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SUMMARY

Growing evidence indicates important roles for astrocytes in neurodevelopment and diseases. 

However, astrocytes and their roles in these processes remain poorly understood. Despite recent 

progress in reprogramming somatic cells into different types of neural cells, reprogramming 

to astrocytes has lagged. Here, we show that functional astrocytes can be generated from 

mammalian fibroblasts using only small molecules. Induced mouse astrocytes resemble primary 

astrocytes in astrocytic gene expression and epigenomic status and exhibit functional properties 

in promoting neuronal maturation, glutamate uptake, and calcium signaling. Moreover, these cells 

can recapitulate the Alexander disease phenotype of protein aggregation when expressing Gfap 

with a disease-causing mutation. The same compounds can also reprogram human fibroblasts into 

astroglial progenitor cells that can further mature into functional astrocytes. These chemically 
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induced astrocytes may provide cellular models to uncover roles of astrocytes in normal 

neurodevelopment and pathogenesis of neurological diseases.

In Brief

In this study, Tian et al. report that a small-molecule cocktail can directly convert mouse 

and human fibroblasts into mature, functional astrocytes without the use of transgenes. These 

chemically induced astrocytes resemble primary astrocytes in gene expression and function and 

can be used to study diseases of astrocyte dysfunction.

Graphical Abstract

INTRODUCTION

Astrocytes are glial cells that are located in all regions of the brain (Molofsky et al., 2012; 

Verkhratsky et al., 2012). They have long been held as the supporting components in neural 

tissues (Wang and Bordey, 2008; Sofroniew and Vinters, 2010). However, over the past 

decades, increasing evidence has established a variety of essential functions for astrocytes 

in neural development and in the pathogenesis of neurological diseases (Verkhratsky et 

al., 2012). Astrocytes play a critical role in neuronal maturation, synapse formation and 

plasticity, and glutamate clearance to reduce excitotoxicity (Banker, 1980; Song et al., 

2002; Hama et al., 2004; Eroglu and Barres, 2010). Astrocyte dysfunction contributes to 

many neurodegenerative diseases and is the direct cause for some neurological disorders 
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(Molofsky et al., 2012; Verkhratsky et al., 2012), such as Alexander disease (AxD) (Messing 

et al., 2012). Despite increasing data revealing new roles for astrocytes, our knowledge on 

astrocytes remains largely behind what we know about their neuronal counterpart. There is 

an urgent need to establish new cellular models for astrocytes to uncover their versatile roles 

in the nervous system.

Expression of lineage-specific factors has been shown to induce cell fate change, including 

reprogramming somatic cells to induced pluripotent stem cells (iPSCs) (Takahashi and 

Yamanaka, 2006) and converting one type of somatic cells to another (Davis et al., 1987). 

The latter is also called direct reprogramming or conversion. Extensive efforts have been 

devoted into converting somatic cells, like fibroblasts, into different types of neural cells, 

such as neural stem cells (Kim et al., 2011; Han et al., 2012; Lujan et al., 2012), neurons 

(Vierbuchen et al., 2010; Caiazzo et al., 2011; Pang et al., 2011; Yoo et al., 2011), and 

oligodendrocytes (Najm et al., 2013; Yang et al., 2013). However, direct reprogramming of 

somatic cells into astrocytes has just begun (Caiazzo et al., 2015).

Introducing exogenous factors in reprogramming has raised various concerns, including the 

risk of insertional mutagenesis and genetic alteration associated with retroviral delivery 

(Hawley, 2008) and low reprogramming efficiency associated with episomal transfection 

(Okita et al., 2008). During the course of this study, cocktails of small molecules were 

shown to convert mouse or human fibroblasts into neurons (Hu et al., 2015; Li et al., 2015). 

However, no chemical reprogramming has been reported to change fibroblasts, or any other 

mature cell types, to astrocytes yet. Here, we demonstrate that small molecules can be used 

to directly convert fibroblasts into functional astrocytes without transgenes.

RESULTS

A Compound Cocktail Induces the Conversion from MEFs to Astrocyte-like Cells

During our search for small molecules that can reprogram somatic cells into iPSCs, a 

chemical cocktail VC6TFZ was used to reprogram mouse embryonic fibroblasts (MEFs) 

into iPSCs (Hou et al., 2013). This compound combination includes the histone deacetylase 

inhibitor VPA (V), the GSK3β inhibitor compounds can reprogram MEFs into GFAP-

positive and S100β-positive astrocyte-like cells.

A TGFβ Inhibitor Is Critical for Astrocytic Conversion

Next, we sought to identify compounds critical for astrocytic conversion. The combination 

of VC6, V6, or 6 alone was CHIR99021 (C), the TGFβ inhibitor 616452 (6), the lysine 

specific histone demethylase LSD1 inhibitor tranylcypromine (T), the cyclic AMP inducer 

forskolin (F), and a histone methylation inhibitor DZNep (Z). In this chemical cocktail, 

compounds F and Z were used together to induce the expression of Oct4, a factor critical 

for reprogramming. We have previously identified the small molecule OAC1 as an Oct4-

activating compound (Li et al., 2012). In this study, we tested whether the combination 

of VC6T with the OAC1 compound (together termed VC6TO) could reprogram MEFs 

into iPSCs. MEFs were derived from mice harboring an Oct4 promoter-driven GFP 

(OG2) reporter. Treatment with VC6TO for up to 25 days failed to induce any Oct4-GFP-
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positive iPSC colonies from the OG2 MEFs. Instead, we observed cells with astrocyte-like 

morphology (Figure S1A).

This observation triggered us to test whether the VC6TO cocktail could reprogram MEFs 

into astrocytes. We paid special attention to exclude any neural tissues from the MEF 

preparation (Figure 1A) as described (Vierbuchen et al., 2010). Immunostaining MEFs 

with various neural lineage markers revealed no contamination of neural progenitor cells, 

neurons, astrocytes, and oligodendrocyte progenitor cells (Figure S1B); instead, 99.6% of 

cells expressed the fibroblast marker FSP1 (Figure S1C). These MEFs were treated with 

VC6TO and cufltured in induced astrocyte medium (iAM) (Figure 1B). Twenty-five days 

after compound treatment, we immunostained the resultant cells for astrocyte markers, 

glial fibrillary acidic protein (GFAP) and S100β. We detected 12% GFAP-positive cells 

with typical astrocyte morphology (Figures 1C and 1D). The percentage of GFAP+S100β+ 

cells was similar to that of GFAP+ cells (Figure 1E). Together, these results indicate that 

the VC6TO able to induce GFAP-positive cells from MEFs, although the efficiency of 

conversion decreased when the number of compounds was reduced. In contrast, subtraction 

of compound 6 from VC6TO led to failure of astrocytic conversion, as revealed by the 

lack of GFAP-positive cells (Figures 2A and 2B). These results suggest that compound 6 is 

necessary and sufficient to induce the conversion of MEFs into astrocyte-like cells.

Because compound 6 is a transforming growth factor β (TGFβ) receptor 1 kinase inhibitor 

(Gellibert et al., 2004), we asked whether other inhibitors of TGFβ receptor 1 could induce 

astrocytic reprogramming together with VCTO. We tested A-83–01 (A) or SB-431542 (S), 

two well-characterized inhibitors of TGFβ receptor 1 (Inman et al., 2002; Tojo et al., 2005). 

Treating MEFs with either the combination of VCTO with A (VCATO) or VCTO with S 

(VCSTO) induced a substantial increase in GFAP-positive cells with astrocyte morphology 

(Figures 2C and 2D). In contrast, VCTO did not induce any GFAP-positive cells (Figures 

2C and 2D). We noticed that VCATO and VCSTO induced more GFAP-positive cells than 

the initial VC6TO combination (Figures 2B–2D), with the highest conversion efficiency 

observed with VCSTO, which induced 38% GFAP-positive cells at day 25 after compound 

treatment. We therefore focused the rest of the study on VCSTO-induced reprogramming.

We subtracted individual compounds from VCSTO to determine the effect of individual 

compounds on astrocytic conversion. Similar to removal of 6, subtraction of S from VCSTO 

led to almost complete loss of GFAP-positive cells (Figures 2E and 2F). Subtraction of T 

or C decreased reprogramming efficiency dramatically, whereas removal of V or O reduced 

the efficiency mildly (Figures 2E and 2F). On the other hand, compound S by itself was 

sufficient to induce GFAP-positive cells from MEFs (Figures 2G and 2H). Combination 

with C and T led to a more-robust induction of GFAP-positive cells (Figures 2G and 2H). 

These results indicate that compound S is critical for astrocytic reprogramming, whereas 

compounds C and T promote reprogramming efficiency.

Having identified S as a critical compound for astrocytic reprogramming, next we 

determined the dose response of compound S. We treated MEFs with VCSTO at different 

concentrations of S from 0 to 10 mM and observed increased GFAP-positive cells with 

elevated concentrations of S (Figures S2A and S2B). No toxicity was observed in cells 
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treated with VCSTO at the concentration of S at 10 μM or even higher (20 or 30 μM; 

Figure S2C). Because S is an inhibitor of TGFβ receptor 1 (Inman et al., 2002), we 

asked whether the TGFβ signaling is suppressed by VCSTO treatment. After 24-hr VCSTO 

treatment of MEFs, dramatic inhibition of gene expression was observed for a set of TGFβ 
downstream effectors (Figure S2D), including Atf4, Col1a1, decorin (Dcn), Gadd45b, Ifrd1, 

p21, p27, Tgfb1i1, Tgfbi, and Tsc22d1, consistent with the role of S in inhibiting TGFβ 
signaling. These results indicate that a TGFβ inhibitor is critical for converting fibroblasts 

into astrocyte-like cells.

To determine whether astrocyte-like cells could also be converted from other cell types, we 

treated mouse tail-tip fibro-blasts (TTFs) with VCSTO compounds. Twenty-five days after 

VCSTO treatment, GFAP-positive and S100b-positive cells with astrocyte morphology were 

detected (Figure S3A). The percentage of GFAP+S100β+ cells was similar to that of GFAP+ 

cells (Figures S3A–S3C).

VCSTO-Induced Cells Express Astrocytic Genes and Exhibit Epigenetic Reprogramming

To verify that the VCSTO-reprogrammed cells were indeed astrocytes, we first determined 

astrocytic marker expression in these cells. Double staining for GFAP and S100β revealed 

that the VCSTO-induced cells expressed both GFAP and S100β (Figure 3A). In addition 

to GFAP and S100β, ALDH1L1 has been identified to be a reliable marker for astrocytes 

(Barres, 2008). Double staining the VCSTO-reprogrammed cells with GFAP and ALDH1L1 

revealed that the compound-induced cells were positive for both of these astrocytic markers 

(Figure 3B). These results further confirmed the astrocyte identity of the VCSTO-induced 

cells.

Because astrocytes could be visualized by GFP fluorescence in the GFAP-GFP reporter 

mice (Zhuo et al., 1997), we derived MEFs from these mice and treated them with VCSTO 

to monitor astrocytic conversion. GFAP-GFP-positive cells emerged around days 10–15 

after VCSTO treatment. The induced cells were visualized for GFAP-GFP fluorescence and 

immunostained for GFAP at day 25 after VCSTO treatment. Nearly all GFAP-GFP positive 

cells were also positive for GFAP immunostaining (Figure 3C).

Astrocytes express high levels of glutamate transporters, predominantly GLT-1 and GLAST 

(Chaudhry et al., 1995). Aquaporin 4 (AQP4), a member of the aquaporin family of 

membrane proteins, is also enriched in astrocytes (Simard and Nedergaard, 2004). Real-time 

PCR revealed that the VCSTO-reprogrammed cells expressed high levels of Glt-1, Glast, 

and Aqp4, in addition to the astrocytic markers Gfap, S100β, and Aldh1l1 (Figure 3D), 

further strengthening our conclusion that the VCSTO-reprogrammed cells are astrocytes.

An important aspect of reprogramming is epigenetic reprogramming. Demethylation 

of the Gfap promoter has been shown to be associated with astrocyte differentiation 

(Hatada et al., .,2008). We tested whether the Gfap promoter is demethylated during 

astrocytic conversion from MEFs. VCSTO-induced cells were sorted for GFAP-positive 

cells after GFAP staining. The resultant cells were subjected to DNA methylation analysis. 

Bisulfite sequencing revealed that the Gfap promoter of VCSTO-induced cells was largely 

demethylated, similar to that in primary astrocytes (pAs) (Figure 3E), whereas the Gfap 
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pro-moter in parental MEFs was highly methylated (Figure 3E). This result indicates that 

epigenetic reprogramming occurred during VCSTO-induced astrocytic conversion.

To determine the dynamic expression pattern of astrocytic genes during the conversion, we 

treated MEFs with VCSTO for various time periods and performed immunostaining and 

RT-PCR at days 10, 15, 20, and 25. We could see GFAP-positive cells at day 10 after 

compound treatment, although the efficiency was low (Figures 3F and 3G). By day 15, 

we detected more than 15% GFAP-positive cells. The rate of conversion further increased 

with time. By day 25, GFAP-positive cells reached more than 30% (Figures 3F and 3G). In 

parallel RT-PCR analysis, we observed increased expression of the astrocytic markers Gfap, 

S100b, and Aldh1l1 along the time course, with the highest induction at day 25 (Figure 3H). 

In contrast, we did not observe the induction of the pluripotency genes Oct4 and Nanog, 

and the neural progenitor genes Sox1 and Pax6, during the same characteristic of MEFs was 

globally reprogrammed toward that of astrocytic lineage (Figure 4A). Hierarchical clustering 

revealed that the overall gene expression pattern in induced astrocytes (iAs) is more similar 

to that in pAs than to parent MEFs (Figures S4A and S4B). Among the genes upregulated 

(≥2-fold) in pAs compared to MEFs, 53.9% were also upregulated in iAs; among the genes 

downregulated in pAs relative to MEFs, 68.3% were also downregulated in iAs. Genes 

upregulated in both iAs and pAs, compared to MEFs, were significantly enriched for gene 

ontology (GO) terms associated with membrane and synapse (Figure 4B), consistent with 

the critical time course (Figure 3I), suggesting that these compounds induce astrocytic 

conversion without inducing iPSC or neural progenitor cell intermediates.

Genome-wide Remodeling and Regional Specificationin VCSTO-Induced Astrocytes

Next, we performed genome-wide profiling to compare gene expression pattern of VCSTO-

induced astrocytes with that of pAs and MEFs. MEFs were derived from GFAP-GFP 

reporter mice and treated with VCSTO for 25 days. The reprogrammed cells were sorted 

for GFAP-GFP-positive cells and subjected to DNA microarray analysis, along with pAs 

and MEFs. A heatmap depicting all probe sets that were differentially expressed by at least 

1.5-fold showed that the transcriptional program role of astrocytes in synaptogenesis (Hama 

et al., 2004; Eroglu and Barres, 2010). In contrast, genes downregulated in both iAs and 

pAs, compared to MEFs, were significantly enriched for GO terms linked to cell cycle and 

cell division (Figure 4B).

Validation of differentially expressed genes revealed that the known fibroblast-related genes 

were downregulated in both VCSTO-iAs and pAs, compared to MEFs (Figures 4C, 4D, 

and S4C). In contrast, genes that are known to be expressed in astrocytes or involved 

in astrocyte differentiation and functions were strongly upregulated in both iAs and pAs, 

compared to MEFs (Figures 4C, 4E, and S4D). These results indicate that iAs resemble pAs 

in genome-wide gene expression profile.

To determine the regional subtypes of VCSTO-iAs, we performed real-time PCR to measure 

the expression levels of barely detectable Nkx2.1 and Lix1 expression (Figures 4G and 

S4E). These results indicate that the chemical iAs can be regionally specified.
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VCSTO-iAs Are Functional

To test whether VCSTO-iAs possess astrocyte function to promote neuronal maturation and 

synaptic formation, we co-cultured them with mouse primary cortical neurons. Neuronal 

maturation was evaluated by immunostaining with a mature neuronal marker, MAP2, at 

day 5 after co-culture. Both total neurite length and neurite complexity were increased in 

neurons co-cultured with iAs or pAs, compared to that in neurons co-cultured with MEFs 

(Figures 5A, 5B, and S5). Moreover, the density of synap-sin-positive puncta along the 

MAP2-positive neurites was significantly increased markers for forebrain (Foxg1, Otx1, and 

Otx2), hindbrain (Hoxb4, Egr2, and Grx2), dorsal (Pax3 and Trhr) and ventral (Nkx2.1 and 

Lix1) brains (Figures 4F and S4E). iAs expressed both the forebrain markers Foxg1, Otx1, 

and Otx2 and the hindbrain markers Hoxb4, Egr2, and Grx2, although the expression of the 

hindbrain markers is more robust (Figures 4G and S4E), suggesting that iAs contain both 

anterior and posterior astrocyte subtypes, perhaps with a more-abundant subpopulation of 

posterior astrocytes. As for the dorsal-ventral regionality, VCSTO-iAs are predominantly 

dorsal, exhibiting robust Pax3 and Trhr expression but in neurons co-cultured with iAs and 

pAs, compared to that in neurons co-cultured with MEFs (Figures 5C and 5D). These results 

indicate that the VCSTO-iAs exhibit functional property in promoting neuronal maturation 

and synaptogenesis, like pAs.

Next, we determined whether the compound-iAs were functional in glutamate uptake. 

pAs, iAs, and parental MEFs were cultured in media containing glutamate for 6 hr; the 

concentration of glutamate in the media was measured to determine glutamate uptake. 

Both iAs and pAs exhibited substantial glutamate uptake, compared to MEFs (Figure 5E), 

indicating that compound-iAs are functional in glutamate uptake.

Calcium imaging analysis revealed that the VCSTO-iAs exhibited glutamate-induced 

calcium spikes, in a manner similar to pAs, whereas MEFs did not respond to glutamate 

stimulation with calcium spikes (Figures 5F–5I). These results suggest that iAs acquire the 

ability to respond to neurotransmitters through calcium signaling, like pAs. In summary, 

the chemical iAs are functional astrocytes with the ability to promote neuronal survival and 

maturation, uptake glutamate, and respond to calcium signaling.

VCSTO-iAs Can Survive and Retain Astrocyte Identity In Vivo

To determine whether compound-iAs can survive and maintain their astrocytic identity 

in vivo, we labeled the VCSTO-iAs with a GFP reporter and transplanted them into the 

lateral ventricles of immunodeficient neonatal non-obese diabetic (NOD) severe combined 

immunodeficiency (SCID) gamma (NSG) mice (Figure 6A). Six weeks after transplantation, 

the grafted brains were analyzed by immunostaining. The GFP-positive grafted cells 

survived 6-week engraftment and continued to express GFAP in the brain (Figures 6B 

and 6C). In contrast, the control MEFs were not able to survive the engraftment in the 

transplanted brains (Figure S6A). These results indicate that the VCSTO-iAs can survive 

engraftment and maintain astrocytic marker expression in vivo.
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Compound-iAs Can Be Used to Model Neurological Disease

AxD is a neurological disease with astrocyte dysfunction and is caused by genetic 

mutation of the GFAP gene (Messing et al., 2012). Expression of AxD mutant GFAP 

induces the expression of αB-crystallin, a small heat shock protein, and the formation 

of protein aggregates containing GFAP and αB-crystallin in astrocytes (Messing et al., 

2012). We tested whether compound-iAs could be used to model AxD. We transfected 

plasmid expressing GFP fusion of the wild-type (WT) or AxD mutant GFAP containing the 

R239C mutation, a hotspot mutation for AxD (Hagemann et al., 2006), into VCSTO-iAs. 

Expression of the AxD mutant GFAP in iAs promoted the expression of αB-crystallin and 

the formation of protein aggregates immunoreactive for GFAP and αB-crystallin, whereas 

transfection of the same amount of WT GFAP-GFP did not induce detectable αB-crystallin 

expression and GFAP protein aggregation (Figure 6D). The β-lactam antibiotic ceftriaxone 

has been shown to facilitate the elimination of AxD mutant GFAP protein aggregates in pAs 

(Bachetti et al., 2010). We treated VCSTO-iAs transfected with the AxD mutant GFAP with 

ceftriaxone. Substantial elimination of GFAP protein aggregates was detected in ceftriaxone-

treated cells, compared to vehicle-control-treated cells (Figures 6E and S6B). Although 

MEFs transduced with the AxD mutant GFAP also exhibited GFAP protein aggregates, the 

fibroblast aggregates were not responsive to ceftriaxone treatment (Figure S6C).

S100β is a marker for human astroglial progenitor cells and astrocytes, we stained the 

VCSTO-treated cells for S100β and found that more than 30% of cells were S100β+ 

cells, whereas no S100β+ cells were detected in DMSO-treated cells (Figures 7A and 7C). 

Treatment of the astroglial progenitor cells with ciliary neurotrophic factor (CNTF) for 6 

days allowed the maturation of these

Moreover, glutamate uptake assay revealed that VCSTO-iAs transduced with the AxD 

mutant GFAP exhibited reduced glutamate uptake, compared to VCSTO-iAs transduced 

with WT GFAP (Figure S6D). These results together suggest that compound-iAs could be 

used to model neurological diseases with astrocyte dysfunction and test candidate drugs for 

these diseases.

VCSTO Could Induce Astrocytic Conversion from Human Fibroblasts

To determine whether human fibroblasts could be induced for astrocytic conversion 

using small-molecule compounds, we treated human foreskin fibroblasts with VCSTO 

compounds. Forty days after compound treatment, we observed a large number of cells with 

astroglial progenitor-like morphology. Because cells into astrocytes with bigger cell body 

and more-complex morphology. Immunostaining of the resultant cells allowed the detection 

of both S100β+ cells and GFAP+ cells in VCSTO-treated cells (Figures 7B and 7C).

In a parallel experiment, we detected robust induction of astrocyte marker genes, GFAP, 

S100b, AQP4, and EAAT2, in VCSTO-reprogrammed cells (iAs), to a level that is similar 

to or higher than that in human iPSC-derived astrocytes (hA) (Figure 7D). In contrast, the 

expression level of the astrocytic genes is much lower in DMSO-treated human fibroblasts 

(hF) (Figure 7D). Moreover, human iAs exhibited potent glutamate uptake, compared 

to parental fibroblasts (Figure 7E). Calcium imaging analysis revealed that the human 
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iAs exhibited glutamate-induced calcium signal change, similar to hA, whereas parental 

fibroblasts did not exhibit calcium signal change in response to glutamate stimulation 

(Figure S7). These results together indicate that the VCSTO cocktail could induce human 

fibroblasts into astroglial progenitor cells that can be further matured into functional 

astrocytes.

To determine whether adult human fibroblasts could be induced into astrocytes using small 

molecules, we treated human fibroblasts derived from a 71-year-old donor with the VCSTO 

compounds. After 40 days of VCSTO compound treatment and 10 days of CNTF-induced 

maturation, both S100β+ cells and GFAP+ cells were detected in VCSTO-treated cells, but 

not in DMSO-treated cells (Figures 7F and 7G). RT-PCR analysis revealed potent induction 

of astrocyte marker genes, GFAP, S100β, SLC1A2, and EAAT2 in VCSTO-induced cells, 

compared to that in DMSO-treated cells (Figure 7H). The iAs also exhibited substantial 

glutamate uptake, compared to parental fibroblasts (Figure 7I). These results together 

indicate that the VCSTO compounds could induce human adult fibroblasts into functional 

astrocytes.

DISCUSSION

In this study, we reprogrammed mouse fibroblasts into functional astrocytes, which possess 

the ability to promote neuronal maturation and synaptic formation, uptake glutamate, and 

induce calcium signal in response to glutamate stimulation. Although rapid progress has 

been made in converting somatic cells into other types of neural cells, such as neural 

stem cells, neurons, and oligodendrocytes, direct reprogramming of somatic cells into 

astrocytes remains largely behind. Induced neurons can be developed into useful tools for 

modeling a variety of neurological diseases affecting neurons (Lujan et al., 2012). However, 

induced neuronal cells would have limitations for modeling disease affecting astrocytes. 

Although astrocytes could be derived from iPSCs, the differentiation process is lengthy. 

These limitations could be overcome by inducing astrocytes directly from fibroblasts in a 

relatively short period of time as reported in this study.

In this study, we present an example of pure chemical induction of lineage conversion from a 

mature somatic cell type to astrocytes. A study reported the derivation of iPSCs from mouse 

somatic cells using six small molecules VC6TFZ (Hou et al., 2013). Part of this compound 

cocktail, VC6 was used to convert somatic cells into neural progenitor cells under hypoxia 

(Cheng et al., 2014). In recent studies, different combinations of small molecules were used 

to convert somatic cells into neuronal cells (Hu et al., 2015; Li et al., 2015; Zhang et al., 

2015). In this study, we directly reprogrammed mammalian fibroblasts into astrocytes using 

compounds only, without using any transgenes or viral transduction. Moreover, we found 

that the TGFβ inhibitor 6 or S alone was able to induce GFAP-positive cells from MEFs, 

providing an example that one single compound is able to induce the conversion of one 

somatic cell type to another.

Several possible reasons could explain why inhibition of TGFβ pathway could induce 

reprogramming of fibroblasts into astrocytes. First, TGFβ is a cytokine for induction 

of epithelial-to-mesenchymal transition. Inhibition of TGFβ signalling could induce 
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reprogramming of fibroblasts by suppressing the fibroblast gene expression program through 

a mesenchymal-to-epithelial conversion (Lin et al., 2009; Maherali and Hochedlinger, 

2009). Second, inhibition of TGFβ signaling has been shown to promote neuroectoderm 

specification (Smith et al., 2008). Moreover, inhibition of TGFβ signaling can induce bone 

morphogenetic protein (BMP) signaling (Xu et al., 2008; Ichida et al., 2009), which has 

been shown to induce astrocytic differentiation and establish and maintain astrocytic identity 

(Gross etal., 1996;RajanandMcKay,1998; Bonaguidi et al., 2005; Kohyama et al., 2010).

Previous studies described ways to derive astrocytes from somatic cells by going 

through iPSC or induced neural stem cell (iNSC)/induced neural progenitor cell (iNPC) 

intermediates (Han et al., 2012; Lujan et al., 2012; Ring et al., 2012; Thier et al., 2012; 

Cassady et al., 2014). In these studies, astrocytes were derived from MEFs at an efficiency 

of 0.004%–2% in up to 70 days. Our method of direct reprogramming does not go through 

iPSC or iNSC/iNPC intermediate state. Astrocytes could be converted from MEFs at an 

efficiency of 38% in 20–25 days in this study. Therefore, the direct chemical reprogramming 

method described in this study provides a more rapid and efficient way to derive astrocytes 

from fibroblasts.

Furthermore, this study provides proof of concept that chemical iAs can be used to model 

diseases with astrocyte dysfunction. When we transfected an AxD mutant GFAP into iAs, 

we were able to recapitulate the phenotype of GFAP protein aggregation observed in 

AxD patient astrocytes. Moreover, these protein aggregates were responsive to ceftriaxone 

treatment. Our knowledge about astrocytes is still very limited. The chemical iAs developed 

in this study will provide a tool for us to study neurodevelopment in glial context and 

to model a variety of neurological diseases with astrocyte dysfunction. Generating iAs 

containing disease-causing mutations will provide novel insights into our understanding of 

astrocyte-associated diseases.

EXPERIMENTAL PROCEDURES

Cell Culture

MEFs and TTFs were derived from embryonic day 13.5 (E13.5) embryos of Oct4-GFP 

transgenic (OG2; Szabó et al., 2002; kindly provided by Dr. Szabo), WT, or GFAP-GFP 

transgenic mice (Jackson Laboratory; Zhuo et al., 1997). These cells were cultured in MEF 

medium containing DMEM, 10% fetal bovine serum (FBS), 0.1 mM nonessential amino 

acids, and 2 mM L-glutamine. Mouse pAs were isolated from postnatal day 1 (P1)–2 pups 

following published protocol (Schildge et al., 2013) and cultured in DMEM containing 10% 

FBS.

Direct Reprogramming Mouse Fibroblasts into Astrocytes

MEFs were plated on 6-well or 12-well plates at a cell density of 3 × 103cells/cm2. Cells 

were cultured in MEF medium for 24 hr and then changed to mouse iAM containing 

knockout DMEM with 10% knockout serum replacer, 10% FBS, 2mML-glutamine, 0.1mM 

non-essential amino acids (NEAA), 0.1mM β-mercaptoethanol, and 100 ng/ml fibroblast 

growth factor (FGF). Cells were treated with compounds, including 500 nM valproic 
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acid (VPA) (Stemgent), 3 μM CHIR99021 (D&C Chemicals), 10 mM SB-431542 (D&C 

Chemicals), 10 μM tranylcypromine (Stemgent), and 1 μM OAC1 (Lietal.,2012) for 10days; 

re-plated onto Matrigel-coated plates (BD Biosciences); and continued with compound 

treatment for another 15 days. Cells were then switched to mouse astrocyte medium (AM) 

containing DMEM with 10% heat-inactivated FBS.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde (PFA) for 10 min, followed by washes in PBS at 

room temperature (RT). Cells were then blocked with 3% donkey serum in PBS containing 

0.01% Triton X-100 for 1 hr at RT, incubated with primary antibodies overnight at 4°C, and 

then washed with PBS and incubated with secondary antibodies for 1 hr at RT. We used 

primary antibodies for GFAP (1:2,000; DAKO; Z0334), S100β (1:200; NOVUS; NB110–

57478), ALDH1L1 (1:200; NeuroMab; 75–140), synapsin (1:1,000; SYSY; 106103), 

αB-crystallin (1:200; Enzo; ADI-SPA-223), MAP2 (1:500; GeneTex; GTX11268), Tuj1 

(1:6,000; Covance; PRB-435P), NeuN (1:400; Millipore; MAB377), Pax6 (1:500; Covance; 

PRB-278P), Sox1 (1:500; Millipore; AB15766), Oligo2 (1:200; GeneTex; GTX62440), NG2 

(1:500; Millipore; MAB5384), and NKX2.2 (1:50; DSHB; 745A5). Nuclei were stained 

with DAPI (1:6,000; Sigma; D9564).

Cell Sorting and Microarray Gene Expression Analysis

GFAP-GFP-positive iAs were sorted using the FACSAria III cell sorter (BD Bioscience). 

Gene expression profiling was performed using Mouse Gene 2.0 ST array (Affymetrix). 

Microarray data analysis was performed using Partek Genomics Suite (Partek). Expression 

values were robust multi-array average (RMA) normalized (Irizarry et al., 2003). Fold-

change values represent the linear ratio between signal intensities when the ratio value is 

greater than 1 and −1/ ratio when the ratio is less than 1. Genes were defined as differentially 

expressed if they showed a fold-change value >1.5. Heatmaps to visualize differentially 

expressed genes were produced in Partek using Euclidian distance for hierarchical clustering 

of standardized expression values. GO enrichment was performed for functional enrichment 

of commonly affected genes, with p values calculated via Fisher’s exact test.

Real-Time PCR

Total RNA was extracted using Trizol reagent (QIAGEN); cDNAs were prepared using 

Tetro cDNA synthesis kit (Bioline). Real-time PCR was performed using DyNAmo Flash 

SYBR Green qPCR mix on a StepOnePlus system (Applied Biosciences) and normalized to 

β-actin. Primers used are listed in Table S1.

Astrocyte-Neuron Co-cultures

Mouse cortical neurons were isolated from E13.5 mouse embryo and cultured in neuronal 

culture media (neurobasal; 1X B27; 2 mM L-glutamine) alone or directly on a layer of iAs, 

mouse pAs, or MEF for 5 days. Mouse neurons, iA, pAs, or MEFs were plated at the same 

density of 10,000 cells/cm2. The cocultured cells were stained for MAP2 and synapsin. The 

synapsin + puncta along the MAP2+ neurites were expressed as the number of puncta per 

50-μm neurite length.
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Transplantation

iAs labeled by GFP-expressing lentivirus were dissociated using trypsin-EDTA and 

resuspended in medium at 100,000 cells/ml density and kept on ice. Two-microliter cell 

suspensions were injected 1 mm from the midline between the Bregma and Lambda and 

1 mm deep into the anterior lateral ventricles of immunodeficient neonatal NSG mice. 

After 6 weeks, mice were euthanized and perfused with 4% PFA for 5 min. Brain tissues 

were harvested for immunostaining. All animal work was performed under the Institutional 

Animal Care and Use Committee (IACUC) protocol approved by the City of Hope IACUC 

Committee.

Ca2+ Imaging

Cells were seeded in 12-well plates at a density of 1 × 105 cells per well and stimulated with 

10 μM glutamic acid. Fluo-4 Calcium Imaging Kit (Invitrogen F10489) was used to monitor 

calcium waves following manufacturer’s instructions. Calcium waves were captured using a 

Zeiss Observer Microscope. Wave intensity was analyzed using Image Pro Premier, and the 

intensity was measured as ΔF/F0 = (F -F0)/F0.

Bisulfite Sequencing

Genomic DNAs were isolated from MEF, fluorescence-activated cell sorting (FACS)-sorted 

iAs, and mouse pAs using a Genomic DNA Purification Kit (QIAGEN). Bisulfite conversion 

of genomic DNAs was carried out using the EZ DNA Methylation-Gold Kit (Zymo 

Research). The bisulfite-modified DNA was then used as a template for PCR to amplify 

the promoter region of Gfap. The amplified products were cloned into the pCR2.1-TOPO 

cloning vector (Invitrogen), and ten randomly selected clones were sequenced using T7 or 

M13R primers.

Glutamate Uptake Assay

The glutamate uptake was measured using the Glutamate Assay Kit (BioVision). iAs 

were plated at a concentration of 2 × 104 cells per well in a 24-well plate. One hundred 

micromolar L-glutamate was added to each well. After incubation for 6 hr, the glutamate 

concentration in the media was measured and presented as nmol of glutamate per mg of total 

proteins.

Transfection into iAs

iAs were seeded at 1 × 105 cells per well in 12-well plates and incubated overnight. 

Then, 2 μg plasmid of human WT GFAP-GFP or AxD mutant GFAP-GFP with the 

R239C mutation (Bachetti et al., 2008) was transfected into iAs using Lipofectamine 2000 

(Invitrogen). Forty-eight hours after transfection, cells were assayed by immunostaining. For 

drug treatment, 24 hr after transfection, cells were treated with vehicle control or 100 μM 

ceftriaxone for 48 hr, followed by immunostaining.

Inducing Human Fibroblasts for Astrocytic Conversion

Human fibroblasts were purchased from Millipore (SCC058) or Coriell (AG14048) and 

tested for lack of mycoplasm contamination. Human fibro-blasts were seeded onto 6-
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well plates at the density of 104 cells/cm2 and cultured in either Fibro-GRO complete 

medium (for SCC058) or Eagle’s minimum essential medium (MEM) with 15% non-

inactivated FBS (for AG14048) for 24 hr and then switched to iAM containing DMEM/F12 

with 2 mM L-glutamine, 0.1 mM NEAA, 1×N2, 1×B27, and 100 ng/ml FGF. For 

SCC058, cells were treated with VCSTO compounds, including 500 nM VPA (Stemgent), 

3 μM CHIR99021 (D&C Chemicals), 10 μM SB-431542 (D&C Chemicals), 10 μM 

tranylcypromine (Stemgent), and 1 μM OAC1 (Li et al., 2012) for 20 days, re-plated onto 

Matrigel-coated plates, and continued with compound treatment for another 20 days. Cells 

were then treated with 10 ng/ml CNTF for another 6 days. For AG14048, cells were treated 

with VCSTO compounds at the same concentration as described above for 30 days and then 

treated with VCSTO together with 10 ng/ml CNTF for another 10 days.

Statistical Analysis

Independent-samples t test was used to compare means of two independent samples. A value 

of p < 0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Fibroblasts can be directly converted into astrocytes with a chemical cocktail

• Induced astrocytes resemble primary astrocytes in gene expression profile

• Induced astrocytes exhibit similar functional properties as primary astrocytes

• Induced astrocytes can be used for disease modeling and drug discovery
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Figure 1. Direct Reprogramming MEF into Astrocyte-like Cells by VC6TO
(A) The scheme of MEF preparation is shown.

(B) The scheme of astrocytic reprogramming with compound treatment. AM, astrocyte 

medium; iAM, induced astrocyte medium; MEFM, MEF medium.

(C) Immunostaining for GFAP and S100β in cells derived from MEFs treated with DMSO 

or VC6TO for 25 days. Nuclei were counter-stained with DAPI. The scale bar represents 

100 μm.

(D and E) The percentage of GFAP-positive cells and GFAP and S100β double-positive cells 

from total cells is shown. n = 3,000–4,000 cells. See also Figure S1. For all quantifications 

in Figures 1, 2, 3, 4, 5, 6, and 7, error bars are SD of the mean; *p < 0.05; **p < 0.01; ***p 

< 0.001.
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Figure 2. A TGFβ Inhibitor Is Critical for Astrocytic Reprogramming
(A, C, E, and G) Immunostaining for GFAP in cells derived from MEFs treated with DMSO 

control or different compound combinations for 25 days. Nuclei were counter-stained with 

DAPI. The scale bar represents 100 μm.

(B, D, F, and H) The percentage of GFAP-positive cells in MEFs treated with individual 

compound combinations described in (A), (C), (E), and (G). n = 2,000–6,000 cells.

See also Figures S2 and S3.
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Figure 3. Expression of Astrocytic Markers from VCSTO-Induced Cells
(A–C) Immunostaining for GFAP and S100β (A), GFAP and ALDH1L1 (B), and GFAP 

and visualizing GFAP-GFP (C) in VCSTO-induced cells. Nuclei DAPI staining (blue) is 

included in the merged images. The scale bar represents 50 μm. In (C), MEFs from GFAP-

GFP mice were induced by VCSTO.

(D) The expression of astrocyte-related genes in VCSTO-iAs, relative to MEF, measured by 

realtime PCR. The expression in MEF was defined as 1. n = 3 experimental repeats.
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(E) Bisulfite sequencing the Gfap promoter regionin MEFs, iAs, and mouse pAs. Open and 

closed circles indicate unmethylated and methylated CpGs, respectively.

(F) Immunostaining for GFAP in cells treated with VCSTO for 10, 15, 20, and 25 days. The 

scale bar represents 100 mm.

(G) The percentage of GFAP-positive cells in cells treated with VCSTO for different days.

(H) Real-time PCR of astrocyte markers at different days of VCSTO treatment. The 

expression at day 0 was defined as 1. n = 3 experimental repeats.

(I) RT-PCR of pluripotency markers, Oct4 and Nanog, and neural progenitor markers, Sox1 

and Pax6, during the time course of VCSTO treatment. RNA from mouse embryonic stem 

cells (ESCs) and neural progenitor cells (NPCs) was included as positive controls.
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Figure 4. Genomic-wide Transcriptional Profiling of VCSTO-iAs
(A) Heatmap presentation of microarray analysis of MEFs, VCSTO-iAs, and mouse pAs. 

Genes upregulated in iAs and pAs, compared to MEFs, are shown in red, whereas genes 

downregulated in iAs and pAs, compared to MEFs, are shown in blue.

(B) GO terms for genes upregulated in both iAs and pAs, relative to MEFs, are shown in red, 

whereas GO terms associated with genes downregulated in iAs and pAs are shown in blue. 

The x axis represents enrichment scores, with p value calculated via Fisher’s exact test.
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(C) Heatmap presentation of a selected set of fibroblast-related genes (the upper four genes) 

and astrocyte-related genes (the lower four genes).

(D and E) Real-time PCR validation of the expression of four fibroblast-associated genes 

(D) and four astrocyte-associated genes (E). The expression in MEFs was defined as 1. n = 3 

experimental repeats.

(F) Schematic presentation of different regions of the brain.

(G)Relative expression of regional subtype markers in iAs measured by real-time PCR. DB, 

dorsal brain; FB, forebrain; HB, hindbrain; VB, ventral brain. n = 3 experimental repeats.

See also Figure S4.
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Figure 5. Compound-iAs Are Functional
(A) Immunostaining mouse primary cortical neurons for Map2 and synapsin after co-

culturing with MEF, iAs, and mouse pAs for 5 days. The scale bar represents 50 μm.

(B) Quantification of Map2+ neurite length in neurons co-cultured with MEFs, iAs, and 

pAs. n = 1,000 cells.

(C) Increased Map2+synapsin+ puncta in neuronsco-cultured with iAs and pAs, relative to 

co-culture with MEFs. The scale bar represents 10 μm.
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(D) Quantification of Map2+synapsin+ puncta per 50-mm neurite length in neurons co-

cultured with MEFs, iAs, and pAs. n = 30 neurites.

(E) Measurement of glutamate uptake in iAs, pAs, and MEFs. n = 3 experimental repeats.

(F) Calcium signal change in response to glutamate stimulation is shown by calcium reporter 

fluorescent dye intensity change (ΔF/F0) over time (seconds) in iAs. The scale bar represents 

100 mm.

(G) Lack of calcium spikes after glutamate stimulation in MEFs.

(H) Calcium spikes after glutamate stimulation in pAs.

(I) Quantification of ΔF/F0 in MEFs, iAs, and pAs in response to glutamate stimulation. n = 

400–600 cells.

See also Figure S5.
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Figure 6. VCSTO-iA Can Survive Transplantation and Be Used for Disease Modeling
(A) Timeline of cell transplantation and brain harvest.

(B) GFP-labeled VCSTO- iAs in grafted brains that are positive for both GFP and GFAP. 

The endogenous astrocytes are shown as GFP negative but GFAP positive. The scale bar 

represents 25 μm.

(C) Higher-magnification images of individual GFP and GFAP double-positive cells. One 

(left) represents the cell indicated by arrow in (B); another (right) represents a cell from a 

different region. The scale bar represents 10 μm.
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(D) Transfection of the R239C AxD mutant GFAP-GFP to iAs induced GFAP protein 

aggregates and αB-crystallin expression. iAs transfected with the WT and AxD GFAP-GFP 

were immunostained for GFAP and αB-crystallin. The transfected cells are indicated by 

GFP. Nuclei DAPI staining (blue) is included in the merged images. The scale bars represent 

10 μm.

(E) Ceftriaxone treatment reduced GFAP protein aggregates in iAs transfected with the AxD 

mutant GFAP-GFP. iAs transfected with the AxD GFAP-GFP were treated with ceftriaxone 

(+Cef) or vehicle control (−Cef) and stained for GFAP and S100β. The scale bar represents 

10 μm. See also Figure S6.
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Figure 7. Reprogramming Human Fibroblasts into Astrocytic Cells by VCSTO
(A) Immunostaining for S100β in cells derived from human fibroblasts (SCC058 for A–E) 

treated with DMSO or VCSTO. Nuclei were counter-stained with DAPI. The scale bar 

represents 100 μm for (A) and (B).

(B) Immunostaining for S100β or GFAP in cells derived from human fibroblasts treated with 

DMSO or VCSTO, followed by CNTF treatment.

(C) The percentage of S100b-positive cells or GFAP-positive cells is shown. n = 3,000–

4,000 cells.
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(D) Expression of astrocyte marker genes in VCSTO-iAs as measured by real-time PCR. 

The expression in human fibroblasts (hFs) was defined as 1. n = 4 experimental repeats.

(E) Substantially elevated glutamate uptake in iAsrelative to parental fibroblasts (hFs). n = 3 

experimental repeats.

(F) Immunostaining for S100β and GFAP in cells derived from human adult fibroblasts 

(AG14048 for F–I) treated with DMSO or VCSTO. Nuclei were counter-stained with DAPI. 

The scale bar represents 100 μm.

(G) The percentage of S100β-positive cells or GFAP-positive cells is shown. n = 1,000 cells.

(H) Expression of astrocyte marker genes in iAs relative to hFs as measured by real-time 

PCR. n = 4 experimental repeats.

(I) Substantially elevated glutamate uptake in human iAs relative to hFs. n = 3 experimental 

repeats.

See also Figure S7.
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