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A time-varying biased random walk 
approach to human growth
Béla Suki1 & Urs Frey2

Growth and development are dominated by gene-environment interactions. Many approaches 
have been proposed to model growth, but most are either descriptive or describe population level 
phenomena. We present a random walk-based growth model capable of predicting individual height, 
in which the growth increments are taken from time varying distributions mimicking the bursting 
behaviour of observed saltatory growth. We derive analytic equations and also develop a computational 
model of such growth that takes into account gene-environment interactions. Using an independent 
prospective birth cohort study of 190 infants, we predict height at 6 years of age. In a subset of 
27 subjects, we adaptively train the model to account for growth between birth and 1 year of age 
using a Bayesian approach. The 5-year predicted heights compare well with actual data (measured 
height = 0.838*predicted height + 18.3; R2 = 0.51) with an average error of 3.3%. In one patient, 
we also exemplify how our growth prediction model can be used for the early detection of growth 
deficiency and the evaluation of the effectiveness of growth hormone therapy.

Growth and development are complex nonlinear biological processes1. The growth process is driven by 
gene-environment interactions allowing for heterogeneity on a population level as well as adaptability to environ-
mental conditions2, 3. At the level of individual organisms, defects in growth can lead to the emergence of different 
health and disease phenotypes4–6.

Various models have been proposed to describe growth as a function of time including exponential, sigmoid 
or even more complex mathematical functions most of which are descriptive in nature7–10. A universal mechanis-
tic model was developed by West et al.11 in which growth is related to total metabolic rate partitioned for cellular 
maintenance and cellular growth. This theory predicts an exponential growth for the quarter power of body mass. 
The key assumptions of the West theory11 are based on the concept of continuous growth and allometric scaling 
but it does not fully explain human12 and invertebrate13 growth nor does it account for individual variability and 
adaptability. To better understand variations within a population as well as adaptability of the individual, it is 
necessary to relate mechanisms influencing growth operating on short time scales at the microscopic level to the 
overall growth of an organism and its adaptations to environmental fluctuations during development.

Observations of growth pattern in human infants provided evidence that growth is not continuous, but it 
occurs in saltatory bursts separated by waiting periods of nearly no growth14. The temporal dynamics of growth 
pattern suggested a non-random aperiodic behaviour15 and mechanistically, this pattern16–19 may be related to 
the pulsatile nature of growth hormone expression20–22 or cell cycle dynamics of mitotic start and stop phases23. 
Although continuous and salutatory growth may co-exist but because of the limited accuracy of measurements, 
it is difficult to resolve whether the two growth patterns are clearly distinct15, 24–26. Nevertheless, there is evidence 
that salutatory growth exists in infancy14 and even in school age24 although the exact distributions of salutatory 
intervals and growth amplitudes are still largely unknown.

Another general limitation of most growth models is that they are unable to fit population mean and variabil-
ity curves8, 19, 27, or the heterogeneous behaviour of growth trajectories of individual subjects15, 26. Furthermore, 
there is also no clear association between the variability of individual growth and the variability of population 
growth, and thus population based growth charts are not suitable to predict the variability of individual growth 
trajectories. Nevertheless, the latter issue may be of critical importance in clinical decision making28. In clinical 
practice, individual growth trajectories, including confidence boundaries, would be needed to detect early signs 
of abnormal growth due to chronic disease, or to judge the efficiency of treatment strategies such as growth 
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hormone therapy. For clinical decisions in the context of precision medicine, we need individual growth predic-
tion models including confidence boundaries rather than population based growth estimates.

In this study, we aim to link micro-scale events to overall growth pattern at the individual as well as population 
levels during preschool childhood development. Often referred to as a ‘window of opportunity’, preschool age is a 
critical developmental period5, 6, 29, during which complex chronic diseases can arise due to interaction of genetic 
and environmental factors often accompanied by growth disturbance. To this end, we develop a biased random 
walk model of individual growth in which the growth increments are taken from time varying distributions 
mimicking the bursting behaviour of observed saltatory growth patterns. The model is then extended to include 
genetic factors as well as the effects of possible variations in environmental conditions both at the individual and 
population levels. We train the model based on existing World Health Organization (WHO) growth charts27, 
and test its predictive ability by computing 5-year growth trajectories of individual subjects in an independent 
prospectively assessed longitudinal dataset from our laboratory. Finally, we exemplify the clinical utility of the 
modelling approach in a prematurely born small child with growth deficiency.

Results
We developed a stochastic model of biological growth based on the idea that growth occurs in discrete steps and 
can thus be described as a random walk. The steps of the random walk are taken from a distribution with time 
varying parameters with a positive mean. The model also includes a feedback system which determines when the 
distribution of step sizes changes. Specifically, a time window (w) is defined during which the parameters of the 
distribution do not change. The random walk starts with initializing the mean (μ) and variance (σ2) of the distri-
bution and generates w number of steps. Since the growth must approach a finite value, μ takes a smaller value 
after w steps gradually approaching 0. The cumulative running sum, which is also the position of the random 
walker, represents the growth curve. The model is solved analytically for two specific cases that describe how μ 
decreases in time: an exponential and a power law decrease (see Methods). Both models have 3 parameters that 
were adjusted to fit the mean growth curves of the WHO data set. The power law model provides a significantly 
better fit with a residual sum of squares 7 times smaller than the exponential model (Fig. 1). Thus, for the analysis 
of individual subject’s growth curve, we only retain the power law model and extend it computationally as follows.

The computational model incorporates numerically a growth rate function that determines the time vary-
ing bias. Since the growth curve follows a power law with an exponent 1 + α (see Eq. 10, Methods), the growth 
increment, which is the derivative of the growth curve, is also a power law with an exponent α. We therefore 

Figure 1.  (A) Comparison of the fits of the exponential (red) and power law (green) growth models to the 
population mean of boy’s height in the World Health Organization (WHO) data set. (B) Comparison of the sum 
of square residuals of the exponential and power law model fits. Note that the error of the exponential model is 
more than 7 times larger than that of the power law model.
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prescribe that the growth increments are taken from a lognormal distribution with a mean that decreases with 
time after w steps according to a power law with an exponent α which is obtained by fitting the derivative of the 
mean growth curve of the WHO data set. The variance of the lognormal (σ2

ampl) is obtained from fitting (see 
below). Additionally, we introduce stochastic fluctuations in the time intervals between growth steps, the stasis 
times, which are also modelled as a lognormal with a given mean stasis time (Tstasis) and variance (σ2

stasis). Figure 2 
illustrates how these distributions determine the overall growth rate.

Using a grid search, we fit the mean as well as the mean ± 2SD height curves in the WHO data set with our 
computational model. Accordingly, we find that for boys, the optimal values for Tstasis, σstasis and σampl are 10 days, 
0.1 days and 0.3 cm, respectively, whereas these numbers for girls are 11 days, 0.2 days, and 0.3 cm, respectively. 
While the model fit the mean height curve of the WHO data well, the 2SD curves were best fit if we also allowed 
an additional random variation in the genetic component. To do this, the value of α was randomized within 
±2.5% of the value that corresponds to the height at birth for each individual run for a given subject. With these 
parameters, the overall error of the fit for population mean was 0.69 cm and for the ±2SD it was 0.99 cm. Figure 3 
compares the simulated mean and ±2SD height growth curves with those in the WHO data set in boys (A) and 
girls (B).

For clinical decision making, individual growth trajectories with confidence intervals are needed. Our fully 
established computational time-varying biased random walk model allows us to simulate a family of random 
walks for a subject starting from any age if the value of α is known. To obtain α, we first carry out a regression 
between the α values obtained from the fitting of Eq. 10 to the WHO mean, the mean ±SD and the mean ± 2SD 
curves and height at 1 month of age. For any given child, this approach provides individual runs as well as an esti-
mated mean trajectory and SD curves (Fig. 4). These trajectories are based on the assumption that the individual 
child statistically behaves similarly to the reference population in the training set. It can be seen that the bounds 
around the mean increase as a function of time. The individual trajectory is based on the height at the chosen 
initial age and the allowed variations correspond to the population-based variations derived from the WHO data. 
We next launch 500 trajectories using the height at 5 weeks of age in 190 subjects from the BILD (Bern Infant 
Lung Development) data set (Table 1)29 and compare the predicted and measured heights at 72 months of age 
(Fig. 5). While there is no difference between the predicted and measured heights with an average error of 3.9%, 
the regression slope is 0.476 (p < 0.0001), the R2 is only 0.253.

To improve on the prediction, we note that there are environmental influences that can also change both the 
initial and later growth rates. In order to allow adaption to such fluctuations, we build an adaptive correction 
mechanism into the model using serial observations. The difference between model prediction and measured 
height at any given age is likely a consequence of external influences such as feeding pattern or diseases. We 
account for such effects by adaptively correcting the value of α as follows. We first carry out a regression between 
the α values obtained from the fitting of Eq. 10 to the WHO mean, the mean ± SD and the mean ± 2SD curves 
and height at 1, 2, 4, 6 and 12 months of age. The procedure is the same as that described above for the initial birth 
height. This allows us to set up a look-up table of population α and intercept values at these time points. Next, 
given the height and the corresponding α at t1 (e.g. 1 month of age), we use our model to predict the full distri-
bution of height at the next measured age t2 (e.g. 2 months). Comparing the measured height to the predicted 

Figure 2.  Schematic of the growth process modelled by the time-varying biased random walk. The distribution 
of stasis times is shown on the x axis by the blue lognormal curve. Two distributions of growth increment 
amplitudes are shown by the lognormal curves on the y axis. The blue represents a faster growth with larger 
increments at an younger age while the brown demonstrates a later stage of growth with smaller increments. For 
the stasis time, only one curve is shown as experiments do not suggest that this distribution changes with age. 
On this diagram, the red vector represents fast growth with short stasis time and large increments whereas the 
yellow vector corresponds to slow growth.
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distribution of height, we determine the Bayesian probability ph that the measured height at t2 is the actually 
observed value. This allows us to adjust the model and launch a set of new trajectories starting from t2 as follows: 
(1) α is corrected by a small amount depending on the distance between the previous value, α(t1), and the current 
value from the look-up table, α(t2), as follows:

α′ = α + α − α −(t ) (t ) c[ (t ) (t )](1 p )2 1 2 1 h

Figure 3.  Simulated means and 2SDs of growth curves in comparison with the WHO training data set for boys 
(A) and girls (B).

Figure 4.  Simulation of a family of individual random walks (red, green and blue lines) of a given subject 
starting from birth. The probabilistic simulation allows us to calculate the mean (black solid line) as well as 
confidence intervals (+SD, black dashed line). The inset shows a magnified region of the growth with the 
3 discrete random walk realizations. Note the staircase-like growth curves corresponding to the bursting 
behaviour.
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and (2) we start the new trajectories from the measured height at t2 using the corrected α’. The value of c = 0.05 
was found by comparing predictions and measured height. Note that if the predicted and measured heights are 
very close, ph is nearly 1 and no correction is required. With any subsequent observation, we thus reset and nar-
row the probability distribution of observing future height values. Also notice that the entire history of measured 
height values influences the adaptive predictor through the above equation.

To test the predictive ability of the model on an individual basis, we calculate the individual growth trajecto-
ries and the corresponding ±SD curves for a subset of 27 subjects of the BILD data set for which multiple meas-
urements were available (Table 2). These simulations are based on 500 realizations of the random walk model. 
Figure 6A demonstrates the predictive ability of the model when the growth history is not taken into account. 
The slope of the regression line is somewhat reduced compared to the full data set but the R2 increases to 0.35 
(p = 0.0012). Next, we utilize the history of growth below one year to predict height at 6 years using our adaptive 
correction method applied at 1, 2, 4, 6 and 12 months of age (Fig. 6B). In this case, substantially more of the 27 
children are found to grow within their individual bounds of growth trajectory. Furthermore, the regression line 
has a slope much closer to unity [measured height = 0.838*predicted height + 18.3] with a significantly increased 
R2 = 0.51 (p < 0.00003). Additionally, paired t-test shows no difference between measured and predicted heights 
with an average error of only 3.3%.

Finally, we demonstrate how our model can be used to detect growth deficiency. Figure 7 compares the time 
course of measured heights with the predicted trajectory in a female subject born prematurely and small for gesta-
tion. The model captures well the measured time course until 39 months of age when the subject started receiving 
growth hormone therapy. First, when compared to the WHO mean-2SD, it is apparent that the model predicts 
that the subject would not reach normal height much earlier than she actually was given therapy. Second, the 
model can be used to detect the efficiency of the therapy as the model can predict the trajectory without therapy. 
Lastly, for comparison, the much simpler analytical model-based prediction of height and SD are also plotted 
demonstrating a good agreement with the full numerical model.

Mean Median SD CI

N 190

sex (boys/girls) 107 56.3%

Gestational age (weeks) 39.82 40.00 1.19 0.03

Height at birth (cm) 49.57 50.00 2.06 0.04

Age at first measurement (days) 35.40 35.00 5.27 0.15

Height at first measurement (cm) 55.05 55.00 2.38 0.04

Z-Scores (SDS, WHO) 0.07 0.10 1.09 14.50

Age at second measurement (years) 6.02 6.05 0.33 0.05

Height at second measurement (cm) 117.65 118.00 5.56 0.05

Z-Scores (SDS, WHO) 0.39 0.43 1.03 2.62

Predicted height at second measurement (cm) 117.09 117.25 5.48 0.05

2 standard deviation of prediction (cm) 2.64 2.62 0.26 0.10

Table 1.  Biometric data of the BILD cohort. Height at 6 years was predicted from length at 5 weeks of age 
(n = 190). SD: standard deviation, CI: confidence intervals, Z-Scores SDS: standard deviation scores from age 
related height based on the WHO reference values27.

Figure 5.  Measured height at 6 years of age as a function of predicted height computed from height at age of 1 
month in 190 children from the BILD data set.
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Mean Median SD CI

N 27

sex (boys/girls) 12 44.4%

Gestational age (weeks) 39.9 40 1.05 0.41

Height at birth (cm) 49.8 49.5 1.78 0.71

Height at 1 month (cm 53.2 53 2.4 0.95

Height at 12 months (cm) 74.5 73.5 2.48 0.98

Height at 6 years (cm) 116.9 115.9 4.94 1.95

Model predicted height at 
6 years (cm) 117.6 117.3 4.21 1.67

Table 2.  Height data of a subset of the BILD cohort and model predictions. Definitions are given in Table 1. 
There is no statistically significant difference between measured and model predicted height at 6 years (paired 
t-test).

Figure 6.  Prediction of measured height in the subset of 27 subjects who had complete data set between birth 
and 12 months of age. (A) Prediction of height at 72 months of age with the time-varying biased random walk 
model using 500 realizations and utilizing height only at 1 month. (B) Adaptive prediction of height at 72 
months of age with the time-varying biased random walk model using 500 realizations as well as utilizing the 
growth history including height values at 1, 2, 4, 6 and 12 months of age in the same 27 subjects. Note that the 
adaptive Bayesian approach significantly improves the overall long term predictability of the target height by 
including a history of previous observation. Dotted line: line of identity; red line: regression line; blue circles: 
boys’ height; green circle: girls’ height; red cross in circles: those subjects whose measured height was outside the 
mean ± SD of the prediction.
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Discussion
We have developed a probabilistic, adaptive growth model based on a time-varying biased random walk concept. 
The model was trained on the WHO population height curves. We also derived an analytical solution for the 
mean and SD of the growth model. Model parameters were estimated by fitting the WHO height curves includ-
ing their population percentiles. To our knowledge, this is the first model to relate the discrete salutatory nature 
of individual growth trajectories to the variability of population growth curves. Using the model, we are also 
able to construct a family of potential growth trajectories for an individual child and hence we can estimate the 
entire probability distribution of predicted height and hence derive confidence intervals that a predicted target 
height will be reached within a given time period. In an independent dataset of 190 Swiss children from our birth 
cohort29, we compared the predicted target heights at 6 years from measured data at 5 weeks and compared them 
to the prospectively measured heights at 6 years. We found a good correlation between prediction and measured 
outcome with an average error of only 3.9% and in a subset of 27 subjects the error dropped to 3.3% when an 
adative approach was applied.

Clinical implications.  As an example of the power of modelling approach, we analysed the growth of a single 
child born prematurely and small for gestation. Her natural growth followed the upper limit of the trajectory pre-
dicted by our model. It is clinically important that the predicted trajectory did not reach the WHO population’s 
3rd percentile. This implies that the child had limited natural chances to reach normal height during growth. The 
decision to use growth hormone therapy could have been made earlier had such a prediction been available for 
the clinician. Additionally, after the start of growth hormone therapy, the measured height immediately exceeded 
the upper bound of the model predicted height. Given that growth hormone is not always effective in infants born 
prematurely and small for gestation, obtaining immediate evidence of treatment response is critical since poten-
tial side effects of treatment and costs need to be considered.

Classical growth models are based on normative age related height or weight distributions and the predic-
tion of individual growth is always related to the population’s age related height distribution. Population based 
growth charts are not able to account for the large variability of individual growth patterns26. Although regression 
based models are available7, 9, 10, 30, to our knowledge, no adaptive mechanistically based prediction model exists 
which could predict an individual’s growth from any given starting age and which also provides individualized 
probability that the target height will be reached. In addition to growth hormone therapy, the latter is particularly 
important in other clinical decision making processes. For example, in paediatric pharmacology28, a long stand-
ing problem is that the general practitioner needs to dose medication without the knowledge of current height or 
weight, but with biometric measurements made at the last visit in the general paediatric practice. To estimate the 
risk that the dosage is incorrect, it is necessary to know the probability that the prediction of the current height 
or weight is true. If the probability of a correct prediction is low, the patient’s actual height or weight needs to be 
assessed before medication. Similarly, in situations of treating sick children with growth deficits (Fig. 7), prob-
abilistic estimates of the time interval beyond which a significant improvement in the child’s growth pattern is 
expected helps medication planning. Furthermore, environmental conditions (e.g. nutrition, toxic substances) 
may change during a child’s development. In such cases, the estimated growth cannot not easily be derived from 
WHO growth data27. In current clinical practice, the prediction of target-height is only based on paternal height 
measures and end-height predictions are based on bone X-rays. Both methods, however, do target height in 
adolescence. For early preschool age, however, our adaptive, probabilistic growth prediction may be more useful 
and can adjust for environmental influences and take into account the information content of the history of serial 
past height measurements.

Figure 7.  Measured (green circles) and predicted height (blue solid line) and ±SD (blue dashed lines) in a 
girl born prematurely and small for gestation, following the upper limit of her personal growth trajectory and 
rapidly exceeding her predicted trajectory after starting growth hormone therapy at the age of 4 years. The 
WHO mean and ±2SD curves for girls are also plotted (black). For comparison, the predictions of the analytical 
model are also shown (red).
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Limitations of the methods and the model.  The concept of time-varying biased random walk is useful 
and can be extended to predict other growth curves. For simplicity, we have restricted the model to height pre-
diction within the preschool age range although prediction of weight gain is equally important. Future studies 
should address the issue of the more complex weight gain characteristics in this age range. Nevertheless, the 
concept could be adapted to older age ranges where hormonal factors and puberty significantly complicate the 
prediction. Such predictions may require more complex time-varying increment distributions than the power law 
applied here. While there are proposed mechanisms for the salutatory growth such as pulsatile growth hormone 
expression20–22 and cell cycle dynamics23, our model only incorporate the discontinuous nature of growth at the 
level of the organism.

We have also made several assumptions, which need to be considered in future work generalising the method 
for other age ranges. At birth, length within the WHO data set is assumed to be normally distributed. We also 
assumed that the birth height is determined genetically although feeding and environmental fluctuations prob-
ably contribute significantly. To account for the population variability, it was necessary to introduce a small 
intra-individual random variability (2.5%) of growth rate for each subject. Furthermore, most parameters of the 
model were derived from fitting the training set of the WHO data. Although this is a limitation of the approach, 
the WHO data set has been shown to be appropriate for a wide range of situations27. If data specific to the country 
or region were available, these parameters may be fine-tuned for a given type of population in future studies. This 
limitation together with the unknown environmental factors such as feeding pattern may explain the fact that the 
model is able to capture only about half of the variance of the individual data (Fig. 6B). Additionally, the biologi-
cal evidence and quantitative description of saltatory growth and waiting time distributions is limited especially 
in human subjects. The best evidence is in infancy and early childhood14, 17, 24 but data for older age groups to 
allow quantification of the width of the random walk distribution are scarce. Any new data, however, can be 
easily incorporated into the framework of the current model by changing the distributions or improving on the 
adaptive correction. For example, in case the growth is more continuous in a certain age, the distribution of incre-
ments would need to peak around a small value and the stasis times should be in the same order of magnitude as 
the time resolution of the measurements. In this case, the computational model simply reduces to a continuous 
growth model without discrete steps. The analytical model, however, has a general form that does not depend on 
the knowledge of the exact distributions of the salutatory steps (Eq. 10). If more specific information on saluta-
tory and continuous growth patterns become available, future studies could improve the predictive power of our 
computational model. The use of lognormal distribution of waiting times may be related to how random walks 
with a drift lead to lognormal escape times31. Finally, the calculation of the SD in the analytical model assumes 
that the increments are uncorrelated. In its current form, the analytical model can only be used to predict the SD 
and hence it is not possible to apply in an adaptive manner which is why it was only used for the individual child’s 
case in Fig. 7.

In summary, our probabilistic, adaptive growth model represents a novel approach to understand and quan-
titatively predict growth and development in young children. The model links discrete growth in individuals to 
continuous population growth curves and is of high relevance for clinical decisions in the context of precision 
medicine. To our knowledge, this is the first individualized growth prediction algorithm, which can be per-
formed based on previous history of observations. This improves the safety of growth predictions for clinical 
decision making such as drug dosing. Furthermore, the statistical predictions by the model could be automated 
for tele-monitoring purposes combined with automatic learning from each observed height. Such an approach 
may also help detect and better quantify the probability of upcoming growth deficits in chronic diseases at an 
early stage and the effects of subsequent treatment.

Materials and Methods
Random walk models of growth.  The model can be used to mimic the growth of an organ or the entire 
body with fluctuations during the process. The model is a feedback system including a random walker whose 
steps x are taken from a distribution with time varying parameters. We first define a window of length w during 
which the parameters of the distribution do not change. The random walk starts with initializing the mean (μ) 
and variance (σ2) of the distribution with values μ(1) and σ2(1), respectively, and generating w number of values 
for x. During the ith window of length w, the walker takes values from a probability distribution written as p(i,x) 
with mean and variance of μ(i) and σ2(i), respectively. Since the growth must approach a finite value, we require 
that μ(i) gradually decrease approaching 0 with increasing i. Once a long series of x is obtained, the final output of 
the model is the cumulative running sum of x:

∑=g(k) x
(1)1

k

j

For convenience, we assume that k is an integer multiple of w, that is, k = nw. The growth process is then 
represented by the time series of g(k). The value μ(1) can be thought of as the initial level of growth factors (e.g. 
hormones) present in the system at the beginning of the biological growth process. The window w can be con-
sidered as a sensor that measures the average level of growth and the speed of growth is reduced at w intervals. 
Thus, as μ(i) monotonously decreases in successive windows, the growth slows down. The σ2(i) can then be used 
to generate variabilities representing fluctuations within an individual subject.

To obtain an analytic model, we partition the sum in Eq. 1 into segments of length w.
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∑ ∑ ∑= + + … +
+ − +

=
g(k) x x x

(2)1

w

j
w 1

2w

j
(n 1)w 1

k nw

j

If w is large, we can approximate each sum as the corresponding μ times w:

= µ + µ + … + µg(k) w (1) w (2) w (n) (3)

which is also the expected value of g(k) in Eq. 2. Furthermore, if the increments in Eq. 2 are not correlated in time, 
g(k) is a simple sum of independent random variables. Therefore, the variance of g(k) is simply the sum of the 
variances of each random variables which is constant within the time window of w and hence it can be written as:

σ = σ + σ + … + σ(k) w (1) w (2) w (n) (4)g
2 2 2 2

For simple choices of μ(i), Eq. 3 can be solved analytically. For example, if μ(i) = δμ(i − 1) with 0 < δ < 1, we 
can write Eq. 3 as:

= µ + δ + δ + … + δg(k) w[1 ] (5)0
2 n

where we introduced μ0 = μ(1). This geometric series can be summed up in a closed form

=
− δ

− δ

+
µg(k) w1

1 (6)0

n 1

Finally, for large k = nw, we can replace k with continuous time t and after some manipulations we obtain the 
following solution:

=
− δ

− δ −γµ eg(t) w
1

(1 ) (7)
t0

where γ = ln(1/δ1/w) and hence τ = 1/γ is the time constant of the system. Eq. 7 shows that the time course of the 
continuous biased and time varying random walk is an exponential saturation. The w can be considered as a time 
scale of the sensor which smooths the microscopic fluctuations of the growth process. The initial growth rate, μ0, 
only affects the saturation level. Note that the strength of the feedback, δ, enters both the saturation level and the 
velocity with which the saturation is approached.

Another simple choice for the mean to decrease is a power law form μ(i) = μ0iα with α < 0. In this case, Eq. 3 
becomes

∑= µ + + … + = µα α α αg(k) w[1 2 n ] w i
(8)0 0

1

n

Using n = k/w and transitioning to the continuous time domain, Eq. 8 is written as

∫= µ τ ταg(t) w d (9)0 1

t/w

Eq. 8 is then written in its final form as

= ++αg(t) At B (10)1

which is a power law growth function with A = μ0w−α/(1 + α) and B = −μ0w/(1 + α). However, due to the relation 
among the 4 parameters given by B = w1+αA, only 3 of them are independent. Furthermore, Eq. 10 is similar to 
the extension of the Faulhaber formula to non-integer powers32 but it provides an improved approximation of 
Eq. 8 with an error <0.6% for a 6 year prediction of g(t) when α = −0.5.

To derive a formula for the variance of the growth curve, we note that Eq. 4, can be written in the same form 
as Eq. 8 by assuming that σ(i) = sμ(i) where s is a constant. The same arguments can be applied as for the mean 
and the final result is:

σ = ++ α(t) Ct D (11)2 1 2

where C = s2μ0
2w−2α/(1 + 2α) and D = −ws2μ0

2/(1 + 2α).

A computational model of height.  To extend the analytical model computationally, we note that the 
derivative of the power law in Eq. 10 defines the increment distribution of growth. Taking the derivative of the 
WHO height data and applying a linear regression in the log-log domain, we find that the exponent α is −0.543 
with an intercept of 1.037 for the average height of boys whereas these numbers for girls are −0.511 and 0.93, 
respectively. The WHO data reveal a range of growth rates within the population of both boys and girls; therefore, 
we also fit the mean ± SD and the mean ± 2SD increment curves, with the power law model. For boys, this gives 
an α of −0.505 for the mean + 2SD curve and −0.589 for the mean − 2 SD curve whereas for girls, these expo-
nents are −0.483 and −0.546, respectively.

While the fully deterministic power law model captures the mean growth rates, it does not account for the 
distribution of growth increment amplitudes and waiting times (stasis) at each step of the random walk. We 



www.nature.com/scientificreports/

1 0Scientific REPOrtS | 7: 7805  | DOI:10.1038/s41598-017-07725-4

incorporate these stochastic elements into a computational model and demonstrate that in the statistical sense, 
this model also describes the average height curves in the WHO data27 which is then taken as a training set for 
the model. The overall growth velocity is determined by variations in both the growth increments and the stasis 
intervals as demonstrated schematically in Fig. 2. The relationship between the amplitude of the random walk 
steps and length of stasis periods determine the growth vector. Long stasis times and low amplitudes are related to 
slow growth and via versa. For growth in height, the amplitudes must be non-negative. If the model was applied 
to describe weight, an occasional loss can also be allowed and hence the amplitudes can take negative values.

Growth increment amplitudes, stasis times and their variations have been described in the literature only 
in small selected populations of different age groups. In infancy, peak amplitudes of salutatory growth were 
described to be between 0.46 and 1 cm14, 24 and their variations between 10 and 40% while in early school-age 
these numbers were between 0.2 and 0.42 cm with variations of 10 to 25%14, 24, 25. The corresponding stasis 
times were reported to be between 10 and 17 days with variations of ~10%. However, there is no systematic 
data on developmental changes of growth increments and mean stasis time, Tstasis, and their variances σampl and 
σstasis, respectively. These parameters can, however, be estimated by fitting model to the WHO population data. 
Additionally, due to the strong genetic component of growth33, the initial height at birth will be taken to represent 
genetic predisposition to growth. Thus, a linear regression between α values of the mean and mean ± SD and 
±2SD growth curves and the corresponding initial heights at birth provides the genetic background in the model.

To construct a computational random walk model, we use the following assumptions: (1) the time variation of 
the mean of the growth increment distribution is obtained by differentiating the growth function in Eq. 10 with 
respect to time which is a power law with an exponent α. Note that since the power law analytic model provides a 
better description of the data (see Fig. 1), only this model is retained for further analysis. (2) Since experimental 
data show a right skewed distribution of height increments34, we assume that the increment distribution is log-
normal which also guarantees that all increments are positive. (3) We assume that the distribution of stasis times 
is also lognormal with a mean Tstasis and variance σstasis. Assigning specific values for these parameters and know-
ing the height at birth that determines α through the regression as described above, we can simulate individual 
growth curves. Thus, using 200 random walks for a single subject, we compute the expected growth curve of the 
subject by ensemble averaging. Since the population distribution in the WHO data set for heights is normal27, we 
mimic the growth of 100 infants with a normal distribution of initial heights at birth (mean height is 49.88 cm 
and SD is 2.1 cm). Summing up all these growth curves, we determine the least square error between the simu-
lated population and the mean and ±2SD height trajectories of the WHO data which allows us to optimize these 
parameters to best describe the WHO population. Once the model is set up, we introduce an additional feature 
of the model, an adaptive correction mechanism that accounts for environmental influences as described in the 
Results section. Finally, the model is used to predict height at 6 years of age in an independent population data set.

Experimental data.  In a prospective birth cohort (BILD)29 of preschool children (40% boys), height, 
weight, BMI was measured at the age of 5 weeks and at the age of 6 years using standard measurement techniques 
(Table 1). The cantonal ethics committee of the University of Basel and the Children’s Hospital approved the study. 
All methods were performed in accordance with the relevant guidelines and regulations and written informed 
consent was obtained from all parents. 40% of the children were boys.
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