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ABSTRACT

Genes and proteins show variable expression pat-
terns throughout the human body. However, it is not
clear whether relative differences in mRNA concen-
trations are retained on the protein level. Further-
more, inter-individual protein concentration variabil-
ity within single tissue types has not been compre-
hensively explored. Here, we used the Gini index for
in-depth concentration variability analysis of publicly
available transcriptomics and proteomics data, and
of an in-house proteomics dataset of human liver and
jejunum from 38 donors. We found that the transfer
of concentration variability from mRNA to protein is
limited, that established ‘reference genes’ for data
normalization vary markedly at the protein level, that
protein concentrations cover a wide variability spec-
trum within single tissue types, and that concentra-
tion variability analysis can be a convenient starting
point for identifying disease-associated proteins and
novel biomarkers. Our results emphasize the impor-
tance of considering individual concentration levels,
as opposed to population averages, for personalized
systems biology analysis.

INTRODUCTION

Modern transcriptomics and proteomics technologies have
enabled the comprehensive mapping of human mRNA and

protein levels in different cells and tissues (1,2). It has been
shown that some genes and proteins are expressed in tissue-
specific patterns, while others are ubiquitously expressed
throughout the body (3–7). However, correlations between
mRNA and protein concentrations are typically poor (8,9).
Further, it is unclear to what extent the relative concentra-
tion differences on the mRNA level are transferred to the
protein level (10).

Notable inter-individual differences have been observed
within single tissue types on the mRNA level (11,12),
but this has not been comprehensively investigated on the
protein level. Due to the time-consuming nature of mass
spectrometry-based proteomics analysis, large-scale pro-
teomics studies of multiple tissues often use samples from
few or sometimes pooled donors (5–7). Further, studies of
single tissue types commonly use concentration levels from
multiple donors as biological replicates, with little empha-
sis on inter-individual variability (13,14). However, by us-
ing few or average protein concentration levels, the outcome
of holistic systems biology analysis would not necessarily
reflect inter-individual differences. In-depth knowledge of
protein concentration variability in single tissue types would
enable systems biology to deliver results that better repre-
sent the entire population, thereby advancing the field of
personalized medicine (15,16).

We reasoned that in-depth concentration variability anal-
ysis could be used to address these two knowledge gaps: the
transfer of relative concentration differences from mRNA
to protein and the inter-individual protein concentration
variability in single tissue types. For this purpose, we first
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used publicly available transcriptomics and proteomics data
from paired human tissues, and then generated a unique
proteomic dataset of liver and jejunum samples from 38
human donors. Our results show that mRNA variabil-
ity is poorly reflected at the protein level, and that ‘ref-
erence genes’ proposed for normalization of ‘omics’ data,
with low concentration variability on the mRNA level, had
higher variability on the protein level across different tis-
sues and within multiple samples of the same tissue type.
Thus, proper normalization would necessitate specific ref-
erence genes for different types of samples and data, which
would not be practical in proteomics. Furthermore, we
show that proteins with essential cellular functions have low
protein concentration variability within single tissue types.
On the other hand, many proteins vary substantially be-
tween donors and we noted a high variability in proteins re-
lated to disease, suggesting that protein concentration vari-
ability analysis can be used as a starting point for the identi-
fication of disease-associated proteins. We also demonstrate
that many proteins show large inter-individual concentra-
tion variability, with implications for personalized systems
pharmacology.

MATERIALS AND METHODS

Samples for proteomics

Human liver and jejunum samples were obtained from 38
donors that had provided informed consent as part of the
COCKTAIL study (17). Samples were collected from pa-
tients undergoing bariatric surgery preceded by a 3-week
fasting period. The patients were between 23 and 63 years
old, with BMI-values ranging between 30 and 63 kg/m2.

Data origin

For concentration variability analysis across human tis-
sues (Supplementary Data S1), we used mRNA and pro-
tein concentrations from 29 paired human tissue types
from previously published transcriptomics and proteomics
datasets (7). For within-tissue variability analysis on the
mRNA level, we used mRNA concentrations from liver
(175 donors) and small intestine (137 donors) obtained
from the GTEx project (18).

Within-tissue variability analysis on the protein level was
performed using proteomics data of the 38 human liver and
jejunum samples obtained here. For the proteomics analy-
sis, proteins were solubilized with 2% SDS and processed
with the multi-enzyme digestion filter-aided sample prepa-
ration (MED-FASP) protocol, using LysC and trypsin (19).
Peptides were separated on a C18 column (50 cm and 75
�m inner diameter) using a 2-h acetonitrile gradient in 0.1%
formic acid at a flow rate of 300 nl/min. The LC was cou-
pled to a Q Exactive HF or Q Exactive HF-X mass spec-
trometer (Thermo Fisher Scientific) operating in data de-
pendent mode with survey scans at a resolution of 60 000,
AGC target of 3 × 106 and maximum injection time of 20
ms. The top 15 most abundant isotope patterns were se-
lected from the survey scan with an isolation window of 1.4
m/z and fragmented with nCE at 27. The MS/MS analy-
sis was performed with a resolution of 15 000, AGC tar-
get of 1 × 105 and maximum injection time of 60 ms. The

resulting MS data were analyzed with MaxQuant (version
1.6.0.16) (20), where proteins were identified by searching
peptides against a decoy version of the UniProtKB (May
2013). Carbamidomethylation was set as a fixed modifica-
tion, and protein discovery rates were specified as 0.01, al-
lowing a maximum of two missed cleavages. Spectral raw
intensities were normalized with variance stabilization (vsn)
(21). Protein concentrations were calculated with the Total
Protein Approach (22).

Calculation of concentration variability

Concentration variability analysis was performed with the
Gini index, using a modified version of the ineq R pack-
age, version 0.2-13 (https://CRAN.R-project.org/package=
ineq). More specifically, Gini indices were calculated for
each mRNA or protein based on the mRNA or protein con-
centration levels in the 29 tissues (for the across-tissue anal-
ysis) or based on the protein concentration levels in the 38
human liver or jejunum samples (for the within-tissue analy-
sis). Thus, mRNAs or proteins with low Gini indices (close
to zero) had similar concentration levels across the 29 tis-
sues or across the 38 donors in the across-tissue and within-
tissue analysis, respectively.

Statistical analysis

Statistical analyses were performed using GraphPad Prism,
version 7.03, and partial least squares (PLS) modeling using
SIMCA, version 15.0.0.4783. Functional annotation clus-
tering of GOBP and KEGG terms was performed with
DAVID, version 6.8 (23), where clusters were considered
significant above an enrichment score of 1.3 (correspond-
ing to a P-value < 0.05). Statistical details are provided at
relevant places in the ‘Results’ section and figure legends.
For the analysis of the proteomics datasets, the first protein
ID was selected when multiple protein IDs were separated
by ‘;’. This enabled matching between transcriptomics and
proteomics datasets.

RESULTS

Variability in mRNA and protein concentration levels across
different tissue types

The Gini index is a measure of variability in a dataset (24),
and was recently introduced for describing the variability of
mRNA levels across different tissue types (25). The Gini in-
dex ranges from 0 to 1, where lower values indicate similar
concentration levels across samples. Here, we extended the
variability analysis to the closer-to-phenotype protein level
to investigate whether the concentration variability was sim-
ilar on the mRNA and protein levels. For this purpose,
we calculated Gini indices (Supplementary Data S1) using
mRNA and protein concentrations in 29 paired human tis-
sue types from a previously published dataset (7). To ensure
reliable Gini index calculations, we only included mRNAs
and proteins that were detected in at least 15 tissues. The
frequency distribution of Gini indices from the proteomics
data was shifted toward higher values compared to the tran-
scriptomics data, reflecting an overall higher variability at
the protein level. The distribution of protein concentration

https://CRAN.R-project.org/package=ineq
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Figure 1. Variability in mRNA and protein concentration levels across dif-
ferent tissue types. (A) Concentration variability distributions of match-
ing mRNAs and proteins (n = 8828) across 29 paired human tissue types,
based on previously published transcriptomics and proteomics data (7).
Numbers in figure denote mode (bin width: 0.02). (B) Correlation of
mRNA and protein concentration variability (n = 8828), using transcrip-
tomics and proteomics data from the 29 tissue types (7). (C) Overlap of the
100 least variable mRNAs and proteins across tissues (7). (D) Overlap of
the 500 least variable mRNAs and proteins across tissues (7); r = Pearson’s
correlation coefficient.

variability across tissues peaked at a Gini index of 0.50,
while the distribution of mRNA concentration variability
peaked at 0.18 (bin width 0.02; Figure 1A and Supplemen-
tary Data S1). Gini indices were negatively correlated with
median concentration levels across the 29 tissues at the pro-
tein level (r = −0.51; Supplementary Figure S1). However,
this was only a general trend, and many highly abundant
proteins still had high Gini indices (and vice versa). On the
other hand, no such correlation was observed at the mRNA
level (r = −0.03). Gini indices calculated from the tran-
scriptomics data showed some discrepancies with the cor-
responding values from the proteomics data (r = 0.50, Fig-
ure 1B). In addition, there was very little overlap among
the 100 and 500 least variable gene products between the
transcriptomics and proteomics datasets (<14%; Figure 1C
and D). The fact that low variability at the mRNA level
across different tissues not necessarily results in low vari-
ability at the protein level is likely due to translational or
post-translational regulatory mechanisms, and presumably
reflects tissue-specific phenotypes (26).

Reference gene variability across different tissue types

Historically, ubiquitously expressed gene products have
been used as references for e.g. western blots (27) and qPCR
(28). More recently, the use of reference genes has also been
proposed to improve normalization of more complex omics
data (29,30). Large-scale transcriptomics studies have pro-
vided lists of genes with low mRNA concentration vari-
ability as potential references (25,30). We investigated the
concentration variability of mRNAs from these proposed
genes, as well as from some traditionally used reference
genes (25), across different tissue types in the transcrip-
tomics and proteomics datasets. Unsurprisingly, the ma-

Figure 2. Reference gene variability in transcriptomics and proteomics
data. (A and B) Gini indices of mRNAs and proteins in transcriptomics
and proteomics data across 29 tissue types (7). Previously proposed ref-
erence genes are highlighted. (C) Normalized ranks of reference genes on
the mRNA and protein levels across tissues, as well as across donors in
transcriptomics data from 175 liver and 137 small intestine samples (18)
and in proteomics data of liver and jejunum from 38 donors. Ranks were
normalized by the number of entries in each separate dataset, and sorted
by the rank in the transcriptomics data across tissues.

jority of the newly proposed references (23 of 33) were
among the 10% least variable mRNAs in the transcrip-
tomics dataset (Figure 2A and C). On the other hand, the
traditionally used references (e.g. GAPDH and ACTB) gen-
erally showed much higher variability, possibly due to the
diverse reasons for their selection.

To assess the utility of references selected from transcrip-
tomics data for normalization at the protein level, we stud-
ied the variability of the 33 proposed references (25,30)
in the proteomics dataset across multiple tissue types. We
found that protein concentrations of the proposed refer-
ences were highly variable across the different tissue types,
with Gini indices covering ∼75% of the entire variability
spectrum (Figure 2B and C). This high variability on the
protein level questions the suitability of selecting reference
genes for proteomics based on transcriptomics information.

Inter-individual reference gene variability in single tissue
types

Differences in protein concentrations across different tissue
types, resulting from tissue specialization, might preclude
the universal application of transcriptomics-based reference



4 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

genes. However, the reference genes could still have a low
concentration variability (and thus be useful for normal-
ization) within a more homogeneous sample group, such
as multiple samples of the same tissue type from different
donors. Therefore, we analyzed reference gene variability on
the mRNA level in liver (175 donors) and small intestine
(137 donors) using previously published transcriptomics
data (18), and on the protein level in liver and jejunum sam-
ples from 38 human donors (Supplementary Data S1). Sim-
ilarly to the observation across different tissue types, many
of the proposed references (14 of 33 from the liver and 19
of 33 from the small intestine) were among the 10% least
variable mRNAs (Figure 2C; Supplementary Figure S2a
and S2b). On the protein level, a few of the references were
among the 10% least variable (5 in both liver and jejunum).
However, the overall variability was, surprisingly, as high
as in the multi-tissue proteomics dataset (Figure 2C). This
indicates that caution should be exercised if selecting refer-
ence genes for normalization of proteomics data is based on
transcriptomics information.

Variability in protein concentrations in single tissue types

Inspired by this unexpectedly high protein concentration
variability in single tissue types, we performed more in-
depth analysis of within-tissue variability in the proteomes
of the 38 liver and jejunum samples. For the calculation of
Gini indices, we included proteins that were detected with
at least three unique peptides. The final datasets comprised
5968 and 7662 proteins for liver and jejunum, respectively.
The variability distributions were significantly lower than in
the across-tissue proteomics data, with peaks at Gini indices
of 0.12 and 0.16 in liver and jejunum, respectively, compared
to 0.54 across tissues (P < 0.0001, one-way ANOVA fol-
lowed by Tukey’s multiple comparisons test: Figure 3A and
Supplementary Data S1). Using previously published tran-
scriptomics data (18), we observed relatively similar within-
tissue variability distributions on the mRNA level com-
pared to the protein level, with peaks at Gini indices of 0.20
and 0.18 in liver and small intestine, respectively (Supple-
mentary Figure S3a and S3b). In general, the variability
distribution of protein concentrations in the jejunum sam-
ples was shifted toward higher values compared to liver (P
< 0.0001, one-way ANOVA followed by Tukey’s multiple
comparisons test). More specifically, Gini indices ranged
between 0.01–0.84 and 0.04–0.94, with medians of 0.21 and
0.24 in liver and jejunum, respectively. Gini indices from
the two tissues showed a relatively poor correlation (r =
0.48; 5496 matching proteins). However, when excluding a
relatively small number of the most discrepant values be-
tween the two datasets (469 proteins), we observed a much
stronger correlation (r = 0.71; Figure 3B and Supplemen-
tary Figure S4A). This shows that the overall variability
across donors is similar in liver and jejunum.

We further investigated the least variable proteins in liver
and jejunum, and found that 34% and 53% of the 100
and 500 least variable proteins, respectively, were overlap-
ping between the two tissue types (Figure 3C). This demon-
strates that proteins with low inter-individual variability
in liver often also have a low variability in jejunum, sug-
gesting that different tissue types share many proteins that

require concentration levels within narrow intervals. Bio-
logical functions represented by the 34 proteins with the
lowest Gini indices in both tissue types included protein
folding (CCT2, CCT8, HSP90AA1, HSP90B1, HSPA8 and
PDIA3), energy metabolism (HADHA, MDH2, ENO1,
PGK1, ATP5A1 and ATP5B) and vesicular trafficking
(CLTC, COPB2, DYNC1H1, GDI2 and RAB11B).

To verify the biological relevance of our findings, and
to exclude that the variability was introduced by measure-
ment errors, we compared the Gini indices from the liver
and jejunum proteomics data with a previous dataset of
Caco-2 cells analyzed in triplicate (31). In theory, the cell
samples should have Gini values close to 0 for all pro-
teins, as they were replicates cultured together under iden-
tical conditions. For this comparison, we used the 2562
proteins that were detected with at least three peptides in
all three datasets. Indeed, the replicate samples had sig-
nificantly lower Gini indices, with a median value of 0.04
compared to 0.12 and 0.14 in liver and jejunum, respec-
tively (P < 0.0001, one-way ANOVA followed by Dunnett’s
multiple comparisons test; Figure 3D). Interestingly, how-
ever, some proteins showed relatively high variability even
among the replicates. In contrast to the least variable pro-
teins (below the 5th percentile), the most variable proteins
(above the 95th percentile) in the replicate samples were
over-represented by nucleic acid binding proteins and tran-
scription factors (Supplementary Figure S4B). Neverthe-
less, the generally low variability among the replicates shows
that the Gini indices we observed in the liver and jejunum
samples mainly resulted from biological differences and not
from technical measurement errors.

We further validated the biological relevance of our anal-
yses by comparing Gini indices in the 38 liver samples with
a separate in-house proteomics dataset containing 15 liver
samples from another patient group. A stronger correlation
was found between the two liver datasets than between the
different tissue types (i.e. the 38 liver and jejunum samples;
Supplementary Figure S4C). Thus, the results in this study
should not be specific to particular datasets.

Within-tissue variability in relation to protein properties

We next investigated the characteristics of proteins from the
entire within-tissue variability spectra in liver and jejunum.
Proteins were classified by type using the PANTHER clas-
sification system (32). Median Gini indices of the protein
classes from liver and jejunum were highly correlated (r =
0.87), showing that similar types of proteins had low and
high variability in both tissues (Figure 4A). For example,
lyases, oxidoreductases, and chaperones were among the
least variable protein classes, while cell adhesion molecules
and extracellular matrix proteins showed high variability.

Further, we used the Prolocate database of protein local-
ization in rat liver (33) to study the subcellular distribution
of the 2095 proteins that matched between our liver dataset
and Prolocate. In general, proteins with high Gini indices
were more widely distributed across subcellular compart-
ments (Figure 4B). The cytosol was the major compart-
ment for 46% of the 2095 proteins, followed by mitochon-
dria (17%) and the endoplasmic reticulum (ER; 16%; Fig-
ure 4C). We then specifically considered the 10% least and
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Figure 3. Variability in protein concentrations in single tissue types. (A) Variability distributions of proteins in human liver (n = 5968) and jejunum (n =
7662) from 38 donors, and in proteomics data across 29 tissues (n = 10373) (7), comparing within-tissue and across-tissue variability. Numbers in figure
denote the mode (bin width: 0.02). (B) Correlation of protein concentration variability between the liver and jejunum datasets. The black line shows the
regression with all proteins included, and the grey line shows the regression after exclusion of highly discrepant proteins (outside the dotted lines) between
the two tissues. (C) Overlap of the 100 and 500 least variable proteins in the liver and jejunum datasets. (D) Variability distributions of 2562 matching
proteins in Caco-2 cells, analyzed as triplicates, and human liver and jejunum, comparing technical and biological variability. Numbers in figure denote
the mode (bin width: 0.02); r = Pearson’s correlation coefficient.

the 10% most variable proteins. Here, differences were seen
for other compartments than the cytosol between the two
extremes (Figure 4C and Supplementary Figure S5A). The
mitochondria and ER were the major compartments for
many of the least variable proteins. On the other hand, the
plasma membrane (PM) and lysosome were major com-
partments for the most variable proteins. This is logical in
light of the fasting period that the patients undergo prior to
surgery (see ‘Materials and Methods’ section), as fasting is
known to trigger an increase in the number and activity of
lysosomes (34).

We then used the DAVID database (23) to characterize
the biological functions of the least and most variable pro-
teins. The 100 least variable proteins represented similar
basal cellular functions in both tissues, such as carbohy-
drate metabolism, protein processing and translation (Fig-
ure 4D and Supplementary Data S2). The 100 most vari-
able proteins were more random, with few enriched func-
tions. However, extending the analysis to the 500 most vari-
able proteins resulted in interesting findings. Enriched func-
tions included extracellular matrix organization in the liver,
possibly due to varying levels of collagen deposition related
to liver status, as well as drug metabolism in the jejunum,
which could be related to induction of intestinal metabolic
enzymes by dietary and environmental factors (Supplemen-
tary Figure S5B and Data S2).

To further probe the involvement of the least variable
proteins in basal functions, we compared proteins from the
‘core essentialome’ (35), i.e. proteins essential for cell sur-

vival, with non-essential proteins. Indeed, essential proteins
had significantly lower Gini indices in both tissues (P <
0.0001, Student’s t-test), showing that these proteins were
found at similar concentrations in all donors (Figure 4E).
This is logical, as cells need to maintain these proteins at cer-
tain levels to ensure survival. The corresponding mRNAs to
these essential proteins also had significantly lower Gini in-
dices across donors in the external transcriptomics dataset
of liver and small intestinal samples (18) (Supplementary
Figure S6A and S6B). Further, similar analysis of the ex-
ternal proteomics dataset containing 15 liver samples from
another patient group supported these results (Supplemen-
tary Figure S6C).

To provide a summary of factors that influence within-
tissue variability, we performed PLS modeling of the effect
of various protein properties on Gini indices. We included
GRAVY score (hydrophobicity), secondary structure (36),
essentiality (35), isoelectric point (37), protein complex par-
ticipation (38), protein/mRNA ratio (6), turnover rate (39),
molecular weight and protein concentration (Supplemen-
tary Data S1). The results of the models generally indicated
that highly abundant, large, essential, hydrophilic proteins
with low turnover rates have low concentration variability
in single tissue types (Figure 4F).

Capturing expected biological variability

We next investigated whether the Gini index could capture
a biological process where high variability in protein con-
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Figure 4. Within-tissue variability in relation to protein properties. (A) Gini indices of proteins in different classes in human liver and jejunum from 38
donors. The number of proteins in each class is shown in the figure. Boxes range between the 25th and 75th percentiles, lines show medians and whiskers
denote the 10th and 90th percentiles. (B) Subcellular distribution of proteins in human liver, sorted by Gini index. The 10% least and most variable proteins
are highlighted. (C) Major subcellular compartment of the 10% least and most variable proteins in human liver. Dashed lines show the corresponding values
for all proteins. (D) Enriched biological processes in the 100 least variable proteins in human liver and jejunum. Scores show the enrichment score of the
functional annotation clustering. (E) Gini indices of essential and non-essential proteins in human liver and jejunum. The number of proteins is displayed
under each boxplot. Boxes range between the 25th and 75th percentiles, lines show medians and whiskers denote the 10th and 90th percentiles. (F) The
effect of various protein properties on Gini indices, assessed by PLS modeling. Error bars indicate 95% confidence intervals for the model coefficients.
****P < 0.0001, one-way ANOVA followed by Dunnett’s multiple comparisons test.

centrations across donors was expected. For this, we ex-
tracted proteins that were associated with diabetes in the
DisGeNET database (40) and proteins annotated with the
term ‘inflammatory response’ in the Gene Ontology (41).
Diabetes-associated proteins were likely to have variable
concentration levels across the 38 donors, since a subgroup
of the patients (one-third) suffered from diabetes. Further,
the patients had varying degrees of obesity, and inflam-
mation is known to increase with increasing body weight
(42). The Gini indices for these proteins were compared
with proteins from the proteasome and ribosome, i.e. core
cellular structures that were expected to have similar con-
centration levels across the donors. As expected, diabetes-
associated proteins had significantly higher Gini indices
than the core structures in both liver and jejunum (one-

way ANOVA followed by Dunnett’s multiple comparisons
test; Figure 5A). This was further investigated by divid-
ing the donors into two groups: patients with diabetes and
patients without diabetes, and calculating the Gini indices
for each group (Supplementary Figure S7A). As patients
in the respective groups were expected to have similar con-
centrations of diabetes-associated proteins (e.g. high levels
of a protein in patients with diabetes but low levels in pa-
tients without diabetes), low Gini indices were expected in
each group (Supplementary Figure S7A). Indeed, diabetes-
associated proteins had significantly lower Gini indices in
both groups compared to the Gini indices obtained when in-
cluding all 38 donors (one-way ANOVA followed by Holm-
Sidak’s multiple comparisons test; Supplementary Figure
S7B and S7C). Acute inflammatory response proteins also
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Figure 5. Variability in proteins associated with inflammation, diabetes, and drug metabolism. (A) Gini indices of proteins from core cellular structures,
with low expected variability, compared with Gini indices of diabetes-associated and inflammatory response proteins, with high expected variability. The
number of proteins is displayed under each boxplot. Boxes range between the 25th and 75th percentiles, lines show medians, and whiskers denote the 10th
and 90th percentiles. (B) The ten most variable inflammatory response proteins in liver and jejunum. (C) Gini indices of all proteins quantified in liver
samples, ordered by gene name. Important transporter and metabolic enzyme families are highlighted. (D) Important drug metabolizing CYP enzymes
quantified in liver samples, sorted by Gini index. (E) Gini indices of all proteins quantified in jejunum samples, ordered by gene name. Important transporter
and metabolic enzyme families are highlighted. (F) Important drug metabolizing CYP enzymes quantified in jejunum samples, sorted by Gini index. Roman
numerals indicate statistical significance from one-way ANOVA followed by Dunnett’s multiple comparisons test, in comparisons of diabetes-associated
proteins with proteasome (i, iii; P < 0.0001) and ribosome (ii, iv; P < 0.05 and P < 0.0001, respectively), and comparisons of inflammatory response
proteins with proteasome (v, vii; P < 0.0001) and ribosome (vi, viii; P < 0.001 and P < 0.0001, respectively) in liver and jejunum, respectively.

had significantly higher Gini indices than the core structures
in both liver and jejunum (one-way ANOVA followed by
Dunnett’s multiple comparisons test; Figure 5A). These re-
sults further demonstrate the applicability of this approach
for observing biologically relevant variability. Interestingly,
some of the most variable inflammatory proteins have also
been detected in plasma (43) and urine (44). Both well-
established biomarkers, such as CRP (45), and less investi-
gated proteins were found among the ten most variable in-
flammatory proteins, indicating that the latter could poten-
tially be used as biomarkers for tissue inflammation (Figure
5B).

Variability in proteins related to drug metabolism

One progressing branch of systems biology is systems phar-
macology, in which biological network structures are used
to predict drug action (46). For this type of analysis, it
is imperative to know the quantities of proteins involved

in drug disposition. Therefore, we investigated the vari-
ability of the most important proteins involved in drug
transport and metabolism. These included proteins from
the two main transporter families, ATP-binding cassette
(ABC) and solute carrier (SLC), and the two most promi-
nent enzyme families in phase I and phase II metaboliz-
ing enzymes, i.e. the cytochrome P450s (CYPs) and UDP-
glucuronosyltransferases (UGTs) (47–50). In general, these
proteins covered large parts of the variability spectrum in
both liver and jejunum (Figure 5C and E). More specifi-
cally, Gini indices for the CYPs responsible for the major-
ity of drug metabolism (50) ranged from 0.09 to 0.34 and
0.19 to 0.88 in liver and jejunum, respectively (Figure 5D
and F). This spread in Gini indices was also reflected by
the fold differences of protein concentrations across donors
(i.e. the ratio of maximum and minimum values), where the
majority of the enzymes (67%) had a fold difference above
10. Fold differences are heavily affected by extreme values,
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but provide more tangible information for systems pharma-
cology analysis. The high variability we observed for many
important metabolic enzymes implies that comprehensive
systems pharmacology analysis, tailored to the patient, re-
quires thorough consideration of inter-individual protein
concentration variability.

DISCUSSION

Concentrations of mRNAs and proteins show consider-
able variability across tissues, and it is well known that
mRNA and protein levels are poorly correlated. However,
little is known about the transfer of relative concentration
differences from mRNA to protein. Furthermore, the vari-
ability in protein concentrations within single tissue types
from multiple donors has not been comprehensively char-
acterized. Here, we first used the Gini index to character-
ize mRNA and protein concentration variability across tis-
sues using a publicly available dataset. We then investigated
inter-individual differences within single tissue types, using
in-house proteomics data of 38 human liver and jejunum
samples. We found substantial variability differences be-
tween transcriptomics and proteomics data across tissues,
and identified common themes in the single tissue types
among proteins at both ends of the variability spectrum.

We observed a discrepancy in concentration variability
between the mRNA and protein levels across tissue types.
This could be explained by various factors. Tissue special-
ization constitutes a logical partial explanation, as different
proteins are required at different levels to establish specific
phenotypes (4). Furthermore, protein levels are controlled
by a complex interplay of post-transcriptional processes.
Protein synthesis consumes more energy than mRNA tran-
scription (51,52), meaning that tissues will only produce
proteins at levels that are required for their tissue-specific
functions, whereas mRNA levels do not need to be as
tightly controlled (53). Moreover, regulation of synthesis
and degradation rates can also largely affect the variability
in protein concentration irrespective of the corresponding
mRNA levels (54).

We found that the discrepancy in variability between
mRNA and protein levels across tissue types was also
prominent among transcriptomics-based reference genes
proposed for use in normalization procedures. Further,
the references showed different variabilities in proteomics
datasets containing 38 samples of human liver and jejunum.
In essence, these results mean that optimal normalization
would require the selection of different reference genes for
transcriptomics and proteomics data, and for different cells
and tissues. In fact, specific reference genes might even be
necessary for different samples of the same tissue type in
different conditions (55). The complexity of this task makes
the use of reference genes a highly impractical normaliza-
tion approach for proteomics data. Instead, more sophisti-
cated normalization methods, such as intensity-based vari-
ance stability normalization (vsn), should be used (21,56).

In the analysis of our 38 liver and jejunum samples, we
observed that protein concentration variability was lower
within single tissue types than across different tissues. Vari-
ability was generally higher in jejunum than in liver. De-
mographic differences between sample types could be ruled

out as a cause for the higher variability, since the samples
originated from the same 38 donors. Therefore, other ex-
planations need to be considered. The liver is a relatively
homogeneous tissue, where hepatocytes constitute 80% of
the volume (57), whereas the jejunum is composed of sev-
eral distinct tissue layers (58). Further, hepatocytes have
a comparatively small proteome in relation to other cell
types in the liver (59). This could explain why more pro-
teins were detected in the jejunum samples. The layered na-
ture of the jejunum means that the pinch-biopsy technique
used for obtaining jejunal biopsies can result in slightly
different sample compositions due to variable sampling
depth (60). Deeper biopsies would contain higher propor-
tions of collagen-rich submucosal connective tissue, thus di-
luting the tissue-specific expression of the jejunal epithe-
lium to varying degrees. Indeed, we observed high vari-
ability in the major intestinal collagen types (61) between
the jejunum samples (Supplementary Figure S5C). Further,
inter-individual differences in jejunum length (62) could af-
fect the relative position of the jejunal sampling site (17).
This could influence the variability due to regional differ-
ences in protein concentrations in the human small intestine
(63). Such sampling effects have previously been observed
on the mRNA level in human lung tissue (12).

We also note that several technical parameters of the pro-
teomics analysis itself may affect the Gini index. For in-
stance, it is well known that the number of peptides detected
for a certain protein affects the reliability of its quantifica-
tion (64). We did observe a tendency that larger numbers of
peptides used for detection resulted in lower Gini indices,
but the correlations were relatively weak (r = –0.37 and r
= –0.35 for liver and jejunum, respectively; Supplementary
Figure S8A and S8B). To partly account for the problem,
we only included proteins that were detected with at least
three unique peptides. Another problem is represented by
plasma membrane proteins, which are often low-abundant,
show limited solubilization, and contain hydrophobic do-
mains that are problematic to ionize, which all makes them
more difficult to analyze (65). However, in the proteomics
workflow used here, the lysis buffer contained high concen-
tration of SDS that facilitates the solubilization of proteins
with hydrophobic domains. Nevertheless, the challenge of
quantifying low abundant proteins still remains, and is a
plausible reason to that plasma membrane proteins were
over-represented among the most variable proteins in the
liver and jejunum. The difficulties involved in their analysis
thus indicate that their Gini indices should be interpreted
with a measure of caution.

Even though the protein concentration variability was
generally higher in jejunum than in liver, the least variable
proteins in each tissue were involved in similar essential
cellular processes. The least variable proteins also seemed
to capture basal differences in tissue physiology. For in-
stance, the constant proliferation and migration of entero-
cytes along the villus axis (66) likely accounts for the low
variability of proteins related to cell division in the jejunum.
This highlights the relevance of using the Gini index for
variability analysis. The Gini index also provides a simple
approach to identify variability in proteins of importance
for systems pharmacology analysis, such as transporters
and metabolic enzymes, as well as proteins involved in bi-
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ological processes that deviate from the ‘normal’ situation
(e.g. healthy controls). For example, we found high variabil-
ity in proteins involved in diabetes and inflammation, indi-
cating varying degrees of these disease-related processes in
the different donors. By identifying highly variable proteins
and subsequent comparison of the actual protein levels with
disease status in the different patients, the Gini index might
provide an unbiased starting point for biomarker discovery
in a more general sense. Supporting this, previous studies
have shown that hypervariably expressed genes are largely
associated with human diseases (67).

In summary, we found that the transfer of concentra-
tion variability from mRNA to protein across tissue types
is limited, in addition to the already established poor cor-
relation between quantitative levels of mRNA and protein.
Our analysis also indicates that specific, rather than univer-
sal, reference genes would be required for different omics
levels and sample types. This indicates that reference gene
normalization is not feasible for proteomics data. At the
level of single tissue types (liver and jejunum), we found that
proteins with low concentration variability across donors
were involved in essential cellular processes. On the other
hand, proteins with variable concentrations reflected vary-
ing degrees of disease, indicating that this type of variability
analysis could be a simple aid in early biomarker discov-
ery. Furthermore, we observed that proteins within single
tissue types covered a wide variability spectrum, which im-
plies that individual concentration levels should be taken
into consideration for truly personalized outcomes of sys-
tems biology analysis.
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22. Wiśniewski,J.R. and Rakus,D. (2014) Multi-enzyme digestion FASP
and the ‘Total Protein Approach’-based absolute quantification of the
Escherichia coli proteome. J. Proteomics, 109, 322–331.

23. Huang,D.W., Sherman,B.T. and Lempicki,R.A. (2008) Systematic
and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc., 4, 44.

24. Ceriani,L. and Verme,P. (2012) The origins of the Gini index: extracts
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29. Wiśniewski,J.R. and Mann,M. (2016) A proteomics approach to the
protein normalization problem: selection of unvarying proteins for
MS-based proteomics and western blotting. J. Proteome Res., 15,
2321–2326.

30. Eisenberg,E. and Levanon,E.Y. (2013) Human housekeeping genes,
revisited. Trends Genet., 29, 569–574.
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