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Matter-wave interference of a native polypeptide
A. Shayeghi 1, P. Rieser1, G. Richter1, U. Sezer1, J.H. Rodewald2, P. Geyer1, T.J. Martinez3,4 & M. Arndt 1✉

The de Broglie wave nature of matter is a paradigmatic example of quantum physics and

it has been exploited in precision measurements of forces and fundamental constants.

However, matter-wave interferometry has remained an outstanding challenge for natural

polypeptides, building blocks of life, which are fragile and difficult to handle. Here, we

demonstrate the wave nature of gramicidin, a natural antibiotic composed of 15 amino acids.

Its center of mass is delocalized over more than 20 times the molecular size in our time-

domain Talbot-Lau interferometer. We compare the observed interference fringes with a

model that includes both a rigorous treatment of the peptide’s quantum wave nature as well

as a quantum chemical assessment of its optical properties to distinguish our result from

classical predictions. The realization of quantum optics with this prototypical biomolecule

paves the way for quantum-assisted measurements on a large class of biologically relevant

molecules.
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The wave nature of massive particles is a central aspect of
quantum physics. The free evolution of particles is no
longer described by classical trajectories, but instead by a

wave-like propagation in multiple directions. Recombining
the wavefronts leads to interference, where the probability
amplitude for a particle arriving at a certain position depends
on the phase difference of the partial waves. Since these phases
are sensitive to even small perturbations, matter-wave inter-
ferometry has become an important tool for atom optics1,2,
probing fundamental physics3–7 or serving in advanced quantum
sensors8–10. The de Broglie wave nature has also been shown for
large molecules, from fullerenes11 and molecular clusters12 up to
tailor-made macromolecules13. Such experiments probe the
quantum-to-classical interface and can be used to characterize
neutral molecules in the gas phase, through interference fringe
deflection in electric and magnetic fields14 or minimally invasive
spectroscopy15,16.

Until today, quantum optics with fragile natural biomole-
cules has remained elusive due to the challenges in forming
stable and intense molecular beams which can be detected with
high efficiency and selectivity. Measurements on neutral bio-
molecules in the gas phase will, however, become valuable as
they are solvent-free and allow predicting and evaluating their
electronic properties independent of any matrix environ-
ments17. A typical matter-wave experiment requires an efficient
source to launch neutral particles in high vacuum, beam
splitters to coherently prepare, separate and recombine the
quantum wave function associated with the molecular center-
of-mass motion and an efficient detector with high sensitivity
and mass resolution to record the result. For atom inter-
ferometry, these challenges have already been elegantly solved2.
For interferometry with complex biomolecules, sources are a
prime challenge. While evaporation and sublimation can still be
used for vitamins and tripeptides18,19, it denatures and
decomposes more complex polypeptides. And while matrix
assisted laser desorption20 and electrospray ionization21 can
volatilize even large proteins, they produce ions which are
prone to dephasing and decoherence in quantum experiments.
Direct laser desorption using nanosecond laser pulses has
proven useful to entrain neutral peptides into cold noble gas
jets where selected species could be detected using photo-
ionization with VUV radiation22. However, energetic nanose-
cond pulses typically ablate large amounts of clusters and

nanoparticles23 in addition to the individual peptides that are
desired.

In the following, we present a realization of matter-wave
interferometry of gramicidin A1, a linear antibiotic polypeptide
composed of 15 amino acids with a mass m= 1882 amu= 3.13 ×
10−24 kg. It has many desirable properties for such an experi-
ment. And as a natural amino acid sequence, produced by the soil
bacterium Bacillus brevis, it is representative for a large class of
biologically relevant molecules. In addition, it contains four
tryptophan residues, which is the only one of all 20 natural amino
acids that is ionizable with a single vacuum ultraviolet (VUV)
photon with energy 7.9 eV. This is crucial for diffraction and
detection of the neutral peptides24.

Results
Experiment. We use the idea presented in Fig. 1: A rotating
carbon wheel coated with a biomolecular film serves as the
sample supply. From there, the molecules are desorbed by
pulsed laser light and entrained in a supersonically expanding
noble gas jet. While nanosecond lasers are known to deliver intact
peptide beams22,25, ultrafast laser pulses with TW/cm2 intensities
and pulse lengths of 290 fs allow for 30-fold improve-
ment in sample efficiency24. The gramicidin beam is then skim-
med, vertically and horizontally collimated to <1 mrad, and sent
into the interferometer chamber. In our setup we obtain a velocity
v= 600 ms−1 when using argon and v= 1200 ms−1 when using
helium as a carrier gas. The different velocities are used to access
different de Broglie wavelengths λdB= h∕mv, where h is Planck’s
constant.

We send the peptides through our time-domain Talbot-
Lau interferometer12, where three pulsed VUV light gratings
G(1)−G(3) ionize and remove the molecules in the antinodes of
the laser fields (see Fig. 2). The gramicidin molecules arrive with a
de Broglie wavelength of λdB= 350 fm (at v= 600 ms−1) which is
about 104 times smaller than the molecular size. We select a
velocity spread of Δv∕v≃ 0.5%, defined by the duration of the
carrier gas pulse (20 μs) and the beam width (3 × 3 mm2) of the
detection laser. This corresponds to a longitudinal (spectral) de
Broglie coherence of ca. 200λdB≃ 72 pm. Equally important is the
transverse (spatial) coherence which sets an upper limit to the
useful width of diffractive elements, across which matter-wave
phenomena are relevant. Upon arrival at G(1), it is of the order of
200 pm, too small for diffraction at d= 78.8 nm gratings.

343 nm, 290 fs, 70 μJ

Even–Lavie valve

Carbon wheel

Felt wheel
Gramicidin A1: 1882 amu

Fig. 1 Peptide source: Ultra-fast 290 fs laser pulses with an energy of up to 70 μJ and a wavelength of 343 nm are focused to a spot diameter of 100 μm to
desorb gramicidin molecules from a glassy carbon wheel. The molecules are picked up by an adiabatically expanding argon (helium) jet at 600ms−1 (1200
ms−1) from a short-pulse high-pressure valve. The emerging polypeptide matter-wave has a de Broglie wavelength of 350 fm (175 fm). Gamicidin A1 is a 15
amino acid polypeptide. The green ribbon runs along the peptide bonds and the residues are shown as line diagrams. The four Tryptophan residues are the
important chromophores that enable pulsed VUV laser ionization and thus the realization of optical diffraction gratings and photo-ionization in combination
with mass-sensitive detection in our matter-wave interferometer. Parts of this figure have been adapted from reference24.
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However, by defining a precise starting position of the molecules,
one can increase their quantum mechanical momentum uncer-
tainty, thus boosting transverse coherence further downstream
such that the coherence function covers several effective slits in
the second grating. The initial confinement in G(1), diffraction
in G(2) and position sensing in G(3) is done by a position
measurement: the molecules can only pass to the detector if
they fly through the nodes of all three VUV grating. G(1) thus
prepares the required coherence, G(2) diffracts the matter-wave
and interference results in a molecular density pattern that is
modulated by G(3) with nanoscale spatial sensitivity.

The gratings G(1)−G(3) are formed by reflecting three fluorine
(F2 excimer, λL= 157.63 nm) laser beams from a single dielectric
mirror. This makes the interferometer robust against vibrational
dephasing but it also impedes scanning of G(3) across the density
pattern. However, a tilt γ of the molecular beam relative to the
mirror surfaces allows us to scan the matter-wave fringes across G
(3) by varying the pulse delay between G(2) and G(3)12,26, as seen
in Fig. 2b). For that purpose, we vary the pulse separation time T
between the second and third grating in two complemen-
tary settings. In the resonant mode, T3− T2= T2− T1 are set to
the n-th multiple of the Talbot time

TT ¼ md2

h
; ð1Þ

with the grating period d= λL∕2. Then, the near-field resonance
condition is met and a clear interference pattern appears. The
transmitted molecular signal Sres through G(3) depends on the
position of the grating nodes relative to the matter-wave fringes. In
the off-resonant (reference) mode, the signal Soff is recorded while
G(3) is shifted by a variable time ∣τ∣ ≤ 200 ns. For our Talbot time
and beam divergence α, the 200 ns shift is sufficient to smear out
the interference pattern. The interference contrast is then defined as
the normalized signal difference SN ¼ ðSres � Soff Þ=Soff 12 (Fig. 2c).

Modeling. We model the expected signal by evolving the trans-
verse Wigner function w(x, px)27, taking into account tilted and
divergent molecular beams, as well as mirror and grating

imperfections28. As a phase space description, it allows compar-
ing the experiment with both the quantum and the classical
expectation within the same framework (see Methods). The
free evolution of a particle with initial position x and momen-
tum px is then described by a shearing transformation
w x; px
� �! w x � pxt=m; px

� �
. Additional terms are introduced

to account for earth’s gravitational acceleration g and a tilt of the
molecular beam by an angle γ with respect to the mirror surface,
which results in an additional constant transverse momentum
pγ ¼ mv tanðγÞ. The signal seen by the detector depends on the
Talbot time TT, the pulse delay τ of G(3) with respect to the Talbot
time and the relative shift of the grating nodes to the fringe
pattern. Each grating modulates the molecular wave function
both in its amplitude and phase via photon absorption and the
optical dipole potential, respectively. The transmission function
of the k-th grating

tðkÞðxÞ ¼ exp � nðkÞ0

2
þ iϕðkÞ0

 !
cos2

πx
d

� �" #
ð2Þ

depends on the number of absorbed photons nðkÞ0 and the

acquired phase shift ϕðkÞ0 at an antinode, which both contribute to
the dimensionless parameter β27

β ¼ nðkÞ0

2ϕðkÞ0

¼ λL
8π2

σðλLÞ
αVðλLÞ

: ð3Þ

It describes the ratio of the molecule’s wavelength-dependent
absorption coefficient σ(λL) and its optical polarizability volume
αV(λL) (converted to the polarizability in SI units via α[SI]=
4πε0 × αV(λL)). The absorption cross section determines the
ionization probability and thus controls the effective slit width in
all three gratings. The optical polarizability determines the phase
the gramicidin molecules acquire during their transit through G
(2). It leaves the fringe periodicity unchanged but modulates the
contrast. Since the molecules enter in a variety of different
vibrational, rotational and conformational states, as well as
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Fig. 2 Time-domain matter-wave interferometry: Matter-wave interferometer (a): Three retro-reflected VUV laser beams realize the standing light waves
as pulsed photo-depletion gratings. The antinodes in G(1) prepare a comb of tightly confined positions from where a molecule may emerge. Because of this
projective confinement the wave coherence rapidly expands in free flight to cover several nodes and antinodes by the time the second grating fires.
Rephasing of the matter-wave behind G(2) then leads to de Broglie interference of each molecule with itself and to the formation of a periodic molecular
density pattern around the time when G(3) is fired. Only molecules whose wave functions are aligned with the nodes of G(3) are transmitted to the detector.
The coherent rephasing occurs around a characteristic timescale, the n-th multiple of the Talbot time. A typical measurement (b): we toggle between two
interferometer modes: a symmetric mode (resonance), where the grating pulse separation times are kept equal and close to nTT, and an asymmetric mode
(off-resonant or reference), where we set an imbalance of up to 200 ns. Imprinted fringes (c): If the molecular beam velocity has a component parallel to x,
the fringe pattern effectively has a transverse velocity component and its position relative to the third grating becomes time dependent. A fringe pattern is
visible in case the divergence angle α is smaller than the tilt angle γ.
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orientations, the measured fringes represent an average over the
internal properties.

An interferometer with three absorptive gratings would allow
for the creation of classical Moiré-like patterns. This assumes
molecules to be particles following ballistic trajectories that are
modified by the gradient forces arising from the interaction
between the optical dipole potential of the grating and the
molecule’s optical polarizability. The difference between the
quantum and the classical expectations is encoded in how these
optical properties enter the transmission function (see Methods).
The behavior of the fringe contrast is governed by β, making this
a crucial parameter for a quantitative distinction between classical
and quantum effects. A thorough understanding of the final
signal therefore requires knowledge about the electronic proper-
ties of gramicidin with respect to its ground and excited states.
This is a challenge since gramicidin has many possible
conformational states and one has to evaluate electronic proper-
ties for an ensemble populating a complex potential energy
surface (PES). The gramicidin molecule contains 1010 electrons
which renders electronic structure calculations demanding even
without global optimization of the conformational space and
when combined with density functional theory (DFT). Here, we
perform short ab-initio molecular dynamics (AIMD) simulations
at 300 K, assuming the worst case of no internal cooling, to
explore the conformational PES and get a measure of the dynamic
polarizability volume of gramicidin (see Methods). Molecular
geometries are extracted from the AIMD simulation every
picosecond and are fed into subsequent DFT calculations to
estimate the ensemble average of the optical polarizability volume
αVðλLÞh i300K.
In addition, the absorption cross section has to be determined

as a thermal average σðλLÞh i300K for the calculation of β. The
relevant relaxation channels after photon absorption are ioniza-
tion and disscociation, since our detector is only sensitive to the
depletion of the molecular beam: σ= σPI+ σPD, where σPI and
σPD are the photoionization and the photodissociation cross
sections, respectively. A lack of detected fragments indicates a
comparatively small σPD, making σPI a strong lower bound for the
total cross section. It is measured under identical conditions in an
independent experiment by monitoring the gramicidin ion count
rate

NI ¼ N0ð1� e�σPIϕÞ; ð4Þ
as a function of the VUV photon fluence ϕ.

These tools at hand, we can now analyze the matter-wave
interferogram obtained with gramicidin, both in the first (n= 1)
and fractional (n= 1∕2) Talbot order. We record them by shifting
the third grating around the ’resonant’ interference mode in steps
of 20 ns (n= 1) and 10 ns (n= 1/2) at a fixed time delay for the
off-resonant reference signal at τoff= 200 ns (n= 1) and 100 ns
(n= 1/2). For a finite divergence and tilt of the molecular beam,
the fringe density pattern scans across the grating when τ is
varied. We expect a sinusoidal modulation with a Gaussian
envelope26 (see Figs. 2c and 3).

SN ¼ V0 exp � τ

σw
ffiffiffi
2

p
 !2" #

cos 2π
ðτ � τoff Þ

σp

 !
: ð5Þ

The modulation of the fringe visibility V0 allows us to more
precisely determine the divergence angle α= 0.4 mrad from the
width σw of the resonance dip

α ¼ arcsin
d

2vσw
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 10

p
 !

; ð6Þ

and the tilt angle γ= 1.7 mrad from the observed fringe period σp

γ ¼ arcsin
d
vσp

 !
: ð7Þ

We extract the model parameters α and γ from the data in Fig. 3,
the absorption cross section from independent measurements
and the VUV polarizability volume from our quantum chemical
analysis.

The dynamic polarizability volume is computed by Q-Chem29

using DFT with the range-separated hybrid exchange-correlation
functional LC-ωPBEh30, which has been shown to perform well
for the calculation of polarizabilites31, and the 6-31G basis set.
The Coupled-Perturbed Kohn-Sham method32 is used to
calculate the optical polarizability volume for every extracted
geometry at λL to obtain the ensemble average αVðλLÞh i300K =
(157 ± 1) × 10−30m3.

In order to obtain the photoionization cross section σPI, we
measure and plot the number of ions NI as a function of the
photon fluence ϕ (see Methods, Fig. 4) and construct a fit
according to Eq. (4). We find an ionization cross section of σPI =
σðλLÞh i300K = (4.7 ± 0.2) × 10−20m2 and thus β≃ 0.6. This value
is used for simulating both the quantum and classical predictions.

The final result is shown in Fig. 3, which compares the
experimental data (black circles), with a fit based on Eq. (5) (solid
red line), the quantum simulation (dashed blue line) and the
classical description (dotted green line). Figure 3a presents data
for the first Talbot order, while Fig. 3b shows the n= 1/2 Talbot
order, where the peptides are entrained in helium to double their
mean velocity to 1200 ms−1. In both cases, the resulting
molecular density pattern at G(3) has a fringe separation of d=

0.2
a

b

0.0S
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S
N

–0.2

–200 –100

–100 –50 0
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50 100

0 100 200
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Fig. 3 Molecular interference patterns of gramicidin: Experimental data is
presented for the first (a) and half (b) Talbot order (black circles) including
1σ error bars. A fit according to Eq. (5) is shown (solid red line) together
with a quantum-(dashed blue line) and a classical predicition (dotted green
line). The fringes appear on the time-domain resonance dip when the pulse
separation time between G(2) and G(3) is varied by a small delay τ around
the Talbot resonance for the case of a tilted molecular beam. The envelope
of the resoance dip is determined by the molecular divergence angle while
the fringe period is determined by the tilt angle with respect to the mirror
surface. Note the different scaling of the abscissa in a and b and that both
interference orders are d-periodic.
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78.8 nm since at the half Talbot order (n= 1∕2), the halving of the
fringe period in time is caused by the doubling of the molecular
velocity.

In the first Talbot order, the experimental fringe contrast is
very well described using quantum wave mechanics (blue dashed
line) while a description using classical trajectories (green dotted
line) misses the amplitude by almost an order of magnitude. On
the other hand, both models approach each other and the
experiment at the half Talbot order (Fig. 3b). At very short
intervals between the gratings, there is too little time for the
molecular matter-waves to spread out in space.

Claiming the quantum nature of the fringe pattern requires to
check if there is any reasonable way to reproduce the observed
fringe contrast at n= 1 in a classical model, for instance assuming
molecular properties that differ from their computed or measured
values. We find that β≃ 100 rather than β≃ 0.6 would be
required for the classical curve to mimic the quantum result. This
is vastly incompatible with the calculations and observations
described above and also inconsistent with β values found in
many other organic molecules and clusters28. The quantum
model appears to be the only plausible explanation for our
experimental results.

One may also ask for the role of external forces, such as gravity,
in this setting. The normalized signal difference is a function of
the pulse separation time T and the Earth’s gravitational
acceleration g via SNðTÞ ¼ V0 sin 2πðb� gT2Þ=dð Þ, with b a
constant offset on the laser mirror26. At fixed Talbot order,
gravity influences the absolute fringe height, but within the 100 ns
fringe envelope, of Fig. 3 gravity does not cause any noticeable
time-dependence.

In summary, we have demonstrated matter-wave interferome-
try with a complex native polypeptide, the antibiotic gramicidin.
The fringe visibility of around 20% in the first Talbot order stands
in marked discrepancy to a classical phase space description and
is in very good agreement with quantum mechanics, including a
detailed quantum chemical analysis of the molecular electronic
properties. Our source techniques based on UV femtosecond
desorption can volatilize fragile biomolecules in a more efficient
way than other methods to date. While matter-wave experiments
with biomolecules in the gas phase do not elucidate biological
function per se—which is related to electronic structure
determining folding dynamics and interactions with matrix

environments—our experiments show that quantum phenomena
can be observed with building blocks of life under suitable
boundary conditions. Molecular interference patterns can be used
as flying nanorulers33 that will become important in studies of
optoelectronic and structural properties of complex biomolecules.

Methods
Sample preparation. Gramicidin D (Sigma Aldrich, CAS: 1405-97-6) is used
which is a mixture of different antibiotic compounds. The major component is
gramicidin A1, a linear polypeptide composed of 15 amino acids. It has the che-
mical formula C99H142N20O17. The molecule sketched in Fig. 1 represents one
specific configuration of gramicidin A1. The green ribbon follows the peptide
sequence while the tryptophan, valine and isoleucine rest groups are explicitly
shown. The source emits a large variety of structural conformers, which all con-
tribute to the same matter-wave interference pattern, since their mass and VUV
optical properties are nearly identical. There are both molecular fermions and
bosons in the sample, but quantum statistics is irrelevant in our single-molecule
interference experiments. All molecules are excited in several of their 828 vibra-
tional modes and highly excited in their rotational degrees of freedom.

Molecular beam. The experiment runs at 100 Hz. In every cycle, an Even-Lavie
valve releases a 20 μs short and dense pulse of argon with a backing pressure of
about 30 bar. A femtosecond laser (Topag PHAROS, 290 fs, 70 μJ, 343 nm) is
focused (+= 100 μm) onto the surface of a glassy carbon wheel coated with
gramicidin to create a cloud of isolated molecules. The argon (helium) pulses then
entrain the molecules with a mean velocity of around 600 ms−1 (1200 ms−1).
Further downstream the particle beam is skimmed (Beam Dynamics skimmer, +
= 2 mm), collimated to a rectangular shape of 0.6 × 1 mm2 (the longer axis parallel
to the grating vectors) and finally transferred to the interferometer chamber via a
differentially pumped stage. The pressure in the main chamber is 2 × 10−9 mbar, in
the source chamber 1 × 10−8 mbar. Molecular beam velocities are determined by
comparing the timing of the desorption laser with the detection laser pulse.

Grating lasers. The grating laser beams are emitted by three GAM EX50 fluorine
lasers (λL= 157.6 nm, 4 mJ, 8 ns, flat top profile). All beams are reflected by the
same dielectric mirror 3 × 5 cm2, coated onto a 2 cm thick CaF2 substrate with the
best technically available reflectivity in this wavelength range to date, i.e., R≃ 97%.
The laser waists are elongated parallel to the molecular beam axis z (10 × 1 mm2)
and spatially separated by ≈2 cm which allows molecules of different velocities to
interact with a laser grating at the same time.

Mirror imperfections. For a perfectly flat mirror and in the absence of external
accelerations, SN is positive and equal to the theoretical visibility. In a real world
scenario, SN is given by the visibility of the molecular density pattern at the position
of G(3) and its relative displacement ΔD= Δx1−2Δx2+ Δx3 of this Talbot image
with respect to G(3). Here, Δxi captures both the possible mirror corrugations at
either grating site or the displacement of the molecular fringe due to external
accelerations—for instance gravity. The molecular transmission is maximized for
ΔD= nd and minimized for ΔD= (n+ 1∕2)d with n 2 Z. If the mirror surface had
deformations exceeding 10 nm across the 10 mm grating laser beam profile,
molecules of the same gas pulse but with different velocities would experience
differently shifted interferometers. To avoid the ensuing reduction in fringe con-
trast, the effective grating width is set to <3 mm by the geometry of the final
detection laser.

Vibrational stability. The most important vibration frequencies in the experiment
are related to the frequencies of the turbomolecular pumps. Taking 3000 Hz as a
higher order worst case scenario the amplitude required for a 1∕e contrast reduction
is ≈15 nm, while the noise at that frequency is estimated to be ≈1 nm.

Coriolis force. Considering the latitude (48.22∘N) and orientation (162∘SSE) of the
molecular beam on Earth and assuming a velocity of 600 ms−1 the Coriolis force
on gramicidin causes a shift of around 1 nm. Even for large velocity spreads phase
averaging can be neglected. Also path-length differences arising from the Coriolis
force are negligible for the mass considered here.

Optical polarizability volume at λL. The AIMD (BLYP34,35/6-31G) simulations
are performed using the TeraChem program package36,37. During the AIMD run, a
single molecule is propagated over 50 ps in time steps of 1 fs at a temperature of
300 K, which is controlled by a Bussi-Parinello thermostat38 with a relaxation time
of 0.1 ps. The dynamic polarizability volume is computed by Q-Chem29 using DFT
with the range-separated hybrid exchange-correlation functional LC-ωPBEh30 and
the 6-31G basis set. The Coupled-Perturbed Kohn-Sham method32 is used to
calculate the optical polarizability for every extracted geometry at λL to obtain the
ensemble average. LC-ωPBEh has been shown to perform well for the calculation of
polarizabilites39.
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Fig. 4 Ion counts as a function of the photon fluence ϕ: The error bars
represent the standard deviation of the count rate, assuming Poissonian
statistics. The ionization cross section σ(λL) can be extracted according to
Eq. (5). The single exponential increase in the range of available laser
intensities is compatible with a single-photon process.
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Ionization cross section at λL. In order to obtain σPI, we measure and plot the
number of counted ions NI as a function of the photon fluence ϕ (see Fig. 4), which
is the total number of photons per unit area integrated over the laser pulse length:

NI ¼ N0ð1� e�σPIϕÞ; ð8Þ
where σPI and the total number of molecules N0 enter as fit parameters.

Data analysis. In order to calculate SN, mass spectra are summed up and sub-
tracted from the background in both measurement modes to obtain Sres and Soff .
There is a systematic error by assuming that the mass signals are proportional to
the number of detected molecules. We thus consider a worst case scenario where
every event at the detector is attributed to a single detected molecule Nevent= 1. We
then compare the amplitudes of our mass signals within a threshold value, that is
derived from the standard deviation of the background noise. The probability of
not detecting a particle Pzero is assumed to follow Poissonian statistics

Pzero ¼
Nevent

N frames
¼ e�λP : ð9Þ

with λP as the average number of counts per frame. The total number of detected
molecules N within one measurement consisting of Nframes is then given by

N ¼ N framesð�ln PzeroÞ; ð10Þ
while Gaussian error propagation delivers the 1σ error-bars of each data point.

Quantum model of the interference fringes. Our beam experiments are sup-
ported by phase space simulations as introduced by Nimmrichter and Hornberger
for near-field matter-wave interferometry40 and refined for time-domain experi-
ments27. We here adapt the model to the details of our study. The simulations are
based on the one-dimensional Wigner function w(x, px) with x and px for the
positions and the momenta of states, respectively. The Wigner function is defined
as the transformation of the position density matrix ρðx; x0Þ ¼ xh jρ̂ x0j i41

w x; px
� � ¼ 1

2π_

Z
ds eipx s=_ x � s

2

D ���ρ̂ x þ s
2

��� E
; ð11Þ

where the molecular beam propagation at a time t is represented by the Hamil-
tonian H0 ¼ p2x=2m in absence of external fields. The Wigner function therefore
transforms like

w x; px
� �! w x � px t

m
; px

� �
: ð12Þ

The formalism allows a simple comparison with classical phase space dynamics
based on ballistic trajectories. Under free evolution the classical phase space density
transforms like the Wigner function42.

Position shifts due to constant accelerations parallel to the grating vectors (x-
axis) can be included to account for gravitational, electric or magnetic forces.
Additionally, a tilt of the molecular beam by the angle γ can be introduced as a
constant momentum pγ ¼ mv tanðγÞ parallel to the x-axis. The Wigner function
for free propagation over a time t therefore reads

w x; px
� �! w x � pxt

m
þ pγt

m
þ gt2

2
; px � pγ � amt

� 	
; ð13Þ

Transmission through the k-th grating G(k) is described by a complex transmission
function t(k)(x) acting on the position density matrix

ρðx; x0Þ ! tðkÞðxÞρðx; x0ÞtðkÞðxÞ� ð14Þ
while tðkÞðxÞ�� ��2 gives the probability for a particle at position x to remain in the
beam and is assumed to follow poissonian statistics

tðkÞðxÞ�� ��2 ¼ exp �nðkÞðxÞ
� �

; ð15Þ
where n(k)(x) is the number of absorbed photons and shows a d-periodic
modulation

nðkÞðxÞ ¼ nðkÞ0 cos2
πx
d

� �
: ð16Þ

While tðkÞðxÞ�� ��2 describes a pure absorptive grating, the additional phase
modulation ϕ(k)(x) is described by

ϕðkÞðxÞ ¼ ϕðkÞ0 cos2
πx
d

� �
: ð17Þ

Here nðkÞ0 is the average number of absorbed photons in an antinode and ϕðkÞ0 the
eikonal phase, gained by integration of the interaction potential over the intensity
profile of the laser. For the optical gratings they read43

nðkÞ0 ¼ 4σðλLÞEðkÞλL
hcAL

; ϕðkÞ0 ¼ 16π2EðkÞαV ðλLÞ
hcAL

; ð18Þ

where E(k) is the pulse energy, AL the illuminated area, c the speed of light, σ(λL)
the absorption cross section and αV(λL) the optical polarizability at the grating
wavelength λL. Taking imperfections into account such as a mirror reflectivity

R= 0.97 and a grating coherence factor C= 0.7628, there is an effective reduction

of the coherent contribution to nðkÞ0 and ϕðkÞ0

nðkÞ0;eff ¼ RCnðkÞ0 ; ϕðkÞ0;eff ¼ RCϕðkÞ0 : ð19Þ
Using these parameters the complex transmission function of the optical gratings
reads

tðkÞðxÞ ¼ exp � nðkÞeff ðxÞð1þ RÞ
4RC

þ iϕðkÞeff ðxÞ
 !

: ð20Þ

Transmission through a grating is described by the convolution of the Wigner
function and the transmission kernel

w x; px
� �! Z

dp0T
ðkÞ x; px � p0
� �

wðx; p0Þ: ð21Þ

For optical gratings the transmission kernel T(k)(x, p) consists of the Talbot
coefficients BðkÞ

n ðχÞ, gained by Fourier expansion of the transmission function tðkÞ xð Þ

TðkÞ x; px
� � ¼ 1

2π_

X
n

exp
2πinx
d

� 	
´
Z

ds eipx s=_BðkÞ
n

s
d

� �
; ð22Þ

BðkÞ
n ðχÞ ¼ exp

�nðkÞ0;eff

2

 !
sin πχð Þ � β cos πχð Þ
sin πχð Þ þ β cos πχð Þ
� 	n

2

´ Jn sign
sin πχð Þ

β
þ cos πχð Þ

� 	
nðkÞ0;eff

2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 πχð Þ � β2cos2 πχð Þ

q !
;

ð23Þ

with the dimensionless parameter β as the ratio of molecular absorption cross section
and optical polarizability containing information about the electronic structure of the
considered molecules

β ¼ nðkÞ0

2ϕðkÞ0

¼ λL
8π2

σðλLÞ
αV ðλLÞ

: ð24Þ

Transformation (Eq. 21) also holds for the classical case when we exchange the Talbot
coefficients BðkÞ

n ðχÞ in Eq. (22) with classical coefficients CðkÞ
n ðχÞ the effect of the

grating on classical ballistic trajectories. These coefficients are not periodic in χ. This
changes sinðπχÞ ! πχ and cosðπχÞ ! 1 in Eq. (23)44,45. For χ → 0, BðkÞ

n ð0Þ and
CðkÞ
n ð0Þ are identical and describe the behavior of a purely absorptive grating. Both

classical and quantum coefficients then simplify in terms of the modified Bessel
functions In(x):

BðkÞ
n ð0Þ ¼ ð�1Þn exp � nðkÞ0

2

 !
In

nðkÞ0

2

 !
: ð25Þ

This formalism allows to describe the beam propagation through a Talbot-Lau-
Interferometer as sequences of free propagation followed by transmission through a
grating. The initial state at the first grating is assumed to be an incoherent mixture
with a spatial extension X0 ≫ d and a momentum P0 ≫ h∕d. The initial Wigner
function at the first grating w0(x, px) is described by the transverse momentum
distribution D(px), which is gained by integration of the three dimensional
momentum density distribution μ(px, py, pz) over two dimensions: D(px) = ∫dpy dpzμ
(px, py, pz). This leads to

w0 x; px
� � ¼ 1

X0
Dðpx þ pγÞ; ð26Þ

where pγ denotes the additional constant momentum due to the tilt. According to Eq.
(21), transmission through the first grating with the transmission kernel T(1) leads to
w1 x; px
� �

. Note that pγ is a constant momentum. Therefore the substitution in the

integral
R
dp0Tð1Þðx; px � p0ÞDðp0Þ with p0 ¼ p0 þ pγ leads to

dp0 ¼ dðp0 þ pγÞ ¼ dp0. With iterative usage of Eq. (13) and Eq. (21), the Wigner
function transforms to w2(x, px) after free propagation for a time t= T1, then to
w3(x, px) after transmission through the second grating and after another free
propagation for a time t= T2, it transforms to w4(x, px), which denotes the state of the
beam before interacting with the third grating. The corresponding transformations are
listed below:

w1 x; px
� � ¼ 1

X0

Z
dp0T

ð1Þ x; px � p0 � pγ

� �
D p0 þ pγ

� �

w2 x; px
� � ¼ 1

X0

Z
dp0T

ð1Þ x � px T1

m
þ pγT1

m
þ g T2

1

2
; px � p0 � pγ � a m T1

� 	
D p0 þ pγ

� �
;

w3 x; px
� � ¼ 1

X0

Z
dp1T

ð2Þ x; px � p1
� � Z

dp0T
ð1Þ x � p1 T1

m
þ pγT1

m
þ g T2

1

2
; p1 � p0 � pγ � a m T1

� 	
D p0 þ pγ

� �
;

w4 x; px
� � ¼ 1

X0

Z
dp1T

ð2Þ x � px T2

m
þ pγT2

m
þ g T2

2

2
; px � p1 � pγ � a m T2

� 	

´
Z

dp0 Tð1Þ x � px T2

m
� p1 T1

m
þ pγ T1 þ T2ð Þ

m
þ g T2

1 þ T2
2

� �
2

; p1 � p0 � pγ � a m T1

� 	
D p0 þ pγ

� �
:

ð27Þ
The third grating masks the fringe pattern of the traversing molecular beam in space.
Finally, all molecules are detected independent of their transverse momentum.
Therefore only the spatial density distribution of the beam is needed which is
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calculated by integrating w4(x, px) over the momentum. eDðxÞ is the Fourier transform
of the momentum distribution44,46

eD xð Þ ¼
Z

dpx e�ipxx=_D px
� �

: ð28Þ

Due to the broad initial momentum, eDðxÞ is assumed to be very narrow and to peak
around eDð0Þ ¼ 1. So only index pairs (k, l) which fulfill kT1 þ lT2j j � TT contribute
to the integral of w4 x; px

� �
in Eq. (27). In the near-resonant and symmetric

approximation one assumes T1= T and T2= T+ τ, where τ denotes a small delay of
the grating timing compared to the Talbot time τj j � TT. This restricts the index
pairs (k, l) to k=−l and changes the Wigner function w4(x) to

w4 xð Þ ¼ 1
X0

X
l

eD lτ
TT

d

� 	
Bð1Þ
�l

lτ
TT

d

� 	
´Bð2Þ

2l

l T þ τð Þ
TT

� 	
exp

2πil
d

Δxð Þ

 �

; ð29Þ

Δx ¼ Δxs �
pγτ

m
� gT2 � 2gτT � gτ2

2
: ð30Þ

Here Δxs denotes the relative grating shift Δxs= Δx1− 2Δx2+ Δx3. The spatial
distribution of w4(x) is scanned using the third grating, which acts as a purely

absorptive mask. Therefore one can use Bð3Þ
�l ð0Þ from Eq. (25). For sufficiently small

delays τ and due to the random phase of the impinging matter-wave, G(1) can also be

treated as a purely absorptive grating, with Bð1Þ
�l ðd lτ=TTÞ ¼ Bð1Þ

�l ð0Þ.
Convolution of Eq. (29) with the transmission Kernel T(3)(x, p) and integration

over the whole phase space leads to the detected signal S(Δx) behind the third
grating

S Δxð Þ ¼
X
l

Sl exp
2πil
d

ΔxðΔxs;T; τÞ

 �

; ð31Þ

Sl ¼ eD lτ
TT

d

� 	
Bð1Þ
�l 0ð ÞBð2Þ

2l

l T þ τð Þ
TT

� 	
Bð3Þ
�l 0ð Þ: ð32Þ

The periodic modulation of S Δxð Þ is observed by scanning over the phase of Eq.
(31). This can be done either by changing the grating shift Δxs or the momentum
contribution pγτ∕m. A slight delay of the third grating timing τmodulates the phase,
as well as the signal amplitude, due to the contribution of τ to the sharp peaked
function eD.
Periodicity of the observed fringes. The simulations in Fig. 3 show that only
quantum interference can explain the observed normalized fringe signal and the
role of complex (real and imaginary) optical gratings is important. In an inter-
ferometer with three binary transmission gratings, quantum theory would predict a

halving of the fringe period at half the Talbot order n= 1/247. However, this
prediction becomes intensity dependent when using optical gratings. Figure 5
shows the quantum and classical expectation for the molecular density at G(3) in
the half Talbot order as a function of laser power, i.e., as a function of the mean
number of photons absorbed in the antinodes of each grating, n0,eff. For n0,eff= 3,
as used in our experiments, d-periodic fringes are expected in both the n= 1
and the n= 1/2 Talbot order, classically and quantum mechanically. However, for
n= 1, the quantitative distinction between both models is clear and with a large
margin in our experiment (see main text).

Data availability
The data that support the findings of this study—in particular the raw data of Fig. 3 incl.
measured data, error bars, fit, classical and quantum prediction—are available from the
corresponding authors upon reasonable request.

Code availability
The proprietary Matlab code that has been developed throughout the years and used to
produce the classical and quantum predictions as described in the methods section is
available to the editor and reviewers on request from the corresponding authors.
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