

www.bioinformation.net Volume 17(5)

Research Article

DOI: 10.6026/97320630017557

Molecular docking analysis of phyto compounds from *Acacia farnesiana* with protein targets linked to bronchitis

Mallikarjun S Beelagi¹, Manoj Manjunath Bongale², Anisha S Jain⁶, Kollur Shiva Prasad³, Sharanagouda S Patil⁴, Govindappa Mellappa⁵, Chandan Dharmashekar¹, P Ashwini⁶, R Triveni⁷, Chandan Shivamallu^{1, *}, Chandrashekar Srinivasa^{2,*}

¹Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India. ²Department of studies in Biotechnology, Davangere University, Davangere 577007, Karnataka, India; ³Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India. ⁴ICAR, National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, India. ⁵Department of Studies in Botany, Davangere University, Davangere 577007, Karnataka, India. ⁶Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka-570 015, India; ⁷Sri HN Ananth Kumar, P.U. College, Bidadi 562109, Karnataka, India; *Correspondence: chandans@jssuni.edu.in (CS); chandru.s@davangereuniversity.ac.in

Received April 25, 2021; Revised May 27, 2021; Accepted May 28, 2021, Published May 31, 2021

Declaration on official E-mail:

The corresponding author declares that official e-mail from their institution is not available for all authors

Declaration on Publication Ethics:

The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Abstract:

Acute bronchitis is a lower respiratory tract lung infection that causes bronchial inflammation. The known protein drug targets are peptidoglycan D, Dtranspeptidase, and DNA topoisomerase 4 subunit A for bronchitis linked infections. These are the membrane associated macromolecules which takes a major role in the formation of cell wall membrane by synthesising the cross-linked peptidoglycan. Therefore, it is of interest to design molecules with improved binding features with these protein targets. Hence, we document the molecular docking analysis data of four phytocompounds from *Acacia farnesiana* having optimal binding features with these targets linked to bronchitis for further consideration.

Keywords:

Acacia farnesiana, acute bronchitis, molecular docking, discovery studio, phytocompounds

Background:

More than 50% patients of are exposed to hospital borne bronchitis

linked infections **[1]**. Data in the drug bank database shows that the known protein targets for bronchitis **[2,3]** are the penicillin-binding

proteins (PBP) **[4-8]**, Peptidoglycan-D D-transpeptidase **[9,10]**, DNA topoisomerase 4 subunit A **[11-14]** and DNA gyrase subunit **[15]**. Therefore, it is of interest to document the molecular docking analysis of phytocompounds from *Acacia farnesiana* (Figure 1 to Figure 11) with the known protein targets (Table 1) linked to bronchitis.

Materials & Methods:

Target protein, sequences, structures, data preparation and validation:

The (1) Penicillin-binding protein 1A (PDB ID: 2WAF), (2) Peptidoglycan D, D-transpeptidase (PDB ID: 6HZQ), E.coli, (3) Penicillin-binding protein 1B (PDB ID: 3VMA) and (4) Penicillin-binding protein 1A(PDB: 2ZC6), were downloaded from the PDB database. The 3-dimensional structure models for DNA gyrase subunit A, DNA topoisomerase 4 subunit A and peptidoglycan D-D-transpeptidase (Clostridium perfringens (strain 13 / Type A)) developed using the Swiss-Model and Phyre2 web tool with sequences downloaded from the UniPort database. The Ramachandran plots [16] were drawn for the models (Table 2).

Ligand preparation and validation:

2D and 3D data on phytochemicals from *Acacia farnesiana* (sweet acacia) were retrieved from IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) in data formats such as PDB, sdf, mol, and pdbqt. *Acacia farnesiana* has a total of 23 types of phytochemicals including flavonoids and other derivatives. We used 18 phyto chemicals excluding 5 flavonoids for this study.

Figure 1: Natural image of Acacia farnesiana fruit.

Molecular docking:

Discovery Studio Client Version 20.1 (-CDOCKER Module) is used for molecular docking analysis of protein targets with the selected ligands.

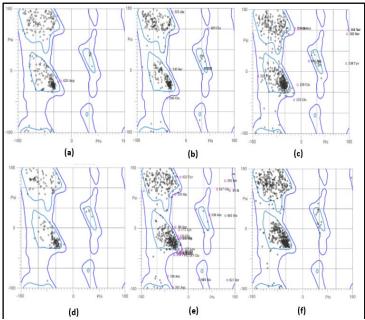


Figure 2: Analysis of Ramachandran plot is shown. (a) DNA topoisomerase 4 subunit, 96.1% (491/511) of all residues were in favored (98%) regions. 99.6% (509/511) of all residues were in allowed (>99.8%) regions. (b) Peptidoglycan_D_D-transpeptidase MrdA 96.4% (535/555) of all residues were in favored (98%) regions. 99.3% (551/555) of all residues were in allowed (>99.8%) regions. (c) Penicillin-binding protein 1B (PDB ID: 3VMA) 92.1% (645/700) of all residues were in favored (98%) regions. 98.3% (688/700) of all residues were in allowed (>99.8%) regions. (d) Peptidoglycan D, D-transpeptidase FtsI (PDB ID: 6HZQ) 95.5% (278/291) of all residues were in favored (98%) regions.99.7% (290/291) of all residues were in allowed (>99.8%) regions. (e) Penicillin-binding protein 1A (PDB ID-2WAF) 83.6% (514/615) of all residues were in favored (98%) regions. 94.8% (583/615) of all residues were in allowed (>99.8%) regions. (f) Penicillin-binding protein 1A (PDB -2ZC6) 95.1% (753/792) of all residues were in favored (98%) regions. 100.0% (792/792) of all residues were in allowed (>99.8%) regions.

Known pharmacology properties of DL arginine, decanal, pyrocatechol, sulfoxide, benzaldehyde

L-arginine is a precursor to nitric oxide or NO and it is synthesized from L-arginine using the enzyme nitric oxide synthase [17-18]. The naturally derived decanal has shown the capability of disrupting the permeability barrier of the cell membrane and it is responsible for the loss of chemiosmotic control [19-21]. Pyrocatechol of Aloe vera extraction was exhibited to have maximum antibacterial activity [22]. Sulfoxide in the form of dimethyl sulfoxide (DMSO) acts as an antibacterial and an anti-inflammatory agent against several bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa [23]. Benzaldehyde releases intracellular constituents and interacts with the cell surface; induce cell death by causing disintegration of the cell membrane [24, 25].

Results and Discussion:

The bronchitis affects the quality of human community [26]. Penicillin-binding proteins 1B, 1A and Peptidoglycan D-Dtranspeptidase, DNA topoisomerase 4 subunit A and DNA gyrase subunit A were taken as protein of target based on their role in disease-causing mechanism. 18 phytochemicals of Acacia farnesiana that have an anti-inflammation are docked and analyzed using Discovery studio v20.1 software with CHARMM module based on the -C-DOCKER energy. Seven phytochemicals of Acacia farnesiana have optimal interaction and binding energy with the seventargeted proteins (Table 3, Table 4 and Table 5). The high -C-DOCKER energy shows high affinity of the compounds with targets [27]. We observed that Pyridoxal phosphate, DL-Arginine, Decanal, and Sulfoxide have high -C-DOCKER energy compared to the rest of the phytochemicals. Therefore, the -C-DOCKER energy,

Hydrogen bond and the position of ligand in the binding pockets of protein molecules are high for these molecules. Thus, these phytochemicals of Acacia farnesiana have potential modulatory functions against the bronchitis targets for further consideration.

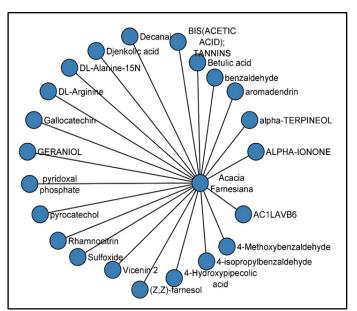


Figure 3: Phytochemicals of Acacia farnesiana retrieved from IMPPAT database.

Table 1:	Table 1: List of target proteins for bronchitis infection				
S. No	Target Protein Name	Source of Organism			
1	Penicillin-binding protein 1B (PDB ID: 3VMA)	Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd)			
2	Penicillin-binding protein 1A (PDB ID: 2WAF)	Clostridium perfringens (strain 13 / Type A)			
3	Penicillin-binding protein 1A (PDB: 2ZC6)	Escherichia coli (strain K12)			
4	Peptidoglycan D-D-transpeptidase (PDB ID: HZQ)	Escherichia coli (strain K12)			
5	Peptidoglycan D-D-transpeptidase	Clostridium perfringens (strain 13 / Type A)			
6	DNA topoisomerase 4 subunit A	Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4)			
_		the second s			

Table 2: Structural analysis scores of targeted proteins

DNA gyrase subunit A

7

Sl. No	Target Protein Name	Source of Organism	Clash Score	Ramachandran Region	Favoured	Ramachandran Outliers
			4.04	0		
1	DNA topoisomerase 4 subunit	Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd)	1.84	96.09%		0.39%
2	Peptidoglycan D D-transpeptidase	Clostridium perfringens (strain 13 / Type A)	1.14	96.40%		0.72%
3	Penicillin-binding protein 1B (PDB ID: 3VMA)	Escherichia coli (strain K12)	16.82	92.145		1.71%
4	Peptidoglycan D D-transpeptidase	Escherichia coli (strain K12)	18.55	95.53%		0.34%

Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd)

5	(PDB ID: 6HZQ) Penicillin-binding protein 1A (PDB ID: 2WAF)	Clostridium perfringens (strain 13 / Type A)	58.43	83.58%	5.20%
6		Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4)	4.21	95.08%	0.0%

Table 3: ADMET property of Acacia farnesiana phytochemicals.

S. No	Phytochemical identifier	Phytochemical Name	BBB permeant	CYP2D6 inhibitor	Lipinski
1	CID:443158	(-)-Linalool	Yes	No	Yes; 0 violation
2	CID:1549107	(Z, Z)-farnesol	Yes	No	Yes; 0 violation.
3	CID:151907	4-Hydroxypipecolic acid	No	No	Yes; 0 violation.
4	CID:326	4-isopropylbenzaldehyde	Yes	No	Yes; 0 violation.
5	CID:31244	4-Methoxybenzaldehyde	Yes	No	Yes; 0 violation
6	CID:521229	AC1LAVB6	No	No	Yes; 1 violation: MLOGP>4.15
7	CID:5282108	ALPHA-IONONE	Yes	No	Yes; 0 violation
8	CID:17100	alpha-TERPINEOL	Yes	No	Yes; 0 violation.
9	CID:240	benzaldehyde	Yes	No	Yes; 0 violation.
10	CID:2371	Betulic acid	No	No	Yes; 1 violation: MLOGP>4.15.
11	CID:76419085	BIS (ACETIC ACID); TANNINS	No	No	No; 3 violations: MW>500, NorO>10, NHorOH>5
12	CID:8175	Decanal	Yes	No	Yes; 0 violation.
13	CID:51283	DL-Alanine-15N	No	No	Yes; 0 violation.
14	CID:232	DL-Arginine	No	No	Yes; 0 violation.
15	CID:637566	GERANIOL	Yes	No	Yes; 0 violation.
16	CID:1051	pyridoxal phosphate	No	No	Yes; 0 violation
17	CID:289	pyrocatechol	Yes	No	Yes; 0 violation
18	CID:8442	Sulfoxide	Yes	Yes	Yes; 0 violation.

Table 4: Molecular docking energy of all 18 ligands and protein.

S. No.	Protein	Source of Organism	Ligand CID ID	Phytochemical Name	-Cdocker energy (kcal/mol)
1	2WAF	Clostridium perfringens (strain 13 / Type A)	232	DL-Arginine	25.9683
			240	benzaldehyde	10.9988
			289	pyrocatechol	14.4266
			326	4-isopropyl benzaldehyde	13.6489
			1051	pyridoxal phosphate	32.8322
			8175	Decanal	22.5696
			8442	Sulfoxide	11.9438
			31244	4-Methoxybenzaldehyde	10.3737
			51283	DL-Alanine-15N	17.4873
			151907	4-Hydroxypipecolic acid	8.207
			443158	(-)-Linalool	-10.3739
			637566	GERANIOL	-25.0839
			1549107	(Z, Z)-farnesol	-43.1304
2	2ZC6 Stre	Streptococcus pneumoniae serotype 4 (strain ATCC	240	Benzaldehyde	14.7887
		BAA-334 / TIGR4)	289	Pyrocatechol	16.0321
			326	4-isopropyl benzaldehyde pyridoxal	19.0869
			1051	phosphate	41.4751
			2371	4- Methoxybenzaldehyde	-89.6145
			8175	Decanal	31.9198
			8442	Sulfoxide	22.3133
			17100	Alpha-TERPINEOL	-4.83549
			31244	4-Methoxybenzaldehyde	13.8956
			51283	DL-Alanine-15N	18.0967
			151907	4-Hydroxypipecolic acid	13.5964
			443158	(-)-Linalool	-3.30347
			521229	AC1LAVB6	-48.8754
			637566	GERANIOL	-16.5693
			1549107	(Z,Z)-farnesol	-30.8338
			5282108	Alpha-Ionone	-10.3717
3	3VMA	Escherichia coli (strain K12)	232	DL-Arginine	34.2382
			240	Benzaldehyde	16.1819
			289	Pyrocatechol	17.7641
			326	4-isopropylbenzaldehyde	26.5843
			1051	pyridoxal phosphate	39.8335

			2371	Betulic acid	-133.497
			8175	Decanal	34.7661
			8442	Sulfoxide	29.6826
			17100	alpha-TERPINEOL	1.15522
			31244	4-Methoxybenzaldehyde	18.6867
			51283	DL-Alanine-15N	19.0834
			151907	4-Hydroxypipecolic acid	16.2281
			443158	(-)-Linalool	-1.31029
			521229	AC1LAVB6	-44.8457
			637566	GERANIOL	-14.3766
			1549107	(Z,Z)-farnesol	-26.7187
			5282108	Alpha-Ionone	-4.36655
4	6HZQ	Escherichia coli (strain K12)	232	DL-Arginine	35.582
	······		240	Benzaldehyde	18.2039
			289	Pyrocatechol	20.6657
			326	4-isopropylbenzaldehyde	19.8501
			1051	pyridoxal phosphate	44.6154
			8175	Decanal	34.5847
			8442	Sulfoxide	18.4343
			17100	alpha-TERPINEOL	-2.41484
			31244	4-Methoxybenzaldehyde	15.8058
			51283	DL-Alanine-15N	23.3154
				4-Hydroxypipecolic acid	18.5808
			151907		
			443158	(-)-Linalool	-3.27398
			637566	GERANIOL	-19.1135
			1549107	(Z, Z)-farnesol	-31.8632
			5282108	Alpha-Ionone	-7.3133
5	Peptidoglycan D D-	Clostridium perfringens (strain 13 / Type A)	232	DL-Arginine	28.9364
	transpeptidase		240	Benzaldehyde	11.084
			289	pyrocatechol	14.7133
			326	4-isopropylbenzaldehyde	18.7276
			1051	pyridoxal phosphate	40.0006
			2371	Betulic acid	-77.9329
			8175	Decanal	27.8622
			8442	Sulfoxide	24.1085
			17100	alpha-TERPINEOL	-6.48147
			31244	4-Methoxybenzaldehyde	12.1121
			51283	DL-Alanine-15N	13.3479
			151907	4-Hydroxypipecolic acid	10.0444
			443158	(-)-Linalool	-5.48512
			521229	AC1LAVB6	-40.4713
			637566	GERANIOL	-24.0682
			1549107	(Z, Z)-farnesol	-34.9516
			5282108	ALPHA-IONONE	-7.21031
6	DNA gyrase subunit	Haemophilus influenzae (strain ATCC 51907 / DSM 11121 /	240	Benzaldehyde	14.4452
0	Divis gyrabe bubunt	KW20 / Rd)	289	Pyrocatechol	16.4871
		11120 / 11uj	51283	DL-Alanine-15N	14.8384
7	DNA topoisomerase 4 subunit	Haemophilus influenzae (strain ATCC 51907 / DSM 11121 /	240	Benzaldehyde	15.9759
1	DIA topoisomerase 4 subunit	KW20 / Rd)	240 289	Pyrocatechol	15.9759 17.9047
		NW20 / NU)	289 51283		
The design	· · · · · · · · · · · · · · · · · · ·		51283	DL-Alanine-15N	15.4779

The three topmost ranked molecules were chosen and visualized using Discovery Studio v20.1 software based on their binding energy and hydrogen interactions between the ligand and protein. To understand the interactions between the molecules, the 2-dimensional molecular interaction were plotted using the same software.

Table 5. The binding residues, -C-DOCKER energy between the amino acid and ligand molecule

S. No	Target Protein	Ligand Name	Binding Residues	-C-DCOKER energy
1	2WAF	Pyridoxal phosphate	ASN-A:334, ASN-A:659	25.9683
		DL-Arginine	ASN-A656, ASN-A:334, ASN-A:659, GLU-A:331	32.8322
		Decanal	ASN-A:659	22.5696
2	2ZC6	Pyridoxal phosphate	THR-560, ASN-562, TRP-411, TYR-409, ASN-430, LYS-373, SER-370, SER-428	41.4751
		Decanal	LYS-557, SER-370	31.9198
		Sulfoxide	ASN-430	22.3133
3	3VMA	Pyridoxal phosphate	LEU-A:201, THR-A:203, MET-A:204	
		Decanal	ASN-A:322, ILE-A:408	34.7661
		DL-Arginine	THR-A:203, ILE-A:408, VAI-A:407, SER-A:319, ASN-A:322, LEU-A:201, ILE-A:202	34.2382
4	6HZQ	Pyridoxal phosphate	VAI-A:344, TYR-A:419, GLY-A:306, SER-A:307, ASN-A:361, LYS-A:310, GLY-A;496, LYS-A:358	44.6154
		DL-Arginine	THR-A:497, TYR-A:419, LYS-A:310, PHE-A:417, SER-A:359, LYS-A:358	35.582

	Decanal	LYS-A:310, SER-A:307, PHE-A:417	34.5847
Peptidoglyca	n Pyridoxal phosphate	ASP-A:204, ARG-A:163, HIS-A:203, TYR-A:161, GLY-A:160, LYS-A:162, ALA-A:201	40.0006
DD-	Dl-Arginine	ASP-A:204, ALA-A:201, GLY-A:160, LYS-A:162, ARG-A:163	28.9364
transpeptidas	e Decanal	LYS-A:159	27.8622
DNA gyrase	Benzaldehyde	ARG-A:459, ARG-A:387	14.4452
subunit	Pyrocatechol	ARG-A: 459, ARG-A:387	16.4871
	DL-Alanine-15N	ALA-A: 386	14.8384
DNA	Pyrocatechol	GLY-A: 41	15.9759
topoisomeras	e Benzaldehyde	HIS-A: 46, SER-A:172	17.9047
4 subunit	DL-Alanine-15N	GLY-A: 171, ASN-A:170	15.4779

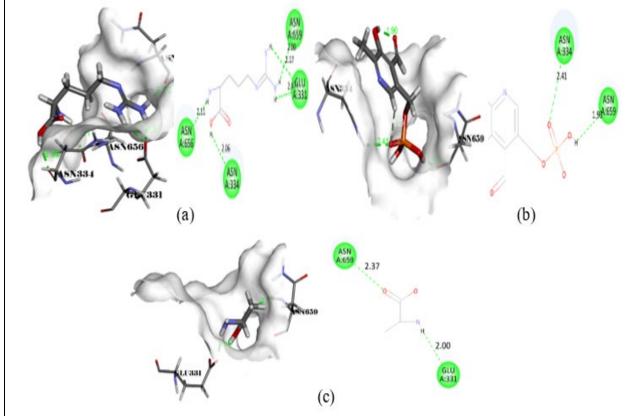


Figure 4: Graphical representation of bioavailability radar of all 18 phytocompounds of Acacia farnesiana.

OPEN ACCESS GOLD ACCESS GOI

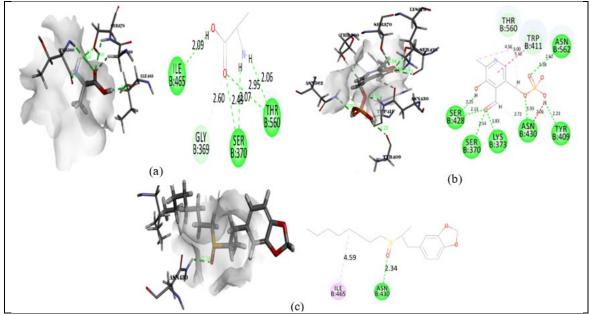


Figure 5: Intermolecular interaction of 2WAF with (a) pyridoxal phosphate, (b) DL-Arginine, (c) Decanal

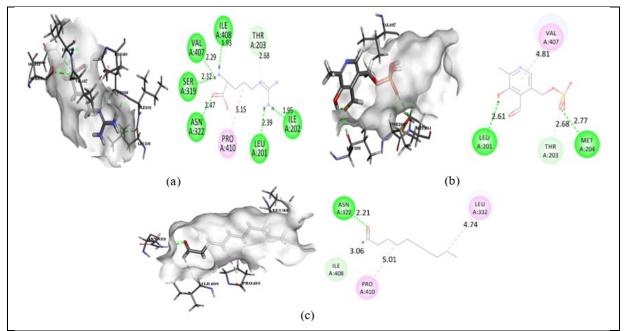


Figure 6: Intermolecular interaction of 2ZC6 with (a) Pyridoxal phosphate, (b) Decanal, (c) Sulfoxide.

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 17(5): 557-567 (2021)

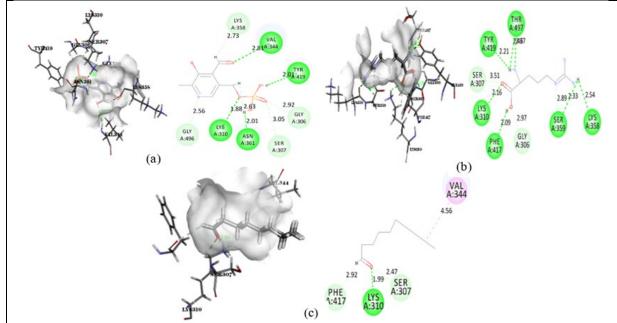


Figure 7: Intermolecular interaction of 3VMA with (a) Pyridoxal phosphate, (b) Decanal, (c) DL-Arginine.

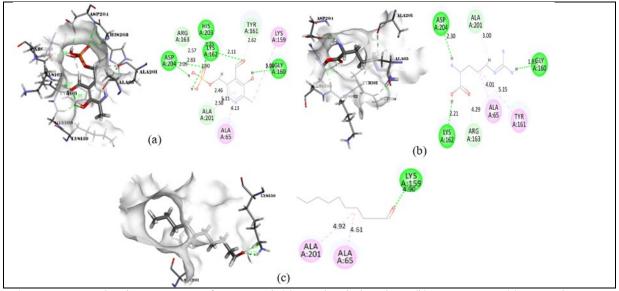


Figure 8: Intermolecular interaction of 6HZQ with (a) Pyridoxal phosphate, (b) DL-Arginine, (c) Decanal

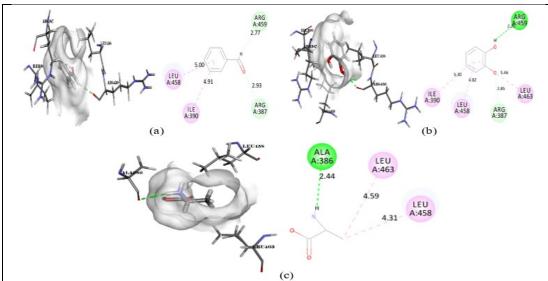


Figure 9: Intermolecular interaction of Peptidoglycan D D-transpeptidase with (a) Pyridoxal phosphate, (b) DL-Arginine, (c) Decanal

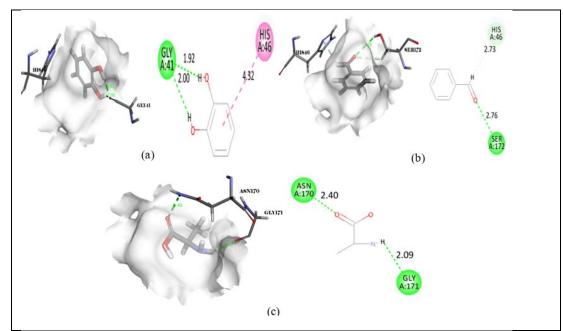


Figure 10: Intermolecular interaction of DNA Gyrase subunit with (a) Benzaldehyde, (b) Pyrocatechol, (c) Alanine-15N

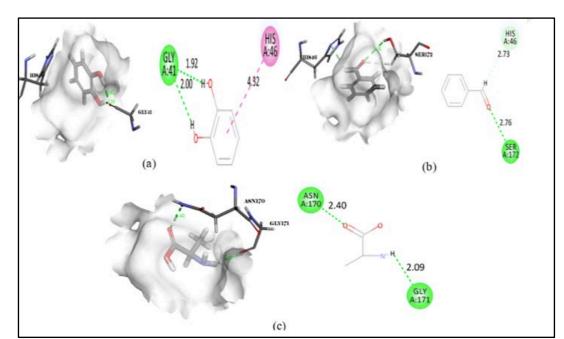


Figure 11: Intermolecular interaction of DNA topoisomerase 4 subunit with (a) Pyrocatechol, (b) Benzaldehyde, (c) DL-Alanine-15N

Conclusion:

We document the molecular docking analysis of four phytocompounds (Pyridoxal phosphate, DL-Arginine, Decanal, and Sulfoxide) from *Acacia farnesiana* having optimal binding features with targets linked to bronchitis for further consideration.

Acknowledgment:

ASJ, MSB, and CS acknowledge the support provided by the JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India. KSP thanks the Director, Amrita Vishwa Vidyapeetham, Mysuru campus for the infrastructure support.

Conflicts of Interest: There is no conflict of interest to declare.

References:

- [1] Macfarlane J et al. Thorax 2001 56:109 [PMID: 11209098]
- [2] https://www.drugbank.ca/
- [3] Prasad SK et al. Front Chem 2021 8:624716 [PMID: 33732682]
- [4] Jain AS et al. Saudi J Biol Sci 2021 28:1040 [PMID: 33424398]
- [5] https://bio.libretexts.org/@go/page/5200
- [6] Macheboeuf P *et al. FEMS Microbiol Rev* 2006 **30**:673 [PMID: 16911039]

- [7] https://www.drugbank.ca/bio_entities/BE0000576
- [8] https://www.drugbank.ca/drugs/DB01150
- [9] Lee M *et al.* J Am Chem Soc 2003 **125**:16322 [PMID: 14692773]
- [10] https://www.drugbank.ca/drugs/DB01416
- [11] Hiasa H. Methods Mol Biol 2018 1703:47 [PMID: 29177732]
- [12] https://www.uniprot.org/uniprot/P43702
- [13] https://www.drugbank.ca/drugs/DB01155
- [14] https://www.drugbank.ca/drugs/DB00978
- [15] Collin F et al. Appl Microbiol Biotechnol 2011 92:479.
- [16] http://www.cryst.bbk.ac.uk/PPS95/course/3_geometry/ rama.html
- [17] https://go.drugbank.com/drugs/DB00125
- [18] Sepahi M et al. Iran J Microbiol 2017 9:103. [PMID: 29214002]
- [19] Matasyoh JC et al. Food Chem 2009 113:526.
- [20] Mahboubi M & Feizabadi M. J ESSENT OIL BEAR PL 2009 12: 574.
- [21] Bendiabdellah A et al. J Chem 2013 2013:7.
- [22] Lawrence R *et al. Braz J Microbiol* 2009 40:906 [PMID: 24031440]
- [23] Hassan AS. J Nat Sci Res 2014 4(19). Page number

[24] Ullah I *et al. J Microbiol* 2015 53:127. [PMID: 25626368]
[25] Rampogu S *et al. Oxid Med Cell Longev* 2019 2019:5189490. [PMID: 31089409] [26] Moody L *et al. J Behav Med.* 1990 13:297. [PMID: 2213871][27] Rampogu S *et al. POxid Med Cell Longev.* 2019

Edited by P Kangueane

Citation: Beelagi *et al.* Bioinformation 17(5): 557-567 (2021) License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

