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Abstract 

A primary goal of precision medicine is to identify patient subgroups based on their characteristics (e.g., comorbidities 

or genes) with the goal of designing more targeted interventions. While network visualization methods such as 

Fruchterman-Reingold have been used to successfully identify such patient subgroups in small to medium sized data 

sets, they often fail to reveal comprehensible visual patterns in large and dense networks despite having significant 

clustering. We therefore developed an algorithm called ExplodeLayout, which exploits the existence of significant 

clusters in bipartite networks to automatically “explode” a traditional network layout with the goal of separating 

overlapping clusters, while at the same time preserving key network topological properties that are critical for the 

comprehension of patient subgroups. We demonstrate the utility of ExplodeLayout by visualizing a large dataset 

extracted from Medicare consisting of readmitted hip-fracture patients and their comorbidities, demonstrate its 

statistically significant improvement over a traditional layout algorithm, and discuss how the resulting network 

visualization enabled clinicians to infer mechanisms precipitating hospital readmission in specific patient subgroups. 

Introduction 

A wide range of studies1-5 on topics ranging from molecular to environmental determinants of health have shown that 

most humans tend to share key characteristics (e.g., comorbidities or genes) forming distinct patient subgroups. A 

primary goal of precision medicine is to identify such patient subgroups and infer their underlying disease processes 

in order to design interventions that are targeted to those processes.2,4  

One approach for quantitatively identifying such patient subgroups and their characteristics and enabling their 

comprehension has been through patient-characteristic bipartite networks.6 This approach takes as input any dataset 

consisting of patients and characteristics (Fig. 1A), and automatically outputs a quantitative and visual description of 

patient subgroups (Fig. 1B). The quantitative output provides the number, size, and statistical significance of patient 

subgroups and their most highly co-occurring characteristics (referred to here as a cluster). The visual output displays 

the quantitative information of the clusters through a network diagram. As shown in Fig. 1B, a network7 consists of 

nodes (circles and triangles) and edges (lines connecting the circles to triangles), which represent the association 

between patients and their characteristics (e.g., a patient has diabetes).  

A key advantage of a bipartite network visualization is 

that besides showing the number and size of the patient 

subgroups, it also reveals the relationships within and 

across patient subgroups. For example, the network 

visualization in Fig. 1B reveals that patients in the left 

subgroup have a more uniform profile compared to 

patients in the right subgroup. Furthermore, three 

patients in the right subgroup share a characteristic that 

occurs most frequently in the left subgroup (shown by 

the darker edges between the subgroups), whereas 

none of the patients in the left subgroup share a 

characteristic frequently occurring in the right 

subgroup. Such relationships could enable clinicians to 

infer for example that the disease processes and 

interventions in the right subgroup involve complex 

interactions, and which could overlap with the left 

subgroup. 

 

Fig. 1. Bipartite networks of patients and characteristics 

are designed to automatically generate the number, size 

and significance of patient subgroups, and a visualization 

showing relationships within and across patient subgroups. 
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However, while patient-characteristic network 

layouts have been successful in identifying 

patient subgroups in a wide range of clinical and 

molecular datasets, they often fail to reveal such 

subgroups despite the networks having 

significant clustering. For example, Fig. 2 shows 

a bipartite network consisting of all 30-day 

readmitted hip fracture (HFx) patients (n=6150) 

extracted from the 2010 Medicare database that 

had at least one of the 8 significant comorbidities 

shown. Unfortunately, the network layout 

generated by Fruchterman-Rheingold8 (FR), a 

well-known force-directed algorithm, is difficult 

to comprehend despite the network having strong 

clusteredness (Barber co-clustering 

modularity9=0.440 determined by using an 

efficient algorithm that combines cluster tuning 

with agglomeration10,11) that is significant 

(p<.001), when compared to a distribution of the 

same quantity generated from 1000 random 

permutations14 of the network, while preserving 

the network size (number of nodes) and the 

network density (number of edges). Furthermore, 

the use of distinct colors to denote each co-cluster 

of patients and comorbidities does not improve 

comprehension of the network. Such networks 

are colloquially referred to as a “giant hairball.” 

A key topological property that exists across many such large patient-characteristic networks is that although they 

exhibit strong clustering, there are many patients that share characteristics outside their clusters. As shown in Fig. 2, 

this overlap of clusters results in a core-periphery topology7 where there are many patient nodes in the central core of 

the network that have inter-cluster characteristics, and many patient nodes in the periphery that have few inter-cluster 

characteristics. This effect is especially accentuated by the FR force-directed algorithm which uses attractive forces 

between connected nodes (pulling together highly-connected nodes to the center), and repulsive forces between 

disconnected nodes (pushing apart sparsely-connected nodes to the periphery). Unfortunately, while the overlap of 

clusters is comprehensible in small datasets (e.g., Fig. 1A), the overlap in the core tends to be too dense for 

comprehension in large datasets despite having significant clustering (e.g., Fig. 2). 

Because comprehending how patients share characteristics within and across clusters is critical for inferring their 

mechanisms, we were motivated to develop an approach that preserved the topology of each cluster (which separates 

patients with inter- versus intra-cluster characteristics), while also preserving the adjacency relationships among 

clusters (which reveals patient subgroups that share more characteristics with each other compared to others). 

Existing Methods to Enhance the Comprehension of Clusters in Network Layouts 

Given the high search complexity involved in generating layouts for large networks, there is growing consensus that 

there is no best way to lay out a network, but rather the selection or design of an approach should be guided by the 

need to highlight specific features of the network that are relevant for the task.12 Consequently, there have been several 

attempts to enhance the comprehension of clusters in giant hairball networks to perform different tasks, each with 

important conceptual and pragmatic trade-offs.12 These attempts tend to fall under three broad categories:  

1. Multi-level aggregation approaches which attempt to abstract networks at different levels of granularity to reveal 

patterns such as clusters. For example, nodes are aggregated based on network or other properties, and the edges 

across the aggregated nodes are summed to form a single weighted edge connecting the aggregated nodes.13 The 

output is a series of networks at different levels of granularity. While such approaches are useful to get a quick 

overview of the overall structure of the network, it requires navigating between the different levels of granularity. 

Such navigation can be challenging when trying to infer mechanisms in subgroups requiring an understanding of 

both detail and global structure simultaneously. 

2. Force modification approaches which attempt to introduce externally-determined cluster membership 

information into the calculation of forces in a specific force-directed algorithm. For example, these methods 

increase the attractive forces between nodes in the same cluster, or add a virtual node to each cluster with 

 

 

Fig. 2.  Bipartite network of 6150 readmitted hip fracture 

patients extracted from the 2010 Medicare database that had at 

least one of 8 significant comorbidities. Despite strong and 

significant clustering, the network had highly overlapped 

clusters in the center of the network, resulting in a core-

periphery network topology. 
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additional edges to each member of that cluster.14 Such modifications of forces result in nodes belonging to a 

cluster to be closer to each other compared to what a traditional layout (with no knowledge of externally-

determined clusters) produces. While such approaches produce a single layout, they can substantially alter the 

topology of specific clusters in addition to the overall network, and therefore could affect the inferential process. 

Furthermore, as each dataset has different densities of clusters, the modifications of forces required to achieve the 

desired affect could vary across datasets, requiring considerable knowledge of the underlying algorithm for 

effective use.12 

3. Cluster repositioning approaches which attempt to move clusters such that there is greater separation between 

them. For example, the Group-in-a-Box15 algorithm isolates each cluster by removing inter-cluster edges and re-

laying out nodes in each cluster using a force-directed algorithm. Each cluster is then placed in a minimal 

bounding box, and the collection of bounding boxes are rearranged using a tree-map16 algorithm to fit in a compact 

rectangle. This approach is most useful when the primary task is to comprehend local cluster topologies, 

independent of the global topology. However, the approach neither preserves the local topology of each cluster 

with respect to the full network (as the inter-cluster edges are ignored when the cluster is re-laid out), nor preserves 

the global topology (as the cluster locations are organized by a tree-map algorithm which does not preserve the 

adjacency relationship between the clusters).  

While each of the above methods are effective for different types of tasks, our analyses of patient-characteristic 

networks suggest that an effective network layout requires two critical features: (1) preservation of local cluster 

topology with respect to the global network, which enables comprehension of which and how many patients share 

characteristics within and outside their clusters; (2) preservation of the inter-cluster adjacencies, which enables 

comprehension of which combinations of clusters share more characteristics compared to other clusters. As none of 

the existing methods satisfy both these constraints, we were motivated to develop ExplodeLayout, an approach which 

attempts to satisfy the above properties critical for the comprehension of patient subgroups in precision medicine. 

Method 

Intuition Underlying the ExplodeLayout Algorithm 

Our method was inspired by exploded view17 drawings commonly 

used to explain complex mechanical or architectural assemblies (e.g., 

an engine or desk). The goal of such drawings is to illustrate how the 

components of an assembled object are related to each other to 

facilitate tasks such as assembling parts during manufacturing, or 

disassembling them during repairs. Because a fully-assembled object 

often occludes the whole or parts of its components, the exploded 

view considers each component as a solid object which is moved a 

small distance away from the components immediately adjacent to it. 

This separation reveals important details about the shape of each 

component, and its relationship to the other components.  

The separation of components can be along one or more axes 

depending on the topology of the object. For example, Fig. 3 shows an 

assembly18 that has been exploded in the horizontal and vertical axes. 

When assemblies have a circular topology, the explosion can occur 

across multiple intersecting axes resulting in a radial exploded view.  

While exploded views preserve the topology of the components in 

addition to their relative adjacencies to other components in the 

assembly, they distort the actual distance between the components, 

and increase the overall size of the drawing. Because exploded views 

are intuitive and commonly used to describe furniture and other 

assemblies, we used it to guide the design of the ExplodeLayout 

method for networks. Therefore, we regarded clusters in the network 

as analogous to solid components of an assembly, and the separation 

of those clusters as analogous to the separation of components in an 

exploded view.   

Design and Implementation of the ExplodeLayout Algorithm  

Below we describe the geometry, search, visualization, and 

implementation of the ExplodeLayout algorithm: 

 

Fig. 3.  Exploded view of an assembled 

mechanical part where the components have 

been exploded in the horizontal and vertical 

axes to reveal details of their shape, while 

preserving their adjacency relationships to 

the other components in the assembly.  
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1. Geometry. As shown in Fig. 4A, the algorithm requires as input the coordinates of network nodes generated by 

any force-directed algorithm such as FR, including the number and members of clusters generated by a modularity 

algorithm1 (standard in most network applications). As shown in Fig. 4B, this information is used to generate the 

centroid of each cluster (using median x and y coordinates of all nodes in the cluster), and the centroid of the 

entire network (using median x and y coordinates of all nodes in the network). Next, as shown in Fig. 4C, the 

algorithm constructs an imaginary explode circle whose center is the centroid of the network, which has n 

equidistant points on its circumference where n=number of the clusters, and whose radius is determined by a 

search (see below). The nodes within each cluster are then moved by the same distance and angle, such that the 

centroid of that cluster coincides with the closest point on the circle.  

However, when clusters are merely shifted to the equidistant points on the circle, this translation can change the 

orientation of the cluster with respect to its orientation in the original FR network. As shown in Fig. 2, the FR 

algorithm places patients with few characteristics in the periphery of the network pointing radially outwards from 

the network centroid. Therefore, as shown in Fig. 4D, after a cluster is moved to a point on the exploded circle, 

our algorithm rotates the cluster around its centroid to match its original orientation in the FR network. The angle 

and the direction of this corrective rotation is determined by calculating the difference in angle between two lines: 

(1) a line joining the centroid of the network and the centroid of the cluster, and (2) a line joining the centroid of 

the network and the destination point on the explode circle for that cluster. We refer to this explosion method as 

the equidistant explosion plus rotation method. Finally, as shown in Fig. 

4E, once the nodes of the network are moved to the exploded circle, the 

nodes are connected by edges based on the original network, and 

displayed.  

2. Search. While the separation of the clusters was the main goal of the 

algorithm, we needed to determine the optimal level of that separation to 

ensure that the layout was compact. Very large visualizations result in the 

“focus vs. context”19 dilemma requiring users to zoom in to 

comprehending details of specific node associations, and zoom out to 

comprehend the topology of the entire network. As information from each 

view has to be kept in working memory, it can reduce the ability of a user 

to comprehend complex local patterns in the context of global patterns. We 

therefore developed a measure called the compact cluster separation (CCS) 

score, defined as the ratio of total non-overlapped area across clusters 

to the total layout area of the entire network. As shown in Fig. 5, the 

total non-overlapped area across clusters was measured by calculating the 

total non-overlapping area across the minimum bounding boxes for nodes 

in each cluster; the total layout area was measured by calculating the area 

of the minimum bounding box of all nodes in the network. Higher values 

of CCS therefore represent larger non-overlapping areas (or smaller 

overlap) among clusters within a smaller overall area, resulting in a 

compact display for the exploded network.  

 

Fig. 4.  The ExplodeLayout algorithm takes as input node coordinates generated from any force-directed layout 

algorithm, and cluster membership of each node generated from any clustering algorithm (A), calculates the centroid 

of each cluster (B), places n equidistant points around a circle (whose center is at the centroid of the entire network, 

and whose radius is determined by a search) such that n=number of clusters, and moves all nodes in each cluster 

such that its centroid is on the closest point on the circle (C), rotates each cluster around its centroid to match its 

original orientation (D), and reconnects the nodes resulting in the exploded network (E).  
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Fig. 5. The compact cluster 

separation (CCS) score is the ratio 

of the total non-overlapped areas of 

the minimum bounding boxes for 

each cluster (sum of the gray 

shaded areas), to the total area of 

the entire network (area enclosed 

by the blue dashed rectangle). 
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We used the hill-climbing search heuristic to find the maximum CCS for increasing values of the explode radius. 

The starting point of the search was the explode circle radius that was the closest to the CCS score for the given 

network layout such as the FR layout shown in Fig. 2. The explode radius corresponding to the optimal CCS was 

used to construct the exploded network layout. 

3. Visualization and Interactive Refinement. Because the bounding boxes around the clusters are approximations of 

the actual cluster shapes (e.g., overlapping areas of the bounding boxes might not contain any nodes or conversely 

contain a disproportionately large number of nodes), the optimal explode radius might not be the best from a 

human visual perspective. We therefore developed an interface which displayed the optimal layout generated 

from the above search, but which also enabled the modification of the explode circle radius through a scroll bar. 

This feature was designed to enable a user to explore other explode circle radii in the neighborhood of the optimal 

explode circle radius suggested by the algorithm. 

4. Implementation. The ExplodeLayout was implemented in R (version 3.3.2) using the iGraph package (version 

0.7.1) for the network layouts, the ggplot package (version 2.2.0) to display the visualizations, and the Shiny 

package (version 0.13.2) for the interface. 

Evaluation of the ExplodeLayout Algorithm 

We tested the significance, interpretability, and scalability of the ExplodeLayout algorithm as described below: 

1. Significance. To test whether the optimal CCS generated by ExplodeLayout was significantly different from the 

same measure using FR, we first generated 1000 FR layouts of the readmission network with random seeds. Each 

random seed generates a different variation of the FR layout, and therefore the resulting distribution represents 

the range of layout variations FR produces. Next, for each of the 1000 FR layouts, we maximized its CCS score 

using the ExplodeLayout search algorithm described earlier. This produced a paired distribution of CCS scores 

generated from ExplodeLayout. As the two distributions were not normal, we used the Wilcoxon Signed-ranks 

two-tailed test (paired non-parametric significance test) to test whether the CCS scores from FR was significantly 

different from the CCS scores generated from ExplodeLayout.  

2. Interpretability. To test whether the exploded layout was comprehensible and useful for inferring mechanisms 

relevant to precision medicine, we presented the readmission network layout with the optimal CCS score to two 

clinicians with experience in caring for the elderly. We explained that the patient nodes in each cluster represented 

patient subgroups that had a similar profile of present and absent comorbidities, and the comorbidities in each 

cluster represented the most frequently co-occurring comorbidities in the respective patient subgroup. We then 

asked the clinicians to (1) visually analyze each cluster and infer mechanisms that might precipitate the 

readmission for the respective patient subgroup, and provide corroborative evidence from the literature for their 

inferred mechanisms, and (2) provide feedback on the scroll bar to explore other degrees of cluster separation. 

3. Scalability. To test the scalability of ExplodeLayout, we used it to analyze two subsets of an Alzheimer’s dataset 

consisting of patients and their single nucleotide polymorphisms (SNPs) using the recessive genetic model. The 

first subset consisted of 1179 patients with the top 20 univariately-significant SNPs (Alzheimer’s-20), and the 

second subset consisted of 1411 patients with the top 1000 univariately-significant SNPs (Alzheimer’s-1000). 

The latter subset was selected as it represents the upper limit of the number of variables that current co-cluster 

modularity algorithms can analyze for calculating modularity and its significance (requiring comparison to 1000 

random variations of the network) in a reasonable amount of time. 

Results 

Network Layout Generated from ExplodeLayout 

Figure 6A shows how ExplodeLayout modified the FR layout shown in Fig. 2 to find new locations of the clusters on 

the explode circle. As shown, similar to the exploded view of mechanical and architectural drawings, the clusters have 

been separated while preserving (1) the topology of each cluster, (2) the adjacency relationship among the clusters, 

(3) each cluster’s orientation such that patients with few characteristics are in the periphery pointing radially outwards.  

As shown in Figure 6B, the CSS score maximized at 0.57 with an explode radius of 0.5, after which the CSS score 

steadily decreased as the explode radius increased. This decrease represents a declining improvement in the cluster 

separation accompanied by an increase in the overall space needed to display the network. 

Significance  

Using the Wilcoxon Ranked-test, we compared the distribution of CCS scores generated from 1000 FR layouts of the 

readmission network to the corresponding layouts generated from ExplodeLayout. The results revealed that the CCS 

scores for ExplodeLayout (Mdn = 0.577) were significantly higher compared to FR (Mdn = 0.358), Z = 27.39, p < 

.001, r = 1.   
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Interpretability  

The two clinicians together analyzed the exploded layout in Fig. 6A, and were told to infer the mechanisms that could 

precipitate readmission in each patient subgroup. They observed that the network revealed two sets of comorbidities. 

The first set consisting of diabetes and renal failure (RF) had metabolic effects resulting in potential damage to 

multiple organs such as the liver, heart, lungs, and arteries, and therefore often referred to as systemic or metabolic 

diseases. In contrast, the second set consisting of congestive heart failure (CHF), arrhythmia, stroke, major 

complications of medical care and trauma (MCMCT), chronic obstructive pulmonary disease (COPD), and vascular 

disease had mainly organ-specific effects and consequences. Furthermore, they observed that as diabetes and RF 

together co-occurred frequently (forming the gray cluster), the processes precipitating readmission underlying that 

cluster was most probably related to the exacerbation of long-standing diabetes with RF causing microvascular 

complications. The cluster separation therefore 

helped to identify two categories of 

comorbidities, and a key co-occurrence in the 

network.  

Next, they observed that although there were 

distinct patient subgroups representing global 

heterogeneity in readmission across the entire 

dataset, there appeared to be a second level of 

heterogeneity within each cluster shown by the 

different number of nodes on the inner part of 

the network (forming the network core). To 

explore this further, they increased the explode 

radius from the optimal radius of 0.5 (shown in 

Fig. 6A) to 1.0. As shown in Fig. 7, this 

additional cluster separation revealed that each 

cluster had many edges connecting to diabetes 

and RF. A quantitative test revealed that while 

all comorbidities in the network had high odds 

ratio for readmission, the odds ratios were 

significantly higher when a comorbidity co-

occurred with diabetes and RF. Therefore the 

scroll bar prompted a deeper understanding of 

the inter-cluster patterns, and motivated the 

quantitative analysis to verify the observation. 

 

Fig. 6.  (A) Network layout after application of the ExplodeLayout algorithm to the original layout of the readmission 

network shown in Fig. 2. (B) The effect of changing the explode radius on the CCS score for the readmission network. 

The dashed blue line shows the explode circle radius for the FR layout shown in Fig. 2, and the dashed red line shows 

the explode circle radius corresponding to the maximum CCS score.    

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

C
o

m
p

ac
t 

C
lu

st
er

 S
ep

ar
at

io
n

 (
C

C
S)

Explode Circle Radius

Effect of Explode Circle Radius on CCS

A B

Characteristic

Association

Patient

Cluster Membership

  
 

 

Fig. 7. ExplodeLayout interface provides the ability to change the 

radius of the explosion through a scroll bar, which enabled users to 

explore other explosion radii in the vicinity of the optimal explosion 

suggested by the algorithm.  

 

26



Next, the clinicians integrated the visual and quantitative information to hypothesize that when a patient is discharged 

from the hospital after hip fracture surgery, the onus of care is treatment and rehabilitation of the index condition 

which in the case of hip fracture includes focus on wound healing and physical therapy. However, it is common 

knowledge that elderly patients tend to decrease their oral intake at early stages of most acute medical conditions 

including hip fracture. This decreased intake contributes to dehydration, poor nutrition, and worsening renal function 

(which are common conditions in hospitalized elders regardless of index condition), or to poor glycemic control in 

diabetics. Worsening metabolic profile of the patient could trigger deterioration of the organ-specific comorbidities 

such as CHF and COPD. By the time the symptoms of exacerbation of the high-risk comorbidity pairs are recognized, 

the patients may be at such severity that it precipitates readmission requiring more acute care. This overall mechanism 

that precipitated readmission was corroborated with references from the literature.20,21 Therefore, the node separation, 

combined with the edge separation using the scroll bar, enabled the domain experts to comprehend heterogeneity at 

the global and the local cluster levels, resulting in a novel inference that was corroborated with references from the 

literature.  

Scalability  

Figure 8 shows the results of using the ExplodeLayout algorithm to analyze two high-dimensional datasets. The first 

had 1179 patients and 20 SNPs, and the second had 1411 Alzheimer’s patients and 1000 SNPs. As shown, both 

datasets displayed strong separation of clusters based on the maximum CSS score generated from ExplodeLayout. In 

both cases, the CCS scores were significantly higher than those generated by FR (Alzheirmer’s-20: ExplodeLayout 

Mdn = 0.503, FR Mdn = 0.216, Z = 27.39, p < .001, r = 1; Alzheirmer’s-1000: ExplodeLayout Mdn = 0.581, FR Mdn 

= 0.228, Z = 27.39, p < .001, r = 1). Furthermore, both datasets were exploded in a reasonable amount of time 

(Alzheirmer’s-20 = 10 seconds, Alzheimer’s-1000 = 61 seconds). 

However, as shown in Fig. 8D and 8E, the Alzheimer’s-1000 network has a large number of characteristics in each 

cluster, and the separation of patients within the clusters are not salient resulting in a recursive hairball problem. 

Discussion with the clinicians revealed that, at least for the problem of comprehending patient subgroups in precision 

medicine, datasets with such high dimensionality are typically not useful, and need to be filtered through feature 

selection methods before they are ready for interpretation. Therefore, while we have demonstrated that our algorithm 

does scale up to high dimensional data (upto the current limit of the supporting modularity and force-directed 

algorithms as discussed earlier), the typical datatsets analyzed for precision medicine using ExplodeLayout will 

probably be similar to the readmission dataset, or the Alzheimer’s-20 dataset.  

 

Fig. 8.  Network layouts before and after application of the ExplodeLayout algorithm for the Alzheimer’s-20 and 

Alzheimer’s-1000 networks, and the respective CCS scores (the dashed blue line shows the explode circle radius for 

the corresponding FR layout, and the dashed red line shows the explode circle radius corresponding to the maximum 

CCS score).     
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Discussion 

The results suggest that our attempt to design an algorithm to explode a given force-directed layout using cluster 

information was effective in enabling domain experts to infer novel mechanisms in readmission data. This we believe 

is because the algorithm preserved important features of the topology within each cluster with respect to the global 

topology, in addition to the adjacencies between clusters. Furthermore, the scroll bar designed to help explore other 

explosion circle radii in the neighborhood of the radius suggested by the algorithm, appears to be useful when inter-

cluster associations through the separation of edges is important for the interpretation of patient subgroups. 

Although the notion of exploding a layout based on a well-known drawing approach was conceptually a simple idea, 

its application to networks led us to three important insights. First, we have come to realize that repulsive forces 

(which push apart nodes that are not connected) in force-directed algorithms are as important as attractive forces 

(which pull together nodes that are connected). This explained why FR produced far better layouts with respect to 

separating core patient nodes (which had many inter-cluster characteristics) from periphery patient nodes (which had 

many intra-cluster characteristics), compared to the Kamada-Kawai22 (KK) layout algorithm which does not have 

repulsive forces. In this paper we therefore focused on modifying FR layouts. However, future research should explore 

the advantages of applying the ExplodeLayout algorithm on KK generated layouts.  

We also experimented with alternate methods for determining the exploded locations of the cluster centroids. For 

example, to preserve the angle between clusters, we calculated cluster centroids by generating a line that connected 

the centroid of the entire network to the centroid of the cluster, and extending it to where it intersected the explode 

circle. In another approach we attempted to preserve the relative distance of the cluster centroid from the center of the 

network by moving each cluster by a fixed distance on a line connecting the network centroid to the cluster centroid 

to generate the destination location of the centroid. Additionally, in an effort to improve the accuracy of the cluster 

overlap calculation, we explored the use of bounding polygons instead of bounding boxes. While these methods might 

be useful in some cases, none of them had the general usefulness of the equidistant plus rotation approach presented. 

Limitations 

As discussed above, very high dimensional datasets such as Alzheimer’s-1000 lead to the recursive hairball problem, 

where individual clusters have no discernable structure. However, as noted by the clinicians, the patient characteristics 

in such high-dimensional datasets need to be reduced before they are useful for interpretation of underlying 

mechanisms. Therefore future systems should tightly integrate feature selection methods with layout methods such as 

ExplodeLayout. 

Conclusions and Future Research 

Although patient-characteristic bipartite networks have been used successfully to identify and interpret patient 

subgroups based on their characteristics in small datasets, they often fail to reveal comprehensible visual patterns in 

large and dense networks despite having significant clustering. We therefore developed ExplodeLayout that was 

specifically designed to enable the comprehension of patient subgroups with applications to precision medicine. 

Inspired by the well-known exploded view drawings of mechanical and architectural assemblies, we designed an 

algorithm that accepted as input a layout of nodes generated from a force-directed layout algorithm, and node cluster 

membership generated from a clustering algorithm. The ExplodeLayout algorithm used the cluster information to 

modify the force-directed layout while preserving the local cluster topology with respect to the global network, in 

addition to the inter-cluster adjacencies. This enabled clinicians to comprehend the patient subgroups and infer the 

respective mechanisms, a critical step in the design of targeted interventions for precision medicine.  

Furthermore, we developed a new measure called compact cluster separation (CCS) which was used to maximize 

cluster separation while minimizing the space needed to display the network. This measure was also used to search 

for an optimal exploded layout, and to test whether the resulting compact cluster separation was significantly better 

compared to that produced by a traditional force-directed algorithm. Finally, we developed a simple interface which 

displayed the optimal layout determined by the search, but which also enabled users to explore other degrees of cluster 

separation using the scroll bar, resulting in deeper insights related to heterogeneity. Future evaluations with end users 

who wish to use this method will determine whether ExplodeLayout is useful and usable for a wide range of networks. 

While we have developed ExplodeLayout to explode networks with a core-periphery topology resulting from 

overlapping clusters common in patient-characteristic networks, there can be other network topologies also resulting 

in incomprehensible hairballs. For example, networks could have more than one core resulting from more complex 

cluster overlaps requiring other explosion methods.  

A critical aspect of our evaluation was to test the algorithm with real data, realistic tasks, and with clinicians vested in 

understanding complex clinical phenomena. Future research needs to more systematically evaluate ExplodeLayout 

for interpretability compared to other approaches that have been designed to enhance clustering in large and complex 

networks. Such investigations should enable researchers to more quickly identify and interpret patient subgroups in 
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large and complex datasets such as electronic medical records, with the goal of designing targeted interventions that 

improve health outcomes, a critical goal of precision medicine. 
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