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INTRODUCTION 
 

Crystallins are ubiquitous, abundant proteins mainly 

found in the ocular lens, which is the tissue with the 

highest protein content in the human body [1, 2]. Their 

discovery dates to about 200 years ago, when Berzelius 

first identified and named the crystallins as specific 

entities of the bovine lens [3, 4]. In 1894, Morner 

successfully isolated three primary types, the α-, β-, and 

γ-crystallins, which proved to have highly heterogeneous 

patterns of expression in most vertebrate lenses [4–7]. 

These three classes were classified mainly by the sizes of 

the oligomers they form. The largest multimers, formed 
by α-crystallin, are on the order of 500 kDa. The β-

crystallins represent a dimer- to octamer-sized mixture 

with molecular masses ranging from 45 to 180 kDa, 

while γ-crystallin monomers are approximately 20 kDa. 

The α-crystallins belong to the family of small heat-

shock proteins (HSPs) which act as molecular chaperones 

during embryonic development [8–9]. The α-crystallin 

family comprises two subunits, referred to as αA- and 

αB-crystallins, which are encoded by the Cryaa and 

Cryab genes, respectively [10]. The classical function of 

α-crystallin is to serve as a chaperone, protecting the lens 

against stress conditions. However, studies showed that 

α-crystallins participate also in the protection and 

remodeling of the cytoskeleton, and contribute to 

inhibition of apoptosis through binding to pro-apoptotic 

Bcl-2 and Bcl-2 like 1 proteins [11–13]. The β- and γ-

crystallins are thought to play a common structural role in 

the eye lens of vertebrates. These proteins share a 

common polypeptide chain fold, have conserved 

sequences, and are thus grouped into the βγ-crystallin 

superfamily, which is encoded by at least 14 genes [14, 
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ABSTRACT 
 

Crystallins, the major constituent proteins of mammalian lenses, are significant not only for the maintenance of 
eye lens stability, transparency, and refraction, but also fulfill various physiopathological functions in 
extraocular tissues. βB2-crystallin, for example, is a multifunctional protein expressed in the human retina, 
brain, testis, ovary, and multiple tumors. Mutations in the βB2 crystallin gene or denaturation of βB2-crystallin 
protein are associated with cataracts, ocular pathologies, and psychiatric disorders. A prominent role for βB2-
crystallins in axonal growth and regeneration, as well as in dendritic outgrowth, has been demonstrated after 
optic nerve injury. Studies in βB2-crystallin-null mice revealed morphological and functional abnormalities in 
testis and ovaries, indicating βB2-crystallin contributes to male and female fertility in mice. Interestingly, 
although pathogenic significance remains obscure, several studies identified a clear correlation between βB2 
crystallin expression and the prognosis of patients with breast cancer, colorectal cancer, prostate cancer, renal 
cell carcinoma, and glioblastoma in the African American population. This review summarizes the physiological 
and pathological functions of βB2-crystallin in the eye and other organs and tissues and discusses findings 
related to the expression and potential role of βB2-crystallin in tumors. 
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15]. In mammals, these genes are not only organized as 

individual genes (Cryba1, Cryba2, Crygf, Crygs, CrygN), 

but also as duplets (Cryba4–Crybb1 and Crybb2–

Crybb3) and into one major cluster (Cryga–Cryge) [11, 

16]. The γ-crystallins are monomeric proteins with 

molecular masses of about 20 kDa, whereas the β-

crystallins are a heterogeneous mixture of dimers and 

higher oligomers with native molecular masses ranging 

from about 50 kDa to 200 kDa [8]. Like all members of 

the βγ-crystallin superfamily, β-crystallins comprise two 

domains connected by an 8–10 amino acid inter-domain 

connecting peptide [17]. Each domain has two identical 

folded polypeptide chains, composed of a characteristic 

β-sandwich of two anti-parallel β-sheets conformations 

and N- and C-terminal extensions of varying lengths [17, 

18]. Due to the similarity of these structures to paintings 

on ancient Greek pottery, they are known as ‘Greek key’ 

motifs [19, 20]. These motifs allow a dense packaging of 

the proteins to minimize light scattering, guaranteeing 

optimal transparency to the lens. For eye lens crystallins, 

the native folded state is required for lens transparency. 

In contrast, aggregated high molecular weight complexes 

are the source of light scattering leading to ocular 

pathologies. Seven β-crystallin genes, distributed on 

several chromosomes, code for homologous polypeptides 

termed βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, and βB3-

crystallin [7]. Four of the genes code for polypeptides 

with slightly lower isoelectric points, known as the βA 

(acidic) crystallins, while the other 3 encode the βB 

(basic) crystallins [4]. Unlike γ-crystallins, both acidic 

and basic β-crystallins have N-terminal extensions, 

whereas C-terminal extensions are found only in the 

basic polypeptides. Another difference between β- and γ-

crystallins is that the two motifs comprising each β-

crystallin domain are encoded by separate exons, whereas 

for γ-crystallins a single exon encodes both protein 

motifs [14]. 

 

B2-crystallin: more than a lens protein 
 

One of the most prominent members of the vertebrate 

eye lens is the βB2-crystallin (gene symbol CRYBB2 in 

humans and Crybb2 in mice) [21]. The mouse Crybb2 

gene is located on chromosome 5, within a cluster that 

includes three other Cryb genes. The corresponding 

human gene (CRYBB2) is mapped to chromosome 

22q11.2 [22]. Crybb2 consists of six exons; the first one 

is untranslated, the second codes for the N-terminal 

extension, and the subsequent four exons code for the 

Greek key motifs [14, 23]. Although βB2-crystallin is 

expressed at negligible amounts in the embryonic 

mouse lens, its expression increases sharply at birth [24] 

to become the most abundant β-crystallin in the mouse 

lens by postnatal week 6 [25, 26]. Endogenous βB2-

crystallin gene activity is upregulated in cultured lens 

cells by overexpression of β-catenin, which suggests a 

link between canonical Wnt-signaling and crystallin 

gene regulation [27]. Like α-crystallin, βB2-crystallin is 

also involved in cAMP-dependent and cAMP-

independent phosphorylation pathways [28]. Studies 

demonstrated that the Greek key motifs of β-crystallins 

represent potential Ca2+-binding sites, which suggests a 

role for these proteins in Ca2+ buffering [29–31]. βB2 

crystallin is the most energetically stable protein within 

the crystallin superfamily, capable of stabilizing and co-

assembling other β-crystallins [32]. 
 

Until the 1990s, it was generally accepted that 

mammalian crystallins were evolutionarily highly 

conserved, lens-specific proteins. However, several 

discoveries changed this concept. Non-lenticular 

expression of α-crystallins is now well described, as the 

prominent expression of these proteins was 

demonstrated in rat spleen, thymus, rectum, cecum, 

liver, kidney, adrenal glands, cerebellum, and brainstem 

[13, 33]. In 1978, de Pomerai and Clayton provided one 

of the first reports on the presence of β-crystallin in 

non-lens tissue by demonstrating trace amounts of β-

crystallin in a 60-day culture of 17-day embryonic chick 

neural retina [11]. In 1995, a more detailed study first 

reported clear evidence for the expression of βB2-

crystallin in both murine and feline neural retina and 

retinal pigment epithelium (RPE), thus validating the 

presence in mammals of β-crystallin outside the lens 

[34]. These findings further contributed to challenging 

the original notion that crystallins are lens-specific 

proteins. Along with this evidence, it gradually took 

hold the concept that crystallins may originate in 

diverse cell types, pre-dating the evolution of the lens, 

and had a variety of functions before they were 

recruited to the lens to function as ‘crystallins’ [4]. 

Thus, research efforts eventually demonstrated that in 

addition to the ubiquitous crystallins found in the eye 

lens, some crystallins are essentially tissue-specific, 

while others have a completely separate machinery of 

expression in non-ocular tissues [35]. Indeed, stemming 

largely from studies in mice harboring mutations in 

Crybb2, such as the Philly [36], Aey2 [37], and 0377 

[22] strains, we now know that the role of βB2-

crystallin, the most important member of the β-

crystallin superfamily, goes beyond its classical 

refractive function as a lens protein. Therefore, the 

purpose of this review is to illuminate the function of 

βB2-crystallin within and outside the lens. 

 

Physiological functions of b2-crystallins 
 

Lens 
 

Crystallins are highly soluble structural proteins that 

comprise 90% of the mammalian lens. Among them, 

βB2 crystallins are the most abundant β-crystallins in 
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the human lens. The highly ordered, tightly packed 

crystallins make up the transparent structure of the lens 

and allow it to focus light onto the retina. To provide 

adequate lens structure and function, a protein must: (1) 

be highly soluble—high concentrations of soluble 

crystallins are responsible for the refractive index of the 

lens and maintain its transparency; (2) be extremely 

stable: the inherent stability of crystallins, arising from 

their native, compact structure, correlates tightly with 

their exceptional longevity; and (3) be able to have 

specific interactions with other crystallins: forming a 

stable protein matrix with a high degree of short-range 

order allows to increase resistance to oxidative stress 

and thermal denaturation, which is decisive to maintain 

lens transparency [8, 38, 39]. Therefore, the solubility 

and stability of βB2-crystallins are crucial determinants 

for the normal function of the lens: when these 

parameters are compromised, crystallin aggregation will 

affect lens transparency and reduce dioptric capacity 

[38–41]. Notable features of the molecular biology of 

the crystallin superfamily include the potential to be 

transported between cells via exosomes [42] and the 

ability of some of its members (e.g., αB- and βA3/A1-

crystallins) to regulate lens differentiation and 

epithelial-mesenchymal transition (EMT) in RPE and 

tumor cells [43–45]. 

 

Retina 

 

A 2000 study demonstrated the expression of βB2-

crystallin mRNA and protein in the mammalian retina 

[28, 46]. Subsequently, in 2007 a nonrefractive function 

of βB2-crystallin was first suggested by a study that 

indicated that this protein prevents the degeneration of 

the RPE and moves from the retinal ganglion cells 

(RGCs) into the extracellular space and retrogradely 

into the RGCs, although the underlying mechanisms 

remain to be elucidated [47]. Colocalization of βB2-

crystallin with calmodulin, the major Ca2+-binding 

protein in the retinal ganglion cell (RGC) layer, 

provides further evidence that βB2-crystallins also 

operate via Ca2+ binding [48]. Immunohistochemical 

expression analyses in the retina, including filopodial 

protrusions and axons of adult RGCs, showed that βB2-

crystallin is upregulated in the regenerating retina [49, 

50] and promotes RGC survival after optic nerve 

axotomy through an autocrine mechanism [51]. In turn, 

cytoprotective functions of βB2-crystallin have been 

further demonstrated in cultured ARPE-19 (RPE) cells 

exposed to UV light, which showed increased viability 

and proliferation potential after addition of βB2-

crystallin to the culture medium [47]. Indeed, evidence 

indicated that light-induced phosphorylation of β-
crystallins mediates their anti-apoptotic chaperone 

activity in the RPE [52]. Of note, the latter function was 

further suggested in the uvea, as high expression of 

βB2-crystallins in retinal mitochondria was suggested to 

prevent cell death during the early stages of 

experimental autoimmune uveitis [53]. 

 

Brain 

 

Considerable evidence has accumulated over the past 20 

years for the expression of various crystallins in several 

cell types and tissues, including the nervous system 

[54]. Gene analysis of a dominant cataract mouse model 

unmasked a crybb2 mutation and revealed that βB2-

crystallin is expressed within distinct regions of the 

brain [22]. The Crybb2 transcript was best detected in 

the brain during postnatal development and through 

adolescence and was expressed predominantly in 

neurons of the olfactory bulb (mitral cell layer and 

glomerular layer), hippocampus (pyramidal cells of the 

CA1, CA2, and CA3 regions and granule cells of the 

dentate gyrus), cerebral cortex (pyramidal cells 

throughout all layers), and cerebellum (Purkinje cells 

and stellate cells of the molecular layers) [22, 55, 56]. 

As illustrated in animal models of optic nerve injury 

and axonal regeneration, mounting evidence highlights 

βB2-crystallin as a momentous factor that operates 

through autocrine and paracrine mechanisms to support 

axonal growth and repair, at least in part by accelerating 

the production of ciliary neurotrophic factor (CNTF) 

[49, 51, 57]. Furthermore, an important role for βB2-

crystallins in synaptic remodeling was suggested based 

on evidence that these proteins facilitate dendritic 

outgrowth through regulating thymosin β4 (Tmsb4X) 

expression [58]. Thymosins play a crucial role in 

numerous cellular processes by affecting morphology, 

migration, and vesicle trafficking [59, 60]. All these 

properties emphasize the therapeutic potential of βB2-

crystallins in the treatment of neurodegenerative 

diseases. 

 

Testis and ovary 
 

Substantial evidence supports the expression of βB2-

crystallin in both testis and ovary [61, 62]. Studies in 

the Philly mouse strain, which develops hereditary, 

progressive cataracts ~15 days after birth, led to 

identification of the crybb2philly mutation as the 

responsible factor. The Crybb2philly gene presents a 12-

nucleotide in-frame deletion in the region encoding the 

fourth Greek key domain of the βB2-crystallin protein. 

Intriguingly, Philly mice were found to have poor 

fertility resulting from defective sperm and egg 

production [36, 62, 63]. Later on, the expression of 

βB2-crystallin was detected in spermatocytes from 

diverse mammals at the leptotene and zygotene stages 
[62, 64]. Indeed, βB2-crystallin transcripts are detected 

in the testis from birth throughout life and their 

expression is upregulated at postnatal day 17, 
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consisting with the beginning of meiosis II [65]. 

Interestingly, a plausible connection between βB2-

crystallin and infertility was provided by studies that 

identified βB2-crystallin as a microtubule-associated 

protein. This interaction can prevent microtubules 

from denaturation and impact sperm motility [66, 67]. 

After the generation of a βB2-crystallin null mouse 

(Crybb2-/-mouse) [68], further experiments allowed 

exploration of the mechanisms underlying subfertility 

caused by deficits in βB2-crystallin [69]. Evidence 

showed that decreased levels of Ca2+/calmodulin-

dependent protein kinase IV (CaMKIV) in Crybb2-/-

mice may affect the expression of Bcl-2, a major anti-

apoptotic protein, which would reduce fertility by 

leading to abnormal proliferation and apoptosis of 

germ cells in the testis [70–72]. 

 

In the ovary, βB2-crystallin is mainly expressed in 

granulosa cells, with lower levels detected in theca cells 

[72]. It was reported that the progression of granulosa 

cells was inhibited in Crybb2-/- mice, concomitant with 

decreased expression of two important cell cycle 

regulators, namely CDK4 and CCND2 [73]. In addition, 

in developing follicles the expression of Bcl-2 was 

distinctly lower after Crybb2 deletion, which 

demonstrated that βB2-crystallin influences female 

fertility by regulating granulosa cell apoptosis and 

follicular atresia [61, 74, 75]. Interestingly, further 

research indicated that downregulation of lncRNA A-

30-P01019163 in ovary tissues from Crybb2-/- mice may 

impair ovarian cell cycle and proliferation by reducing 

the expression of the purinergic receptor P2RX7 [76–

78]. 

 

Pathological functions of b2-crystallin 
 

Ocular pathologies 

 

In line with the main findings in the Crybb2 knockout 

mouse, several human studies attested to the 

association between mutations in the βB2-crystallin 

locus and cataracts [68, 79]. Besides a functional 

βB2-crystallin locus, in humans there is a second 

βB2-crystallin-derived pseudogene, termed 

CRYBB2P1. Conversion of the βB2 locus to the 

pseudogene results in lens opacification and cataract 

formation [80]. As shown in the Philly mouse model, 

misfolding of the mutated βB2-crystallin protein 

alters its aggregation properties, favoring the 

development of cataracts [81]. Subsequently, studies 

revealed additional amino acid-altering mutations in 

the CRYBB2 gene, in association with multiple types 

of congenital cataract, that result not only in 

structural changes in βB2-crystallin [82] but reduce 

also the solubility of these proteins to increase lens 

opacity [83–88]. Significant upregulation of βB2-

crystallin occurs in several ocular pathologies, 

including age-related macular degeneration [89, 90], 

glaucomatous neuropathy [91], and cauterization-

induced hypertension in rat model [91], and ocular 

hypertension in the rat [21, 90, 92]. 

 

Neuropsychiatric disorders 

 

Mutations in the mouse Crybb2 gene give rise to 

alterations in prepulse inhibition (PPI; an operational 

measurement of sensorimotor gating) and reduce 

hippocampal size, i.e., features typical of patients with 

schizophrenia [55, 93, 94]. Studies in mutant 

Crybb2Philly, Crybb2Aey2, and Crybb2O377 mice revealed 

C-terminal mutations of the βB2crystallin protein, likely 

associated with abnormal Ca2+ binding, which 

correlated with consistent alterations in adult behavior 

and evolution of neuropsychiatric disorders [56, 93, 95]. 

Notably, a meta-analysis of gene expression in the 

human cortex illustrated that the CRYBB2 gene shows 

the most significant association with five psychiatric 

disorders, namely attention-deficit hyperactivity 

disorder, autism, major depressive disorder, bipolar 

disorder, and schizophrenia [96, 97]. The distribution 

and function of βB2-crystallin in several organs are 

listed in Table 1. 

 

Cancer 
 

Breast tumors 

 

In recent years, a potential role for CRYBB2 in 

carcinogenesis has been widely investigated. Research 

shows that African-American breast cancer patients have 

a higher risk of mortality than non-African-American 

patients [98, 99]. It has been proposed that the survival 

health disparity associated with breast cancer may be 

attributed to differences in tumor biology [100, 101]. As 

part of the Clinical Breast Care Project, Field et al. 

performed differential gene expression analysis in breast 

cancer samples and found that CRYBB2 had > 2.5-fold 

higher expression in African American compared to 

Caucasian women [102]. Of note, this finding was 

consistent with a previous study that combined CRYBB2 

and PSPHL expression data to reliable distinguish 

African American from Caucasian breast cancer samples 

[103, 104]. Interestingly, a more recent study provided 

additional evidence that upregulation of the pseudogene 

CRYBB2P1, and not CRYBB2, is associated with race 

and poor outcome in breast cancer and possibly other 

tumors [102, 105]. Although molecular evidence is still 

inconclusive, these findings suggested that differential 

expression of CRYBB2/CRYBB2P1 contribute to poor 

outcomes in African American women by impacting 

tumor cell proliferation, invasion, metastasis, and tumor 

immunity [102]. 
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Table 1. Distribution and function of βB2-crystallin. 

Organs Expression Regulation Biological consequence References 

   Physiological Pathological  

lens lens fiber cells normal maintain lenticular 
transparency and 
diopter 

 
[8, 41, 42] 

mitochondria up-regulated anti-apoptosis 
 

[44] 

lens fiber cells mutant 
 

multiple types of cataract [68, 79] 
[87–89] 

Retina retinal pigment epithelium 
cells 

normal prevent 
degeneration 

 
[47, 48] 

retinal ganglion cells up-regulated retina regeneration 
 

[49, 50] 

retinal pigment epithelium 
cells 

up-regulated cytoprotective 
function 

 
[47, 52] 

retinal ganglion cells up-regulated 
 

age-related macular 
degeneration 

[90, 91] 

retinal ganglion cells up-regulated 
 

glaucomatous neuropathy [92] 

outer plexiform layer of 
retinal ganglion cells 

up-regulated 
 

cauterization-induced 
hypertension 

[92] 

retinal ganglion cells up-regulated 
 

ocular hypertension in rat [21, 93] 

Brain retinal ganglion cells up-regulated axon regeneration 
 

[51] 

ARPE-19 cells up-regulated epithelia-protection 
 

[47] 

hippocampal neurons up-regulated axon formation 
 

[57] 

hippocampal neurons up-regulated dendritic outgrowth 
 

[57] 

hippocampal mutant 
 

Hippocampal abnormalities [54, 94, 
95] 

cortex normal 
 

attention-deficit 
hyperactivity disorder 

[97, 98] 

cortex normal 
 

autism [97, 98] 

cortex normal 
 

major depressive disorder 
autism 

[97, 98] 

cortex normal 
 

bipolar disorder [97, 98] 

cortex normal 
 

schizophrenia [97, 98] 

Testis sperm  normal maintain sperm 
motility 

 
[61, 66] 

seminiferous tubule normal prevent 
microtubules from 
denaturation 

 
[64, 67] 

Ovary granulosa cells and theca 
cells 

gene knockout subfertility 
 

[69, 72] 

 

Colorectal cancer, prostate cancer, glioblastoma, 

and renal cell carcinoma 

 

Similar to the breast cancer findings mentioned in the 

previous section, a 2008 study comparing gene 

expression profiles of prostate tumors from African 

American and Caucasian men pointed out a two-gene 

signature comprising CRYBB2 and PSPHL that 

accurately differentiated between these two groups 

[106]. Another report, dating back to 2012, described 

significant upregulation of CRYBB2 in colorectal 
cancer samples from African-American patients 

compared to European Americans [107]. In turn, a case-

control association study reported that a genetic variant 

in the CRYBB2 gene (rs9608380) is associated with the 

risk of prostate cancer in African Americans [108]. 

Interestingly, a recent analysis identified CRYBB2 as 

one of 13 genes significantly associated with increased 

survival in African-American glioma patients in 

comparison to Caucasian ones [109]. Moreover, a study 

analyzing the significant disparities in survival between 

black and white patients with renal cell carcinoma 

showed that CRYBB2 was overexpressed in black 

patients associated in association with the WNT 

signaling pathway [110]. Altogether, these findings 
reaffirmed the notion that CRYBB2 expression in 

cancer is impacted by ethnicity [111]. Differences in 

βB2-crystallin expression between African American 
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Table 2. βB2-crystallin in African-American and non-African-American cancer patients. 

Types Number Regulated in 
African-

American 

Comparison items between 
African-American and Non-

African-American 

Outcome in African-
American 

References 

Breast cancer 52 up-regulated   age, size, grade, stage, ER status, 
subtype  

poor  [108] 

Breast cancer 161 up-regulated   age and stage poor [110] 

Breast cancer 108 up-regulated   age, size, grade, ER status, 
subtype  

poor [109] 

Colorectal 
Cancer 

126 up-regulated   age, gender, location, stage no mention [112] 

Prostate 
cancer 

69 up-regulated   source, stage, gleason sum score, 
seminal vesicle invasionc, 
surgical margin status 

no mention [103] 

Prostate 
cancer 

527 up-regulated   age, PSA, family history poor [113] 

Renal cell 
carcinoma  

116 up-regulated   patients, performance score, 
smoking status, tumor laterality, 
clinical, pathologic 

no mention [115] 

Glioblastoma 995 up-regulated   age, gender, KPS, histological 
type, G-CIMP status, person 
neoplasm cancer status, history of 
neoadjuvant treatment, targeted 
molecular therapy, radiation 
therapy, ethnicity 

well (under the 
condition of KPS ≥ 
80) 

[114] 

 

and non-African American cancer patients are 

summarized in Table 2. 

 

Summary and prospect for CRYBB2 expression 

in tumors 
 

High expression of CRYBB2/CRYBB2P1 is associated 

with higher breast cancer-related mortality in African-

American women, likely in relation to enhanced tumor 

cell proliferation. Similarly, compared to Caucasians, 

upregulation of CRYBB2 is observed also in African-

American patients with colorectal cancer, prostate 

cancer, renal cell carcinoma, and glioblastoma. 

Interestingly, dysregulated CRYBB2 expression is 

associated with poor outcomes in prostate cancer 

patients but correlates with better prognosis in African-

American glioblastoma patients with Karnofsky 

performance score (KPS) ≥ 80. Still, for other tumor 

types and other populations, e.g., Asians, the correlation 

between CRYBB2/CRYBB2P1 expression and cancer 

progression and prognosis remains less certain. 

Although it remains unclear if and how a major lens 

protein would contribute to tumorigenesis, a likely 

connection may reside in the known regulation of less 

differentiation and crystallin expression exerted by the 

WNT signaling pathway [27, 112, 113], which is also a 

ubiquitous mediator of tumor growth and progression 

[114, 115]. Considering that no documented or 

hypothesized role for CRYBB2 in carcinogenesis has 

been explicitly put forward, it is conceivable that no 

causal relationship exists, at least for some 

malignancies, between high tumor CRYBB2 levels and 

tumor development. Clearly, mechanistic studies 

addressing potentially direct effects of β-crystallins on 

tumor cells are needed. Nevertheless, the documented 

association between CRYBB2 expression and multiple 

tumor types suggests that CRYBB2/CRYBB2P1 may 

serve as promising diagnostic or prognostic biomarkers 

in specific populations. 

 

CONCLUSIONS 
 

βB2-crystallin, a main member of the βγ-crystallin 

superfamily, fulfills a key role in lens refraction and is 

also expressed in several extraocular tissues where  

it has distinct, non-lens functions. Besides functioning 

as a Ca2+-binding protein, βB2-crystallin is also 

involved in cAMP-dependent and cAMP-independent 

phosphorylation pathways. Notably, overexpression of 

either CRYBB2, the gene encoding for βB2-crystallin  

in humans, or its highly homologous pseudogene, 

CRYBB2P1, correlates with differential survival 

outcomes in African American patients with different 

malignant tumors. We hypothesize that βB2-crystallin 

contributes to poor diagnosis in malignancies such as 

breast and prostate cancer through regulating the TGF-β 

pathway or WNT signaling pathway and promoting 

epithelial to mesenchymal transition (EMT) [27, 116]. 
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Considering the paucity of basic experimental research 

on the relationship between βB2-crystallin and 

tumorigenesis, a detailed exploration of the above 

mechanisms is needed to ascertain the role of βB2-

crystallins in tumor development and metastasis. 
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