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Abstract
Similar to bacteria, yeast, and other organisms that have evolved pathways to
respond to environmental stresses, cancer cells develop mechanisms that increase
genetic diversity to facilitate adaptation to a variety of stressful conditions,
including hypoxia, nutrient deprivation, exposure to DNA-damaging agents, and
immune responses. To survive, cancer cells trigger mechanisms that drive geno-
mic instability and mutation, alter gene expression programs, and reprogram the
metabolic pathways to evade growth inhibition signaling and immune surveil-
lance. A deeper understanding of the molecular mechanisms that underlie the
pathways used by cancer cells to overcome stresses will allow us to develop more
efficacious strategies for cancer therapy. Herein, we overview several key stresses
imposed on cancer cells, including oxidative, metabolic, mechanical, and geno-
toxic, and discuss the mechanisms that drive cancer cell responses. The therapeu-
tic implications of these responses are also considered, as these factors pave the
way for the targeting of stress adaption pathways in order to slow cancer pro-
gression and block resistance to therapy.

Introduction

All living things experience adverse conditions at some
point during their lifespan.1–5 Plants and animals are sub-
jected to abiotic and biotic stresses that include salt,6–11

drought,12–15 and pathogens.16–20 Environmental stresses
also affect organisms at the cellular level. For example,
cancer cells must adapt to both intracellular and extracel-
lular stress, such as hypoxia, starvation, exposure to anti-
cancer drugs, and immune responses.21–23 Single-celled
organisms, including bacteria and yeast, have developed
mechanisms to survive in the face of environmental stres-
ses by promoting mutagenesis, thereby increasing genetic
diversity.24–29 These adaptations involve increased genomic
instability and mutation, coupled with changes to signal-
ing pathways and gene expression programs, creating an
intricate network that researchers have been trying to
unravel in recent years.30–35 Uncovering the molecular
mechanisms by which plants and microorganisms
respond to stresses will help us to better understand bio-
logical evolution.36–41 Insights from these studies could
impact a wide variety of fields, ranging from the identifi-
cation of phenotypic traits to improve crop tolerance to

extreme conditions, to the design of more effective thera-
peutic strategies for cancer.42

The location and type of malignancy greatly affect the
duration and type of stress experienced by cancer cells.43–46

For example, solid tumors residing in a confined space are
more likely to experience insufficient oxygen and nutrient
supply, in addition to physical compression.47–50 In this
review, we focused on responses to oxidative, metabolic,
mechanical, and genotoxic stresses in solid cancers, as well
as the therapeutic implications of these responses. Recent
advances in cancer cell stress responses have the potential
to lead to new advances in cancer therapy.

Oxidative stress

Reactive oxygen species (ROS), such as superoxide anion
radicals, hydroxyl radicals, and hydrogen peroxide, are natu-
ral by-products of aerobic metabolism.51–57 In cells, mito-
chondria are the primary source of endogenous intracellular
reactive species. These metabolic intermediates play impor-
tant roles in physiological functions and signaling pathways,
both as effectors and as signaling molecules.58–62 However,
because of the potential toxic impact on key cellular
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components (e.g. DNA, lipids, and proteins) and even the
induction of apoptosis, redox homeostasis must be tightly
controlled. ROS production must be balanced with ROS
removal by scavengers (e.g. glutathione peroxidase, thiore-
doxins, superoxide dismutases).63–66 However, cancer cells
are often present in a hypoxic microenvironment that pro-
motes increased metabolic activity and oncogene stimula-
tion. As a result, these cells are characterized by higher levels
of ROS and are more prone to oxidative stress.67,68 To sur-
vive, cancer cells mobilize a number of adaptive mecha-
nisms, such as activation of ROS-scavenging systems and
the suppression of cell death factors.
Although a large body of research has shown that oxida-

tive stress can promote cancer initiation, progression,
metastasis, and resistance to anticancer agents, recent stud-
ies have shed new light on the negative effects of excessive
ROS levels on cancer cell survival. Results from these stud-
ies suggest that upregulated production of ROS in cancer
cells could be harnessed to induce apoptosis or necrosis for
therapeutic purposes.69,70 A number of drugs are reported
to enhance cellular oxidative stress, either by directly
increasing intracellular ROS levels or through inhibition of
the antioxidant enzyme system. For example, the antican-
cer drug arsenic trioxide has been shown to induce pro-
grammed cell death via multiple effects on tumor cells,
including the upregulation of ROS levels and Bax expres-
sion and the downregulation of nuclear factor kappa B
activity and microtubule polymerization.71,72 As the poten-
tial for harnessing ROS for the treatment of cancer is
increasingly being recognized, drugs that act to induce oxi-
dative stress are under active investigation in preclinical
studies and clinical practice. However, our understanding
of the role of oxidative stress in cancer treatment is far
from sufficient, especially with respect to the anticancer
effects of different levels of ROS in the body.73 Quantitative
studies are urgently needed to elucidate the details of the
“yin and yang” of ROS and to understand the transition
between their cancer-promoting and anticancer effects. As
a result, we are still a long way from the widespread clini-
cal application of ROS boosters in cancer therapy.

Metabolic stress

Metabolism reprogramming is an emerging hallmark of
cancer. Most cancers are characterized by aerobic glycolysis
(termed the Warburg effect). In addition, glutamine addic-
tion has been recognized in some cancer cells, and mito-
chondrial dysfunction has been observed in cancer cells
harboring a metastatic phenotype.74,75 Metabolism repro-
gramming is a cellular adaptation to metabolic stress
induced by oncogene expression (e.g. MYC) and stimuli
from the tumor microenvironment.76 Reprogramming
occurs when the metabolic network cannot meet the

energetic and material demands required for the large
number of physiological activities conducted simulta-
neously in cancer cells.77–79 Conflicts arise when the meta-
bolic network attempts to coordinate the priorities of all
“apparently essential” metabolic pathways, giving rise to
metabolic stress. To deal with these stresses, cancer cells
hijack the mechanisms used by normal cells to sense nutri-
ent/energy status and make adaptations.80 The process typ-
ically involves changes in nutrient-sensing pathways that
are regulated by AMP-activated protein kinase (AMPK)
and mammalian target of rapamycin (mTOR), as well as
stress response pathways, such as the endoplasmic reticu-
lum (ER) stress response and autophagy.80

The metabolic stress response network includes a num-
ber of regulatory enzymes and transcription factors
(e.g. AMPK, HIFα, PGC1α), providing a wide variety of
options for pharmaceutical targeting.42 For example, in the
case of MYC-induced metabolic stress, inhibitors of gluta-
minase and lactate dehydrogenase have been shown to
suppress tumor growth by blocking the flux of the nutri-
ents required for cancer cell proliferation in response to
upregulated MYC activity.81,82 Similarly, manipulating the
response pathways involved in adaptation to MYC-induced
metabolic stress has been also considered as a therapeutic
option. Targeting the ARK5/AMPK axis was shown to be
effective in a hepatocellular carcinoma model, and inhibi-
tion of IRE1/XBP1 was promising in triple-negative breast
cancer.83 Although a number of experimental studies have
suggested the potential of various metabolic pathway
inhibitors, these drugs have shown limited efficacy in the
single agent setting.84 To improve efficacy, combination
therapies using multiple metabolic inhibitors in an opti-
mized formulation or metabolic therapy coupled with stan-
dard therapy likely represent better options.

Mechanical stress

With the increasing availability of innovative tools capable
of measuring, visualizing, and mimicking the mechanical
forces exerted on cancer cells, the emerging field of cellular
biomechanics has enhanced our understanding of cancer
biology.85–89 There are three major types of mechanical
stresses experienced by cancer cells: tensile, compressive,
and shear. Tensile stress arises from cellular actomyosin
contraction in response to extracellular matrix (ECM)
stiffness.90–94 Compressive stress takes place as the tumor
grows within a confined space. Shear stress is elicited by
the flow of blood and interstitial fluid around cancer cells.
To produce transient cellular responses, mechanical stres-
ses are sensed and transduced to generate biochemical sig-
nals via a process called mechanotransduction.95 This
process involves mechanosensors (e.g. integrin receptors,
mechanically activated ion channels, catenins), their
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immediate downstream signaling molecules (e.g. focal
adhesion kinase [FAK], SRC, phosphoinositide 3-kinase,
Rho/Rho kinase, growth factor receptors, G protein-
coupled receptors), and adapter/linker proteins that relay
signals to the actin and microtubule cytoskeleton net-
works.96 By virtue of reorganization of the cytoskeleton,
cancer cells can change their contractility and intracellular
tension to adapt to mechanical stresses.97 In addition to
activation of these signaling pathways, changes in gene
expression (e.g. ECM proteins, cytoskeletal proteins) can
lead to sustained cellular responses through modification
of the tumor microenvironment and changes in the
mechanical properties of cancer cells. Within the tumor
microenvironment, cancer cells are constantly exposed to
different mechanical stresses, which are now being recog-
nized as contributors to tumor growth and metastasis.98–100

Therefore, the associated signaling and gene expression
pathways, particularly those molecular hubs that integrate
multiple pathways, represent potential therapeutic targets.
Examination of completed/ongoing pre-clinical studies

and clinical trials reveals that targeting of cell contractility,
solid stress, and ECM stiffness are currently the three pri-
mary therapeutic strategies under evaluation.101,102 Drugs
used to modulate cell contractility include (but are not lim-
ited to) ruxolitinib (a janus kinase inhibitor), fasudil
(an Rho-associated kinase inhibitor), and a number of FAK
inhibitors.103 Of note, FAK inhibition has been extensively
tested as a therapeutic strategy to inhibit cell contractility in a
variety of solid tumors; 10 clinical trials have been completed,
and results are pending. To target solid stress, hyaluronidases
and angiotensin inhibitors have been investigated. Mechanis-
tically, hyaluronidases (e.g. pegvorhyaluronidase alfa) have
been shown to improve tissue compliance by degrading the
ECM protein hyaluronan to release immobilized fluid.90 By
causing dilation of the vasculature and reduction in blood
pressure, angiotensin inhibitors (e.g. losartan) can effectively
decrease interstitial fluid pressure, enabling improved perfu-
sion and therapeutic efficacy.104 The strategy of modulating
ECM stiffness to treat cancer is more suitable for solid
tumors, like breast cancer, and has been tested with celecoxib
(a cyclooxygenase-2 inhibitor), β-aminopropionitrile (a
lipoxygenase inhibitor), and the combination of transforming
growth factor-β and hedgehog signaling inhibitors.105,106

Although targeting the mechanical drivers of tumor progres-
sion is a promising therapeutic approach, the observed limi-
tations, including low efficacy, still need to be addressed
based on our accumulating knowledge of the mechanical
stress response in cancer cells.

Genotoxic stress

Cancer cells can undergo genotoxic stress as a result of
threats to DNA structure and genome instability.107–111 The

threats can arise from a broad range of events and agents,
including unresolved replication fork stalling during nor-
mal DNA replication, accumulation of metabolic interme-
diates (e.g. ROS) that are highly reactive to DNA, and
exposure to chemotherapy or radiation therapy.112–118 Rep-
lication stress can occur even under normal physiological
conditions in cancer cells because of a shortage of building
blocks (histones, deoxyribonucleotide triphosphates), con-
flicts between concurrent activation of the massive replica-
tion and transcription machineries, as well as unusual
DNA structures and topologies.119,120 As a result of replica-
tion fork stalling, levels of exposed single-stranded DNA
increase, thereby recruiting RPA (a single-stranded DNA-
binding protein) to the lesion. Binding of RPA is followed
by the recruitment of the protein kinase ATR to activate
the ATR-CHK1 axis. Although this process is usually
referred to as the replication stress response (RSR), the
ATR-CHK1 axis is also integrated into a more complex
signal transduction pathway termed the DNA damage
response (DDR), which includes multiple cell cycle check-
points that dictate the fate of cancer cells depending on
whether the damage can be repaired.121–123

A number of chemotherapy drugs exert stress on the
cancer genome, most of which act as genotoxicants that
damage the DNA and induce the DDR; these include DNA
cross-linkers, topoisomerase poisons, and alkylating
agents.124–126 Although conventional anticancer agents were
developed to selectively target highly proliferative cancer
cells over normal cells, highly proliferative normal tissues
(e.g. bone marrow, gut epithelium) are also targeted, and
the side effects can sometimes be life-threatening. Fortu-
nately, the emergence of targeted drugs with improved
specificity and fewer side effects have provided another
option for patients and clinicians. For example, olaparib is
an inhibitor of poly(ADP-ribose) polymerases that was first
approved for the treatment of advanced ovarian cancers
harboring BRCA1/2 mutations. In addition to targeting
DDR, manipulating the RSR has also been considered for
application in cancer therapy.127–129 Currently, three classes
of inhibitors that aim to enhance replication stress in can-
cer therapy are under consideration: ATR, CHK1, and
Wee1 inhibitors. Importantly, preclinical studies have
shown that many of these RSR inhibitors exhibit synergis-
tic effects with conventional chemotherapies and are thus
under evaluation in series of clinical trials.130–133

Future perspectives

Cancer cells reside in a dynamic microenvironment where
they are under the influence of diverse stresses that shape
tumor behavior. As a result, simplified models linking indi-
vidual cellular stresses to cancer progression should be
viewed with caution. Another layer of complexity arises

Thoracic Cancer 9 (2018) 1575–1582 © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd 1577

M. Chen & S. Xie Cellular stress responses in cancer



from the crosstalk between different cellular responses. For
example, excessive ROS levels play a role in oxidative and
metabolic stress, as well as in genotoxic stress. In the future,
it will be interesting to define the precise levels of ROS
required to trigger a specific stress response or responses.
Moreover, if we consider drug resistance of cancer cells as a
type of cellular adaptation to harsh conditions, we may be
able to apply our understanding of stress responses to
develop improved strategies to target drug-resistant cancer
cells. In recent years, the application of cancer immunother-
apies has tremendously increased, and the cellular responses
to immune inhibitors/activators and antibody-based drugs
are in urgent need of characterization.
In the future, more efficacious therapeutic strategies may

be designed based on the targeting of cellular stress
responses or by combining stress-targeted therapies with
standard/conventional therapy. The effectiveness of such
agents depend on an improved understanding of stress
responses in cancer cells.
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