri-
mary factor determining the rate of segregation during transmis-
sion, our findings indicate differences in the behaviour of the
mtDNA bottleneck based on the underlying mtDNA genotype.

The more rapid segregation observed in m.8993T>G/C pedi-
grees is consistent with earlier reports of major shifts in hetero-
plasmy observed in pedigrees transmitting this mutation (17,18).
This explains why severely affected children are often the only
affected individuals in families transmitting this mutation, and
why their mothers are usually asymptomatic. Conversely the
less dramatic rates of segregation seen for other mtDNA muta-
tions explain why a wide range of heteroplasmy values are
seen in different family members, with oligo-symptomatic indi-
viduals transmitting the mutation in larger pedigrees, with mul-
tiplemoderate and severely affected familymembers (19,20). Our
findings also provide a potential explanation for the relative fre-
quency of different pathogenic mutations in epidemiological
studies (for example, m.3243A>G being much more common
than m.8993T>G/C), despite the same background frequency of
healthy carriers in the population with low heteroplasmy levels
(21,22). It should be noted, however, that this discussion relates
to the observed statistical trends, and although uncommon, rap-
idly segregating families with m.3243A>G (23) and slowly segre-
gating families with m.8993T>G/C have been described (24,25)
and are also consistent with our findings.

Studies in mice have shown a dramatic reduction in the
amount of mtDNA within single cells at an early stage in mam-
malian germ cell development (6,7). This reduction is sufficient
to explain the segregation of mtDNA heteroplasmy in mice (6).
Mathematical models predict that subtle differences in the size
of the mtDNA genetic bottleneck at this critical period will have
a dramatic impact on the rate of segregation of mtDNA hetero-
plasmy (26). Given emerging evidence that the amount of
mtDNA within cells can be influenced by the mtDNA sequence
(27,28), it is plausible that the different mtDNA mutations we
have studied cause differences in the amount of mtDNA within

the developing germ line (29), either through a replication
advantage or as a compensation for the lower rates of oxidative
phosphorylation and higher levels of reactive oxygen species
production (28,30). The differences in mtDNA level would lead
to differences in the rate of segregation through the genetic
bottleneck. Alternatively, selection either for or against a particu-
lar mutation would lead to differences in the rate of segregation
(31). First described by population genetic theory (13,32), the
effective bottleneck size, Ne, can be defined like the effective
population size during genetic drift. Studies in isolated reduced
populations have shown that selective pressures can influence
Ne,without directly influencing the true population size. The ap-
parent difference in bottleneck size between the differentmtDNA
mutations could thus reflect the selection pressure and need not
necessarily be caused by a difference in the actual amount of
mtDNA during germ cell development. Although it will be fascin-
ating to determine the underlying molecular mechanisms, this
will not alter our conclusions, or the relevance of our findings
for women transmitting the mtDNA mutations we have studied.

These findings have important implications for our under-
standing for the recurrence risks of heteroplasmic mtDNA dis-
eases, for the prevention of mtDNA disease using conventional
techniques such as prenatal and pre-implantation diagnosis,
and also suggest that therapies aimed at manipulating a germ
cell mtDNA content could influence the underlying rate of segre-
gation of pathogenic mtDNA mutations in humans. On the one
hand, increasing the mtDNA content in germ cells could slow
down segregation and thereby prevent the expression of severe
disease in subsequent generations. On the other hand, factors
known to reduce mtDNA content could lead to more rapid segre-
gation of heteroplasmic alleles increasing the probability of gen-
erating germ cells with very low heteroplasmy levels (as well as
very high heteroplasmy levels, which may not be viable at an
early stage in pregnancy). Finally, environmental factors leading
to selection pressure could also alter the behaviour of the genetic
bottleneck, as described earlier. Given the recent observation of
widespread low-level mtDNA heteroplasmy (33), these reduc-
tions inmtDNA content could lead to the emergence of pre-exist-
ing pathogenic variants, previously present at a very low level in
the female germline. With recent evidence that common genetic
polymorphisms of mtDNA can influence mtDNA levels (28), it is
conceivable that geographic, ethnic and even inter-familial dif-
ferences in segregation occur, influenced by non-synonymous
single base-pair substitutions on the background mtDNA haplo-
type. This could explain differences in the rates of segregation of
the same pathogenic mtDNA mutation, which have been de-
scribed in different families, and also influence the segregation
of low-level heteroplasmy, providing a potential mechanism for
the association of mtDNA haplogroups with common late-onset
human diseases (34).

Materials and Methods
Heteroplasmy levels in mothers and offspring

We studied the transmission of mtDNA heteroplasmy in both
published and new unpublished pedigrees.

Ascertainment of published data
Published pedigrees transmitting m.11778G>A, m.3460G>A,
m.8344A>G, m.8993T>G/C and m.3423A>G were identified
through a systematic review of the literature. We included all pa-
pers where the age, clinical status and laboratory methods were
clearly recorded, and there was at least one heteroplasmic indi-
vidual. These parameters, along with the laboratory location,
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were incorporated in subsequent analyses. We identified 77 pub-
lications, containing blood DNA heteroplasmy levels from 532
mother–child pairs transmitting 5 common heteroplasmic mito-
chondrial DNA mutations: m.11778G>A (n = 117 mother–child
pairs) (35–45), m.3460G>A (n = 74) (35,37,43,46–51), m.8344A>G (n
= 96) (52–62), m.8993T>G/C (n = 117) (24,62–84) and m.3423A>G (n
= 128) (20,54,85,86,87,88,89,90,91,92,93,94,95–105).

Unpublished data
Unpublished pedigrees transmitting the m.8344A>G (n = 9
mother–child pairs), m.8993T>G/C (n = 2) and m.3423A>G (n = 34)
mutations were identified from the following accredited diagnos-
tic laboratories: Newcastle, UK;Maastricht, NL;Milan andBologna,
Italy; Bergen, Norway and Munich, Germany. Genomics DNAwas
analysed in two laboratories: Newcastle, UK; and Maastricht, NL.

Quantification of heteroplasmy: Newcastle
Heteroplasmy was measured by quantitative pyrosequencing.
PyromarkAssayDesign Software v.2.0 (Qiagen)was used to design

primers for template generation, one of which contains a biotiny-
lated tag (*BIO), and the pyrosequencing reaction (Seq). For
m.3243A>G: F-*BIO-TAAGGCCTACTTCACAAAGCG, R-GCGATTAG
AATGGGTACAATGAG, Seq-ATGCGATTACCGGGC; for m.8344A>G:
F-*BIO-CATGCCCATCGTCCTAGAAT, R-TTTTTATGGGCTTTGGTG
AGG, Seq-TAAGTTAAAGATTAAGAGA; and for m.8993T>G F-AGG
CACACCTACACCCCTTA, R-*TGTGAAAACGTAGGCTTGGAT, Seq-
CATTCAACCAATAGCCC. Product templates were generated with
a GoTaq® DNA Polymerase (Promega) reaction according to man-
ufacturer’s protocol. Pyrosequencing was performed using the
Pyromark Q24 platform according to the manufacturer’s protocol,
using the designed pyrosequencing primers for each mutation.
Pyromark Q24 software was used to quantify the heteroplasmy
levels of each mutation through comparison of the relevant peak
heights of bothwild-type andmutantmtDNA. The accuracy of the
pyrosequencing assay was determined by generating wild-type
and mutant clones, which whenmixed at the correct proportions
mimicked a range of heteroplasmy levels between 0 and 100% for
each mutation. Each mixed sample was assessed for mutation

Figure 1. Overview of the inheritance model. Simulations used to determine the potential effects of ascertainment bias through a mother, and affected child, or an

unaffected child. Mothers = red; offspring = blue; unaffected offspring = green. Darker distributions represent ascertained pedigrees; lighter distributions represent

non-ascertained pedigrees. The probability of a family being recruited depends on an individual developing the disease, which in turn is correlated with the

heteroplasmy level. The probability that an individual is recruited, pr, based on a distribution that is zero below a level of heteroplasmy d1, and one above

heteroplasmy d2, with a linear increase between these points. The probability of being recruited with a heteroplasmy of (d1 + d2)/2 is 0.5, reflecting the increased

likelihood of developing symptoms and thus presenting clinically. AAM = families ascertained through an affected mother; AAC families ascertained through an

affected child; AOC families ascertained through an affected child, only but including the transmission from the mother to the other child, thus mimicking the effect

of deleting probands from the ascertainment of real pedigrees.

Figure 2. Modelling the effects of ascertainment bias on simulated pedigrees transmitting mtDNA heteroplasmy. Frequency distribution histograms for the difference

between maternal and offspring heteroplasmy levels (ΔM-O) for three different values of the bottleneck strength (bottleneck parameter, b = 0.9 a weak bottleneck;

b = 0.7 an intermediate bottleneck; and b = 0.2 a strong bottleneck), and for three different methods of ascertainment: sampling the families where there was an

affected mother—(ascertainment − affected mother, AAM, red); sampling the families where there was an affected child—(ascertainment − affected child, AAC, blue);

and sampling the families through an affected child, only but including the transmission from the mother to the other child—(ascertainment − other child, AOC,

green). The grey histogram gives the simulated distribution before any ascertainment, thus corresponding to data without any ascertainment bias. Each row reflects

different thresholds heteroplasmy values required to cause disease. The parameter d models the threshold for disease resulting from the pathogenic mutation. The

range given for d is the range of heteroplasmies where the probability of disease increases linearly from 0 (lower level) to 1 (upper level) (see legend to Fig. 1 for details

of the simulation model).
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Figure 4. Differences in the size of the mitochondrial DNA genetic bottleneck of five pathogenic mtDNA mutations. Violin plots show the probability density for a given

bottleneck strength parameter, b, calculated from actual heteroplasmy measurements in human pedigrees shown in Figure 3. All = all of the mother–child pairs. No

probands =mother–child pairs remaining after the exclusion of an affected proband, thus minimising ascertainment bias. ‘m.3243A>G corrected’ refers to

heteroplasmy values after a correction for the known decline in heteroplasmy levels with age (14).

Figure 3. Relationship between the level of mtDNA heteroplasmy in mothers and offspring for five pathogenic mtDNA mutations. Maternal and offspring heteroplasmy

levels are displayed as a proportion. Red symbols = affected proband, green symbols =mother of the proband, blue = other relatives. Circles =meta-analysis data,

triangles = new pedigree data measured at Centre 1, squares = new pedigree data measured at Centre 2. m.3243A>G corrected refers to heteroplasmy values after a

correction for the known decline in heteroplasmy levels with age (14).
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load using pyrosequencing and used to generate a standard curve
(Supplementary Material, Fig. S1).

Quantification of heteroplasmy: Maastricht
Heteroplasmy was measured by semiquantitative restriction
fragment length polymorphism (RFLP) analysis using mutation-
specific restriction enzymes. Primers used for m.3243A>G were
as follows: CAACTTAGTATTATACCCACACCAACTTAGTATTATA
CCCACAC (forward) and TTTCGTTCGGTAAGCATTAG (reverse);
for m.8344A>G: TCGTCCTAGAATTAATTCCC (forward) and GTAG
TATTTAGTTGGGGCATTTCACTGTAAAGCCGTGTTG (reverse); and
for m.8993T>C/G: CACACCTACACCCCTTATCCC (forward) and
TCATTATGTGTTGTCGTGCAG (reverse). For each forward primer,
an unlabelled and FAM-labelled primerwas available, polymerase
chain reaction (PCR) was performed on the GeneAmp PCR System
9700 (Perkin–Elmer Applied Biosystems) in a total volume of 50 µl,
containing 1×PCRbuffer (Invitrogen) and1 UofTaqDNApolymer-
ase (Invitrogen), 2 mmMgCl2 (Invitrogen) and0.1mmdNTP (Phar-
macia). Unlabelled forward (15 pmol) and reverse primer (3pmal)
sets were used in the first round. First round PCR started with
5-mindenaturationat 94°C followedby32cycles of 1-mindenatur-
ation at 92°C, 45-s annealing at 53°C and 45-s elongation at 72°C,
followed by a final elongation step of 7 min at 72°C. 15 ml of first
round amplification product was adjusted to 50 ml with second
round PCR mix, containing 1× PCR buffer (Invitrogen) 1 U of DNA
polymerase, 2 mmMgCl2 (Invitrogen) and a fluorescently labelled
forward primer (15 pmol). One final amplification cycle was per-
formed of 5-min denaturation at 94°C, 1-min annealing at 53°C
and 7-min elongation at 72°C. The labelled second round PCR
product (15 ml) was digested in the appropriate digestion buffer
in a total volume of 50 ml containing 10 U HaeIII (10 U/µl; Roche)
for the m.3243A>G mutation, 10 U BglI (10 U/µl) for the
m.8344A>G mutation and 10 U HpaII (10 U/ µl; Roche) for the
m.8993T>Gmutation. Them.3243A>G-amplicon contains an add-
itional HaeIII restriction site as an internal control for restriction
enzyme digestion completion. For each mutation, a sample with
known mutation load was included as reference. After digestion,
samples were purified using a QIAquick PCR purification kit (Qia-
gen). Samples were analysed by capillary electrophoresis on an
ABI Prism 3730 Genetic Analyser followed by GeneScan analysis.
To calculate the mutation load, the area of the mutation peak
was divided by the sum of the peak area of thewild-type andmu-
tation peak. Each forward primer contains a biotinylated tag. PCR
was performed using Taq DNA Polymerase (Invitrogen) according
to manufacturer’s protocol. The PCR fragments were digested by
mutation-specific restriction enzymes: Hae III (10 U/µl) Roche for
m.3243A>G; Bgl I (10 U/µl) Biolabs for m.8344A>G and Hpa II
(10 U/µl) Roche form.8993T>C/G. Digestion products were purified
(Qiagen Qiaquick PCR Purification). Fragmentswere separated and
analysed by capillary electrophoresis (automatic DNA Sequencer
3730, Applied Biosystems) to determine mutation load.

Simulation of mtDNA heteroplasmy inheritance

An overview of the simulations is shown in Figure 1. First, we gen-
erated a population of simulated mothers with different hetero-
plasmy levels. We then modelled the inheritance of heteroplasmy
from each of these mothers to two offspring (see below). Next we
determined the likelihood of the individuals being clinically
affected. We then sampled the simulated families based on the
following ascertainment criteria, in the following order:

1. Sampling the families where there was an affected mother—
(AAM). Here, we included the transmission from themother to
both offspring.

2. Sampling the families where there was an affected child—
(AAC), but themother was not affected. Here, we also included
the transmission from the mother to both offspring.

3. Sampling the families through an affected child, only but
including the transmission from the mother to the other
child—(AOC).

This sampling algorithmmimicked the different ways thatmother–
child pairs could be identified in a study of real human pedigrees,
and the resulting difference in distributions for the three different
pairs (Supplementary Material, Fig. S2) resembles those from the
real data from the human pedigrees shown in Figure 3.

We then compared the sampled mother–child pairs with the
original simulated pedigrees to determinewhether the ascertain-
mentmethod influenced the observed distribution of heteroplas-
my transmissions.

Simulating the transmission of mtDNA heteroplasmy (the mtDNA
genetic bottleneck)
We modelled the mtDNA genetic bottleneck using established
model derived from measurements of heteroplasmy made in
human oocytes (12,13). Here, the bottleneck ismodelled as an in-
finite population of mtDNA molecules that was instantaneously
reduced to the minimum bottleneck size N for g generations, be-
fore expanding back to a large size. We simulated the transmis-
sion of mtDNA heteroplasmy of a neutral allele from the
mother to two offspring through the bottleneck by approximat-
ing with a beta distribution with parameters α = pM b/(1−b) and β

= (1−pM)b/(1−b), where b is the drift parameter b = exp(−g/N). A
large b indicates a weak (or wide) genetic bottleneck. When g is
large compared with N, b approaches 0, corresponding to a very
strong (or narrow) bottleneck. Using this model, we generated a
series of simulated heteroplasmy transmissions from mothers
starting with a range of heteroplasmy values.

Statistical methods

Changes in heteroplasmy between mother and child were mod-
elled using the samebeta distribution as for the simulation, using
a hierarchical model with a different bottleneck parameter b for
eachmtDNAmutation. Measurements of heteroplasmy were as-
sumed to be normally distributed about the true values, with
censored at 0 and 1, and with an error rate σi for publication i,
to allow for different measurement technologies. Writing mi for
the observed maternal heteroplasmy for mother i, and oij for
the heteroplasmy for child j of mother i, where j = 1, . . . , ni, and
ni is the number of children for Mother I,

mi ∼ Nðμi; σ2
ri
Þ;

oij ∼ Nðηij; σ2
ri
Þ; and

ηij ∼ Beta
μibmk

1� bmk

;
ð1� μiÞbmk

1� bmk

� �
;

where bk ¼ expð�ðg=NkÞÞ;mi gives themutation forMother i and ri
gives the publication formother i. To test for systematic increases
or decreases in the level of heteroplasmy (i.e. selection), an add-
itional model was built. This allowed for changes in the expected
heteroplasmy in the offspring, by multiplying the expected child
heteroplasmy, μi; by a random factor, sk; which models selection
by increasing or decreasing the average heteroplasmy value. The
JAGS statistical package (15) was used to make inferences about
the strength of the bottleneck using the statistical model above.
A Bayesian framework was used with uniform priors between 0
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and 1 for the bk, and broad priors for the error parameters σ2
k: The

model and all JAGS and R scripts are available through the follow-
ing URL: github.com/ijwilson/mtBottleneck.

Bayesian comparison of bottleneck sizes

Maternal heteroplasmy values were corrected for age as de-
scribed (14). Bayesian hypothesis tests of bj versus bk were calcu-
lated using the empirical joint posterior distributions of bj and bk
from JAGS (15) and using 2maxðPðbj > bkÞ; Pðbk > bjÞÞ: The
JAGS script is available through the following URL: github.com/
ijwilson/mtBottleneck.

Supplementary Material
Supplementary Material is available at HMG online.
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