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Wild-type and variant forms of transthyretin (TTR), a normal plasma

protein, are amyloidogenic and can be deposited in the tissues as amyloid

fibrils causing acquired and hereditary systemic TTR amyloidosis, a debili-

tating and usually fatal disease. Reduction in the abundance of amyloid

fibril precursor proteins arrests amyloid deposition and halts disease

progression in all forms of amyloidosis including TTR type. Our previous

demonstration that circulating serum amyloid P component (SAP) is effi-

ciently depleted by administration of a specific small molecule ligand

compound, that non-covalently crosslinks pairs of SAP molecules, suggested

that TTR may be also amenable to this approach. We first confirmed that

chemically crosslinked human TTR is rapidly cleared from the circulation

in mice. In order to crosslink pairs of TTR molecules, promote their acceler-

ated clearance and thus therapeutically deplete plasma TTR, we prepared a

range of bivalent specific ligands for the thyroxine binding sites of TTR.

Non-covalently bound human TTR–ligand complexes were formed that

were stable in vitro and in vivo, but they were not cleared from the plasma

of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic

depletion of circulating TTR will require additional mechanisms.
1. Background
Systemic amyloidosis is a serious disease caused by the extracellular deposition

of circulating globular proteins as abnormal, insoluble fibrils in the viscera,

blood vessel walls and connective tissues. It is usually fatal, causing about

one per thousand deaths in developed countries [1]. Wild-type transthyretin

(TTR) is a normal plasma protein that circulates as a tetramer of four identical

subunits and acts as a transporter for thyroid hormone and retinol binding

protein. It is inherently amyloidogenic and forms microscopic amyloid deposits

in almost all individuals aged over 80 years [2]. Massive deposits in the heart

can also occur, causing fatal senile cardiac TTR amyloidosis [3]. The inherent

amyloidogenicity of wild-type TTR is markedly enhanced by most of the

reported more than 100 different point mutations that encode single residue

substitutions in the TTR sequence. These mutations cause autosomal dominant

adult-onset hereditary amyloidosis, a universally fatal condition affecting about

10 000 patients worldwide. The usual clinical presentation is familial amyloid
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Figure 1. Bifunctional ligands for crosslinking TTR tetramers based on the
dichlorophenylaminobenzoic acid head group with either polyproline
(group I) or polypiperidine (group II) linkers. Ligand IIe has a modified
ether linkage in place of the aminopropoxy linkage.
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polyneuropathy, with predominant peripheral and autonomic

neuropathy, but there is commonly also serious involvement

of the heart, kidneys and eyes. The condition typically presents

after the causative gene has been transmitted to the proband’s

offspring, ensuring persistence of this devastating disease.

Amyloidogenic mutations occur in all ethnic groups, but by

far the most common, Val30Met, clusters in three geographical

foci: Northern Portugal, Northern Sweden and parts of Japan.

A common amyloidogenic variant in the UK and Eire is

Thr60Ala. TTR amyloidosis predominantly affecting the heart

is particularly associated with the Val122Ile variant, which is

very rare in Caucasians but is carried by 4% of African-

Americans [4]. It is the second most common pathogenic

mutation in that population after sickle cell haemoglobin.

Cardiac TTR amyloidosis presents as progressive, ultimately

fatal, heart failure owing to restrictive cardiomyopathy, is

rarely suspected and is usually misdiagnosed as coronary

heart disease.

There was no effective treatment for TTR amyloidosis

until orthotopic liver transplantation was introduced in 1991

[5]. Circulating TTR is synthesized mainly by hepatocytes,

and liver transplantation removes the source of the amyloido-

genic variant TTR in the plasma and replaces it with wild-

type TTR. However, the procedure is available for only a

minority of patients and optimal results are obtained early in

the disease. Furthermore, patients with mutations other than

Val30Met have developed rapidly progressive cardiac amyl-

oidosis after transplantation [6], presumably because of the

natural amyloidogenicity of wild-type TTR. In patients

with predominant cardiac amyloid, heart transplantation is a

possible option, but most are too old and are not acceptable

recipients of scarce donor organs. Nevertheless, the efficacy

of liver transplantation in arresting amyloid deposition

for patients with the Val30Met mutation demonstrated the

potential efficacy of plasma TTR depletion as a treatment for

TTR amyloidosis.

One approach to TTR depletion is direct inhibition of

hepatic synthesis, and this has lately been successfully

demonstrated by ISIS Pharmaceuticals, Inc. [7] and by

Alnylam Pharmaceuticals [8] using pharmaceutical anti-

sense oligonucleotide and siRNA approaches, respectively.

Alternatively, the concentration of circulating TTR could be

lowered by increasing its clearance. Native TTR is mainly

catabolized in the liver, but also in muscle, skin, kidney,

adipose tissue and the gastrointestinal tract [9]. Fibroblasts

have recently been shown to remove TTR aggregates [10].

Disruption and clearance of TTR amyloid deposits is also a

potential therapeutic approach [11]; however, prevention of

amyloid deposition would be preferable. We therefore

sought to modify the native structure of circulating TTR to pro-

mote its accelerated clearance from the plasma and catabolism

leading to TTR depletion. We have previously shown that

clearance of human serum amyloid P component (SAP) is dra-

matically increased by non-covalently crosslinking pairs of

SAP molecules with a palindromic bifunctional small molecule

ligand, hexanoyl bis(D-proline) (CPHPC), that is specifically

bound by SAP [12]. Plasma SAP remains at extremely low con-

centration for as long as the drug is administered [13]. We

therefore designed a range of bifunctional ligands to be specifi-

cally and non-covalently bound by human TTR, crosslinking

pairs of the native protein molecules in stable complexes that,

similarly to the SAP–CPHPC complexes, would, we hoped,

be recognized as abnormal and promptly cleared.
2. Material and methods
Isolated human TTR was purchased from Scipac Ltd, Kent,

UK and dissolved in phosphate-buffered saline (PBS).

Sodium [125I] iodide and 125I-thyroxine were purchased from

Perkin Elmer, Seer Green, UK. TTR was radiolabelled with
125I using N-bromosuccinimide and sodium [125I] iodide in

PBS for 10–15 s and purified on a PD10 desalting column

(Bio-Rad, Hemel Hempstead, UK) [14]; 125I-TTR was mixed

with native TTR as a marker for in vivo clearance experiments.

Chemically crosslinked TTR was generated by treatment of

TTR (10 mg ml21) with a 50-fold molar excess of N-(3-dimethyl-

aminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC,

Sigma-Aldrich, Gillingham, Dorset, UK) in water at pH 5.

Two sets of bivalent potential TTR crosslinking ligands

were prepared by coupling two molecules of the head

group 2-(3,5-dichlorophenylamino)-5-methoxy-benzoic acid

with either polyproline (group I) or polypiperidine (group II)

linkers. The structures of the ligands are shown in figure 1.

The head group and group II ligands were synthesized

by Selcia Ltd, Ongar, Essex, UK; full details are in

the electronic supplementary material. The group I peptide

succinimido-(Pro)n-Gly-OH (n ¼ 5–10) ligands were pre-

pared by Peptide Protein Research Ltd, Southampton, UK

using Fmoc peptide chemistry on a Symphony automated

peptide synthesizer (Protein Technologies, Manchester, UK).

The peptides were cleaved from the solid support and puri-

fied by RP-HPLC. The methyl ester protected and amino

functionalized 5-amino-2-(3,5-dichlorophenylamino)benzoic

acid head group (supplied by Selcia Ltd) was reacted to

each peptide using a 2.5-fold molar excess of head group,

and monitored by mass spectrometry for addition of head

group to both ends of the peptide. The crude product was

lyophilized and the methyl ester saponified by the addition

of lithium hydroxide in methanol/water. The polyproline
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Figure 2. (a) A280 UV absorbance gel filtration profiles of native TTR (dotted
line) and EDC crosslinked TTR (E-TTR, solid line). Native untreated TTR chromato-
graphs as a tetramer on gel filtration eluting at 14.2 ml while EDC crosslinked
TTR elutes mainly as high molecular weight oligomers (Ve 7.5 9.0 ml). Both
native TTR (T) and EDC-treated TTR (E-TTR) can bind 125I-thyroxine as shown
in the native gel autoradiogram (inset). Native TTR migrates towards the
anode while EDC-TTR remains mostly at the site of sample deposition (arrowed).
As some of the aggregates may have reduced thyroxine-binding capacity, the
relative intensities in the autoradiogram may not reflect the absolute amounts
of material present on the gel. The gel filtration A280 UV absorbance profile gives
a more accurate representation of relative amounts. (b) Clearance of EDC-treated
125I-TTR (closed circles) in wild-type mice is faster than for TTR control (open
circles); data are expressed as mean and s.d. (n ¼ 3). (c) 125I-TTR is localized
in the spleen of animals treated with oligomerized EDC-TTR. Kid, kidney; spl,
spleen; liv, liver.
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ligands were purified by RP-HPLC, and analysed by LC–MS.

Further details of synthesis and purification methods are avail-

able in the electronic supplementary material. Ligands were

dissolved in DMSO at a concentration of 5–10 mM and stored

at 2308C until used. For binding experiments, TTR was used

at a concentration of 200 mg ml21 (3.6 mM tetramer) in PBS,

which is within the normal range of circulating TTR. All ligands

were examined using a TTR/125I-thyroxine displacement assay

as previously described [15,16]. TTR/ligand complexes were

prepared by incubation of TTR (1 mg ml21 in PBS) with a

0- to fivefold molar excess of ligand for up to 18 h at room

temperature. The concentration of DMSO was kept below

2%. Complexes were gel filtered at 0.5 ml min21 on a Superdex

200 column in either PBS or 150 mM ammonium bicarbonate

(pH 7.6) using an Akta Explorer (GE Healthcare, Amersham,

Bucks, UK). Molecular weight markers used to calibrate

the column were: ribonuclease A (13 700) 18.7 ml, carbonic

anhydrase (29 000) 15.8 ml, conalbumin (75 000) 13.7 ml,

ferritin (440 000) 9.8 ml and blue dextran (2 000 000) 8.2 ml.

Binding of 125I-thyroxine by TTR oligomers was examined

by native gel electrophoresis in 1% agarose gel in barbitone–

calcium buffer (180 V, 1 h) [17] followed by autoradiographic

analysis (Typhoon scanner, GE Healthcare). Analytical ultra-

centrifugation was carried out in the An-50 Ti rotor (XL-I

ultracentrifuge, Beckman-Coulter).

TTR/ligand complexes were analysed by nanoflow elec-

trospray mass spectrometry. Mass spectra were recorded

(LCT mass spectrometer with Z-spray source; Waters, Elstree,

Herts, UK) with capillary voltage of 1.7 kV, sample cone at

80 V, extraction cone at 5 V, ion transfer stage pressure at

5.50 millibar, and time of flight analyser pressure at 1.75 �
1026 millibar. For ligand dissociation experiments, the

sample cone voltage was increased stepwise to 200 V.

Tandem MS was carried out on a QSTAR XL platform

(MDS Sciex) with capillary voltage of 1.4 kV, declustering

potential at 100 V, focusing potential at 150 V and collision

energy up to 120 V. The relevant m/z range was selected in

the second quadrupole and subjected to acceleration in the

collision cell. Immediately before analysis, fully reduced

recombinant 15N-labelled TTR [18] preparations were

buffer-exchanged into 20 mM ammonium acetate, pH 7.0

(Micro Bio-Spin 6 column; Bio-Rad). TTR (4.4 mM) in the

presence of different molar ratios of ligands or DMSO alone

(2.5% v/v final DMSO concentration) were used to monitor

ligand binding and formation of TTR oligomers. All spectra

were calibrated externally using CsI and processed with

MASSLYNX v. 4.0 (Waters).

In vivo clearance of EDC-TTR was measured in wild-type

C57BL/6 mice. Clearance of the non-covalent TTR–ligand

complexes was determined in TTR-knockout C57BL/6.SPF

congenic mice [19] to avoid any possible ligand exchange

between mouse and human TTR. Preformed complexes in

PBS were injected intravenously into the tail vein and blood

samples collected into heparin at 5, 30, 60 and 180 min.

Plasma TTR was quantified by electroimmunoassay in 1%

w/v agarose gels prepared in barbitone–EDTA buffer pH

8.6 [20] using monospecific rabbit anti-human TTR antiserum

(Dako, Ely, Cambridge, UK), and calibrated with isolated

pure wild-type TTR (Scipac Ltd). Total 125I in whole blood

was measured in a Perkin Elmer 2470 Auto gamma counter

with results expressed as cpm mg21. Localization of tracer

to kidney, spleen and liver was also determined after wash-

ing the organs in PBS. Clearance half-lives were estimated
with GraphPad PRISM 5.03 using a simple exponential

decay model.
3. Results
3.1. Enhanced clearance of covalently crosslinked

transthyretin
Covalently crosslinked oligomers of TTR were generated using

EDC and most of the product eluted in and just after the void

volume of the Superdex 200 column (figure 2a). The cross-

linked TTR retained the capacity to bind 125I-thyroxine and



Table 1. Oligomerization of TTR by bifunctional ligands.

ligand linker gel filtration

Ia Pro5 no crosslinking

Ib

Ic

Id

Ie

If

Pro6

Pro7

Pro8

Pro9

Pro10

TTR eluted as a broad peak, consistent with crosslinking in the presence of excess ligand, followed by dissociation on the

column. Complexes were not stable to a second gel filtration step

IIa

IIb

Pip3.CO.Pip3

Pip4.CO.Pip1

more stable crosslinking of pairs of native TTR tetramers than with group I ligands, however complexes still dissociated to

individual TTR tetramers on the column

IIc

IId

Pip4.CO.Pip4

Pip5.CO.Pip5

crosslinking of pairs of TTR molecules to form complexes stable on a repeat gel filtration

IIe Pip5.CO.Pip2 TTR eluted as a broad peak, consistent with the formation of larger oligomers which dissociate on the column (ligand IIe

contained a modified short ether linkage between the head group and the polypiperidine)
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after native agarose gel electrophoresis most of the product

remained at the origin, well separated from native TTR, with

some lower molecular weight oligomers appearing as an

anodal smear (figure 2a, inset). The electrophoretic and gel

filtration data are both consistent with the generation of high-

mass oligomers of TTR by EDC treatment. EDC-125I-TTR was

cleared from the circulation in wild-type mice much more

rapidly than 125I-TTR. In previous studies, we have found the

plasma half-life of native 125I-human TTR in wild-type mice

to be mean (s.d.), 48.0 (17.6) min, n ¼ 7; here, it was 43.5 min

with clearance of only 5.5% in the first 5 min. In contrast,

39.4% of the EDC-125I-TTR was cleared by 5 min, and clearance

of the remainder could not be curve fitted (figure 2b). When

organs were counted after clearance was complete, there was

over 10-fold more radioactivity in the spleens of mice receiving

EDC-TTR than those given native control TTR (figure 2c).
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Figure 3. (a) The A280 UV absorbance gel filtration profiles of native TTR
(dotted line) and TTR incubated with a fourfold excess of ligand Ie (Pro9,
solid line). The ligand has caused an increase in peak volume and a conco-
mitant decrease in retention volume consistent with the formation of a ligand
octamer complex followed by dissociation on the column. (b) The effect of
ligands on peak width is dose-dependent for all ligands except Ia (Pro5)
where no octamer formation has occurred.
3.2. Preparation and effects of potential crosslinking
compounds

A range of potential TTR crosslinking agents were designed

from a selection of readily available building blocks that

allowed exploration of linker length and flexibility. They

were prepared by coupling the TTR-binding head group,

5-amino-2-(3,5-dichlorophenylamino)benzoic acid, to a variety

of rigid and non-rigid linkers based on polyproline (Pro) and

polypiperidine (Pip) functionalities (figure 1 and table 1). The

dichlorophenylaminobenzoic head group was chosen as it

had been previously reported by Purkey et al. [21] to be

avidly bound by TTR in plasma, and was the basis for the

development of our TTR superstabilizer, mds84 [16]. Group I

ligands contained linear chains of 5–10 proline residues

coupled at each end through C6 amides. Group II ligands

were polypiperidines linked through a central carbonyl

group and further coupled through either 3-aminopropanol

or 3-hydroxypropamide. Each ligand was efficiently bound

by TTR at the thyroxine binding site with IC50 values less

than 5 mM in the standard thyroxine displacement assay [16].

Gel filtration of native tetrameric TTR on Superdex 200

eluted with PBS yielded a major component eluting at

14.4+ 0.2 ml and with a peak width at half height of
0.8 ml. There was also a minor peak, comprising about 5%

of the total protein, at Ve 12.7 ml (figure 3a), produced by

the naturally occurring dimerization of pairs of TTR tetra-

mers [22]. Overnight incubation of TTR with up to a

fourfold molar excess of the pentaproline ligand (Ia) had no

effect on the gel filtration profile of the protein, with the

main A280 component eluting at 14.5 ml with a peak width

of 0.8 ml; there was, however, a fourfold increase in the

A330/A280 UV absorbance ratio for the tetrameric complex

at the highest ligand concentration, demonstrating that the
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ligand had been bound by TTR. In contrast, incubation of

TTR with each of the remaining polyproline ligands (Ib–If,

Pro6–10) caused a dose-dependent broadening of the TTR

peak, with an increase in half-height peak width by up to

0.62 ml (figure 3b), together with a concomitant reduction

in TTR elution volume. This was consistent with formation

of crosslinked pairs of native tetrameric TTR molecules in

the presence of excess ligand and their subsequent dis-

sociation as free ligand was removed during gel filtration.

The largest effect on peak width and retention time was

observed with the Pro9 and Pro10 ligands, Ie and If. When

the main A280-absorbing fractions from these samples were

re-chromatographed on Superdex 200 each of the proteins

eluted in the native position and with native half-height

peak width (data not shown), showing that the complexes

had completely dissociated when all the free ligand was

removed by gel filtration. The formation of a complex of

two TTR molecules by the Pro9 containing ligand Ie was
confirmed by sedimentation ultracentrifugation in the pres-

ence of excess ligand, with appearance of a new species at

5.2S compared with native tetrameric TTR alone at 3.9S.

The presence and composition of ligand crosslinked TTR

complexes was also investigated by nanoflow electrospray

mass spectrometry. Under low-energy conditions designed

for observation of non-covalent protein–protein interactions,

native TTR populated four charge states (11þ to 14þ) corre-

sponding to the expected tetrameric assembly (56 500+
50 Da). After incubation with 0.5- to twofold molar equivalents

of group I ligands there was dose-dependent appearance of

TTR tetramers with one, and eventually two, bound ligand

molecules occupying the thyroxine binding sites. With ligands

Ib to Ie, low-intensity peaks (less than 10%) assigned to pairs of

TTR tetramers with one to three bound ligand molecules

were observed confirming the interpretation of the gel filtration

findings. As these ligands did not generate stable octameric

complexes with TTR, they were not studied further.
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bound (17þ to 19þ, O1) and holo dodecameric TTR with two or three
ligands bound (22þ to 24þ, D2/3). Higher oligomeric species are also
observed above 8000 m/z. (c) Tandem mass spectrum of the 19þ charge
state of O1 shows the release of individual monomeric TTR (M) and the
formation of ‘stripped complex’ H1 corresponding to heptameric TTR with
one ligand bound. (d ) Tandem mass spectrum of the 24þ charge state
of D2/3 shows the release of individual monomeric TTR (M) and the formation
of ‘stripped complex’ U2 corresponding to undecameric TTR with two ligands
bound. Ion charges are shown for the most intense species in each ion series.
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The polypiperidine ligands, IIa (Pip3.CO.Pip3) and IIb

(Pip4.CO.Pip1), had effects similar to the group I ligands.

There was some crosslinking that dissociated on gel filtration

although the maximum peak widths produced by IIa and IIb,

1.6 and 2.1 ml, respectively, were considerably greater than

obtained with any of the group I polyproline ligands

suggesting that the polypiperidine complexes were more

stable. Again, the complexes dissociated back to tetramer

when subjected to a second gel filtration.

In contrast, ligands IIc (Pip4.CO.Pip4) and IId (Pip5.CO.Pip5)

produced stable crosslinking with the complex eluting at

12.8 ml (figure 4a). Complex formation was dose-dependent,

with over 90% of the TTR incorporated following 18 h incu-

bation in the presence of a twofold molar excess of ligand,

and these assemblies were stable to a second gel filtration step

(figure 4b). Mass spectrometric analysis confirmed that treat-

ment of TTR with ligands IIc or IId dose-dependently

produced substantial amounts of a higher mass complex.

Surprisingly, the molecular mass of approximately 116 000 Da

was consistent with two TTR tetramers crosslinked by two

ligand molecules (figure 4c) and this stoichiometry was con-

firmed under dissociating MS conditions (figure 4d). In

contrast with the reversibly bound group I and group II ligands,

no species were seen at normal operating cone voltages with

either ligand bound by native tetrameric TTR molecules, or

one or three ligand molecules bound by pairs of tetramers.

3.3. In vivo clearance studies
Native TTR was spiked with a trace of 125I-TTR and then incu-

bated with a twofold excess of ligand IIc (Pip4.CO.Pip4).

Although the A280 gel filtration profile confirmed more than

95% crosslinking of TTR protein only 60% of the 125I radiolabel
was in the complex, indicating that oxidative radioiodination

of TTR had partially inactivated the thyroxine binding sites.

The tracer was thus not ideal for monitoring in vivo clearance

of the TTR–ligand complex. Nevertheless, 200 mg of the pre-

formed TTR–IIc complex containing 125I-TTR was injected

intravenously into mice, and its clearance from the plasma

was quantified both by radioactive counting and by specific

immunoassay for human TTR. There was no change in the

rate of clearance of the complex compared with control; the

estimated half-lives were 82.2 and 68.7 min, respectively,



(b)(a)

Figure 7. Models for the proposed TTR/Ie octameric complex (a) and the bracelet structure for TTR/IIc (b). The pictures were made using PyMOL Molecular Graphics
System, version 0.99, Schrödinger, LLC.
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both of which were within the range observed in our laboratory

for clearance of native TTR in TTR knockout mice (mean (s.d.),

73.1 (37.2) min, n ¼ 8; figure 5a). The 60 min serum samples

from animals that had received control and ligand-treated

TTR were fractionated by gel filtration and analysed for radio-

activity. Native size, tetrameric 125I-TTR was present in the

control serum but serum from the mice given the ligand-

treated TTR contained a mixture of tetrameric TTR and

dimers thereof (figure 5b). Because 40% of the radiolabelled
125I-TTR was not capable of ligand binding, these results

demonstrate that the TTR–ligand complex is stable in vivo
but is not cleared at an accelerated rate.

A number of other ligands with polypiperidine linkers

were also synthesized, one of which, IIe, formed a higher

molecular mass complex with TTR, possibly a dodecamer,

eluting on gel filtration at approximately 11.0 ml (figure 6a).

The complex was not stable in the absence of excess ligand,

breaking down to yield the tetramer on further gel filtration.

Spectrophotometric analysis of the relative absorbance at

330 nm for ligand and 280 nm for TTR protein demonstrated

that the high-mass complexes did contain the ligand. Further-

more, mass spectrometric analysis identified species with two

tetrameric TTR molecules and one or two ligand molecules,

three TTRs with two or three ligands, and some higher

mass species (figure 6b), presumably representing daisy

chains of alternating TTR tetramers, each with their two

known binding sites, crosslinked by bifunctional ligands.

The assignments were confirmed by tandem MS analysis of

the octamer containing one ligand which shows the release

of individual monomeric TTR and the formation of a

‘stripped complex’ of heptameric TTR with one ligand

bound. Similar analysis of dodecameric TTR with two

ligands bound also shows release of individual monomeric

TTR together with the formation of stripped undecameric

TTR containing two ligands (figure 6c,d).
4. Discussion
The development of the hexanoyl bis(D-proline) drug, (R)-1-[6-

[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-

carboxylic acid (CPHPC), which rapidly and almost comple-

tely depletes its target protein, SAP, from the plasma for as

long as the drug is administered, identified a novel pharmaco-

logical mechanism [12,13]. The essential feature is prompt

hepatic clearance of the stable complex formed by two SAP

molecules crosslinked by bifunctional ligand molecules. We

speculated that this mechanism might operate with other

pathogenic plasma protein targets if it was possible to design

a suitably specific and avidly bound crosslinking ligand.

Each native homotetrameric TTR molecule has two identical
thyroxine binding pockets and the work of Purkey et al. [21]

had identified (3,5-dichlorophenylamino)benzoic acid as a

specific high affinity ligand bound in this site by TTR within

the milieu of whole serum. It is thus a suitable starting point

for construction of the required crosslinking structure. In our

original effort to create such a compound, we attached the

ligand head groups in an orientation that serendipitously

enabled the molecule to enter one thyroxine binding site and

then traverse the channel through the centre of the TTR mol-

ecule, so that both binding sites were occupied with the

linker threaded internally through the protein [16]. Here, we

therefore attached the head groups in the opposite orientation,

to avoid such threading and to enable crosslinking of different

TTR molecules to take place, and used linkers with lengths of

20–50 Å, sufficient, based on our modelling studies, to reach

between two adjacent TTR tetramers (figure 7).

Our approach, of enhancing clearance of the amyloid pre-

cursor, differs from the TTR stabilization method which

underlies the mode of action of the drugs currently in clinical

use, tafamidis (Vyndaqel) and diflunisal [23–26]. While some

degree of stabilization of the native TTR tetramer may also be

conferred by our bifunctional ligands, the major beneficial

effect would arise through depletion of plasma TTR rather

than stabilization of the native tetramer. This may be impor-

tant since recent work from our laboratory indicates that a

mechano-enzymatic mechanism plays a prominent role in

TTR amyloid fibrillogenesis [27] and that TTR tetramer stabil-

ization alone may be insufficient to block amyloid formation

if it does not also protect against the key proteolytic cleavage.

The rapid plasma clearance of the heterogeneous, mostly

high mass, aggregates of TTR produced by covalent cross-

linking with EDC is unsurprising and entirely as expected,

because even trivial structural alteration of many plasma pro-

teins, as for example after oxidative trace radioiodination or

other inadvertent denaturation during isolation, has long

been known to promote accelerated clearance by the liver

and spleen. The major uptake of chemically aggregated

TTR in the spleen is nonetheless of interest in view of the pro-

pensity of TTR and other types of amyloid to deposit in the

spleen but we have no evidence that our model has any

pathophysiological relevance in this context. We used EDC-

TTR only to confirm that TTR aggregates would be cleared

from the circulation more rapidly than single native TTR mol-

ecules and to show that we could detect the difference, before

going on to test the effect of our crosslinking ligands.

Rigid polyproline chains, Pro5–Pro10 in compounds Ia–If

respectively, were initially used as linkers, and other than

Ia (Pro5) each ligand was capable of crosslinking TTR consist-

ent with a minimum inter-tetramer distance of approximately

30 Å in the TTR–ligand–TTR complex (figure 7a). However,

the complexes were unstable in the absence of excess free
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ligand. Nevertheless, mass spectrometric analysis of mixtures

of TTR with excess ligands identified complexes of TTR with

one or two ligand molecules bound and a low abundance of

pairs of TTR molecules with one, two and three bound

ligand molecules. Thus, if the stability problem could be

overcome, both pairs and higher oligomers of TTR could

potentially be produced.

In contrast to the rigid polyproline linker compounds, two

of the compounds with flexible polypiperidine linkers, IIc and

IId, produced dose-dependent stable crosslinking of pairs of

TTR molecules. These complexes each contained two ligand

molecules consistent with a bracelet structure in which the lin-

kers encircle the globular TTR protein assembly (figure 7b).

With a small rotation of the TTR tetramers, the approximately

40 Å length of the polypiperidine linker in IIc is compatible

with the head groups being engaged in the binding pockets,

whereas the linker chain emerges through a furrow normal to

the TTR head group axis. Acidic residues flanking the furrow

could additionally stabilize the complex in comparison with

the ‘daisy chain’ crosslinking configuration provided by the

rigid linear polyPro compounds.

Although the TTR–IIc complex was stable in vivo as well

as in vitro, it was not cleared from the circulation at an accel-

erated rate. This may reflect the fact that a substantial

proportion of TTR normally circulates in a stable complex

with retinol binding protein and the modestly increased

size of the TTR–IIc complex is insufficient to trigger

enhanced clearance. The modelled radius of gyration is

only 29.96 Å compared with 22.67 Å for the native TTR tetra-

mer. Unlike SAP, no simple crosslinking of pairs of TTR
molecules will lead to TTR depletion from the plasma.

Larger oligomers, as produced by covalent crosslinking

with EDC, were swiftly cleared, and in theory, therefore,

higher-order oligomers in the daisy chain configuration pro-

duced by rigid linker ligands should be effectively cleared.

Here, we observed the complexes of three TTR molecules

with compound IIe, but potent ligands of this type will

require head groups that are specifically bound by TTR

with much greater affinity than any we have yet identified

or others have reported.
Ethics. Animal studies were approved by the UCL Animal Ethics
Committee and were carried out within the terms of the project
and personal licences held by M.B.P. and S.E.

Authors’ contributions. All authors were involved in the design of the
experiments, data analysis, discussion of results and approval of
the paper. Ligands were synthesized at Selcia Ltd and Peptide
Protein Research Ltd by V.S., A.V., R.J.B., C.E.C. and J.R.T. P.P.M.,
S.D., S.E. and G.W.T. carried out the study. S.K. and S.P.W. specified
the range of crosslinker lengths and carried out the modelling, and
G.W.T. and M.B.P. wrote the paper.

Competing interests. The authors declare no competing financial
interests.

Funding. This work was partly supported by Wellcome Trust Seeding
Drug Discovery Award 082989/Z/07/A. Core support for the Wolf-
son Drug Discovery Unit is provided by the UK National Institute for
Health Research Biomedical Research Centre and Unit Funding
Scheme. S.D. is Postdoctoral researcher for the National Fund for
Scientific Research (F.R.S.-F.N.R.S., Belgium).

Acknowledgements. We thank Professor Stephen Perkins (University
College London) for help with analytical centrifugation and Beth
Jones for skilful formatting of the manuscript.
References
1. Pepys MB. 2006 Amyloidosis. Annu. Rev. Med. 57,
223 – 241. (doi:10.1146/annurev.med.57.121304.
131243)

2. Ng B, Connors LH, Davidoff R, Skinner M, Falk RH.
2005 Senile systemic amyloidosis presenting with
heart failure: a comparison with light chain-
associated amyloidosis. Arch. Intern. Med. 165,
1425 – 1429. (doi:10.1001/archinte.165.12.1425)

3. Pinney JH et al. 2013 Senile systemic amyloidosis:
clinical features at presentation and outcome. J. Am.
Heart Assoc. 2, e000098. (doi:10.1161/jaha.113.
000098)

4. Jacobson DR, Pastore RD, Yaghoubian R, Kane I,
Gallo G, Buck FS, Buxbaum JN. 1997 Variant-
sequence transthyretin (isoleucine 122) in late-onset
cardiac amyloidosis in black Americans. N. Engl.
J. Med. 336, 466 – 473. (doi:10.1056/
NEJM199702133360703)

5. Holmgren G et al. 1991 Biochemical effect of liver
transplantation in two Swedish patients with
familial amyloidotic polyneuropathy (FAP-met30).
Clin. Genet. 40, 242 – 246. (doi:10.1111/j.1399-
0004.1991.tb03085.x)

6. Stangou AJ, Hawkins PN, Heaton ND, Rela M,
Monaghan M, Nihoyannopoulos P, O’Grady J, Pepys
MB, Williams R. 1998 Progressive cardiac
amyloidosis following liver transplantation for
familial amyloid polyneuropathy: implications for
amyloid fibrillogenesis. Transplantation 66,
229 – 233. (doi:10.1097/00007890-199807270-
00016)

7. Ackermann EJ, Guo S, Booten S, Alvarado L, Benson M,
Hughes S, Monia BP. 2012 Clinical development of an
antisense therapy for the treatment of transthyretin-
associated polyneuropathy. Amyloid 19(Suppl. 1),
43 – 44. (doi:10.3109/13506129.2012.673140)

8. Coelho T et al. 2013 Safety and efficacy of RNAi
therapy for transthyretin amyloidosis.
N. Engl. J. Med. 369, 819 – 829. (doi:10.1056/
NEJMoa1208760)

9. Makover A, Moriwaki H, Ramakrishnan R, Saraiva
MJM, Blaner WS, Goodman DS. 1988 Plasma
transthyretin. Tissue sites of degradation and
turnover in the rat. J. Biol. Chem. 263, 8598 – 8603.

10. Misumi Y, Ando Y, Gonçalves NP, Saraiva MJ. 2013
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