
Article
Metatranscriptomics to ch
aracterize respiratory
virome,microbiome, and host response directly from
clinical samples
Graphical abstract
Highlights
d Develop metatranscriptomics to characterize virome,

microbiome, and host response

d High prevalence of RSV and coronavirus is observed in

healthy children

d RSV-A and RSV-B are co-detected in 56% of children with

symptomatic RSV

d H. influenzae is highly active in children with symptomatic

RSV
Rajagopala et al., 2021, Cell Reports Methods 1, 100091
October 25, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.crmeth.2021.100091
Authors

Seesandra V. Rajagopala,

Nicole G. Bakhoum, Suman B. Pakala, ...,

Shibu Yooseph, Natasha Halasa,

Suman R. Das

Correspondence
s.v.rajagopala@vumc.org (S.V.R.),
suman.r.das@vumc.org (S.R.D.)

In brief

Rajagopala et al. develop a

metatranscriptomic approach for

simultaneously and directly

characterizing the respiratory virome,

microbiome, and host response from low

biomass clinical samples such as nasal

swabs.
ll

mailto:s.v.rajagopala@vumc.org
mailto:suman.r.das@vumc.org
https://doi.org/10.1016/j.crmeth.2021.100091
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2021.100091&domain=pdf


OPEN ACCESS

ll
Article

Metatranscriptomics to characterize respiratory
virome, microbiome, and host response
directly from clinical samples
Seesandra V. Rajagopala,1,* Nicole G. Bakhoum,2 Suman B. Pakala,1 Meghan H. Shilts,1 Christian Rosas-Salazar,2

Annie Mai,1 Helen H. Boone,1 Rendie McHenry,2 Shibu Yooseph,3 Natasha Halasa,2,6 and Suman R. Das1,4,5,6,7,*
1Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
2Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
3Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
4Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
5Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
6Senior author
7Lead contact
*Correspondence: s.v.rajagopala@vumc.org (S.V.R.), suman.r.das@vumc.org (S.R.D.)

https://doi.org/10.1016/j.crmeth.2021.100091
MOTIVATION Metatranscriptomics is a powerful method to study the entire transcriptome landscape;
however, the feasibility of using this approach to describe the entire respiratory RNA virome, microbiome,
and host response from lowbiomass clinical samples remains elusive. Here, we present an optimizedmeta-
transcriptomics method and an accompanying computational workflow to simultaneously characterize the
respiratory virome, microbiome, and host response directly from nasal samples. Although this method is
optimized for nasal swab samples, further optimization of sample preservation and RNA extraction might
be needed to obtain high-quality RNA for other clinical samples.
SUMMARY
Wedeveloped ametatranscriptomicsmethod that can simultaneously capture the respiratory virome,micro-
biome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA
viromewith sufficient sequencing depth required to assemble complete genomes.We find a surprisingly high
frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency
of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified
commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that
H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregu-
lation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of
fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly
applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to
sequence RNA viruses directly from clinical samples.
INTRODUCTION

Respiratory RNA viruses (e.g., human rhinovirus [HRV], respira-

tory syncytial virus [RSV], influenza A virus [IAV], and coronavi-

ruses [CoVs]) are a leading cause of morbidity, mortality, school

and work absenteeism, and increased health care expenses

worldwide (Iwane et al., 2004; Madhi and Klugman, 2006; Nich-

ols et al., 2008; Tang et al., 2017). Both HRV and RSV infect

�100% of children by the age of 3 years and are the most com-

mon etiologies of upper and lower acute respiratory infections

(ARIs) in the pediatric population, respectively (Rossi and Colin,
Cell Repo
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2015). In addition to causing seasonal epidemics or localized

outbreaks that affect both children and adults, IAV and CoVs

can lead to pandemics with tremendous health, social, political,

and economic consequences, such as the ongoing SARS-CoV-2

pandemic (Petersen et al., 2020).

Improving our knowledge of how respiratory RNA viruses

interact with each other, with other upper airway microbes

(such as bacteria or fungi), and with the host’s immune response

is important as these interactions are likely to impact the onset,

severity, and progression of their diseases and can shed light on

new therapeutic approaches (Chiu andMiller, 2019; Pallen, 2014;
rts Methods 1, 100091, October 25, 2021 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Demographic and clinical characteristics of participants

Healthy

controls

(N = 22)

Acute respiratory infection

(N = 43)

RSV-mild

(N = 17)

RSV-severe

(N = 26)

Demographics

Age (months)a 11.7 (4.6–21.2) 8.8 (2.2–13) 6.6 (2.75–16.4)

Genderb

Male 14 (64) 10 (59) 16 (62)

Female 8 (36) 7 (41) 10 (38)

Ethnicityb

Caucasian 6 (27) 11 (65) 21 (81)

African American 14 (64) 6 (35) 3 (11)

Other 2 (9) 2 (8)

Clinical symptoms

Length of

hospitalization

(days)a

N/A 0 (0–1) 4 (3–5.7)

N/A, not applicable.
aMedian (interquartile range).
bNumber (percentage).
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Rascovan et al., 2016; Rosas-Salazar et al., 2016a, 2016b; Shilts

et al., 2020). To date, our understanding of these interactions has

been limited, at least in part, due to a lack of methods that can

accurately, comprehensively, and simultaneously characterize

the whole respiratory virome, as well as the microbial and host’s

gene expression patterns, directly from clinical samples. Recent

next-generation sequencing (NGS)-based methods allow for un-

biased detection of multiple pathogens, including novel patho-

gens, and can also separately characterize the whole micro-

biome (i.e., the viral, bacterial, and fungal communities), as

well as microbial and the host’s gene expression patterns

(Chiu and Miller, 2019; Chu et al., 2016, 2020; Mariani et al.,

2017; Pallen, 2014; Rascovan et al., 2016; Shifman et al.,

2019). However, these current NGS-based methods involve in-

dependent sample preparation, sequencing, and analytical ap-

proaches, which is labor intensive, can be cost prohibitive, and

requires the availability of large sample volumes (Chiu andMiller,

2019). Furthermore, most of these NGS-based methods use tar-

geted multiplexed amplicon sequencing of conserved regions of

respiratory viral pathogens or metagenomic sequencing of DNA,

which do not capture RNA viruses (Rascovan et al., 2016).

Metatranscriptomics is a powerful method that is commonly

used to study the composition and functions of the microbiome

(Abu-Ali et al., 2018), identify parasites in low-intensity infections

(Galen et al., 2020), and characterize active antibiotic resistance

genes and host-microbiome interactions (Zhang et al., 2020).

However, the feasibility of implementing metatranscriptomics

to describe the entire respiratory RNA virome, microbiome,

and host response from low biomass samples remains elusive.

In this study, we optimized the metatranscriptomics method

and computational workflow to simultaneously characterize the

respiratory virome, microbiome, and host response directly

from low biomass clinical samples. By implementing this method

on nasal swab clinical samples collected from young children,
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we were able to characterize the respiratory viruses’ genomes,

virus and bacterial co-infections, as well as bacterial and fungal

communities present in healthy and RSV-ARI samples. Further-

more, our methodwas able to concurrently assessmicrobial and

nasal mucosal host gene expression patterns, which revealed

upregulation of the host innate immune system, interferon

signaling, and anti-viral response during RSV-ARI.

RESULTS

Pediatric cohort, workflow, and protocol optimization
We processed the nasal swab samples collected from healthy

controls (HC) (n = 22), and RSV-positive children (RSV-ARI) (n =

43), based on clinical diagnosis, collected between November

2018 and February 2019 from children aged <3 years (see Table 1

and online methods for demography and clinical metadata). A

total of 19 (86%) HC and 39 (90%) RSV-ARI samples passed

sequencing library quality control. A schematic of the method is

graphically represented in Figure 1A, and also detailed in the

STAR Methods. There was an average of 46.7 million paired-end

reads and 1.3 million single-end reads per sample after quality

trimming. After removal of human rRNA, mitochondrial RNA, and

bacterial rRNA, readswerepartitioned into twobins: a human tran-

script bin with an average of 36.9 million reads and amicrobial bin

with an average of 3.8 million reads, which contained viral, bacte-

rial, and fungal, aswell as unclassified reads (see STARMethods).

Rarefaction analysis performedonfive samples byusingmicrobial

reads showed that the number of unique bacterial species identi-

fied plateaus at around 4.5 million reads (Figure S1B).

Metatranscriptome captured complete genomes of
respiratory RNA viruses
The depth of sequence coverage obtained from this method was

sufficient for assembling complete genomes of the dominant

and co-detecting RNA viruses. We assembled a total of 60

RSV genomes that were either complete or partial (minimum

90% of genome). These include 22 complete and 15 partial

RSV-A genomes, and 12 complete and 2 partial RSV-B genomes

from RSV-ARI samples; 4 complete and 4 partial RSV-A ge-

nomes, and one partial RSV-B genome from HC samples. In

addition to complete coding regions, annotation of all the full-

length RSV genomes we recovered 50 and 30 UTRs of the viruses

(Table S1). Overall genome coverage depth for RSV-ARI sam-

ples were generally >1,0003, which is usually sufficient to cap-

ture the intra-host variability profile of the virus. We were also

able to assemble coding complete genomes of several other

RNA viruses, i.e., 4 CoVs, 1 influenza H3N2 virus, 11 HRVs

(including HRV C and A), 1 EV, 1 ssDNA virus, and 1 BV (Table 2).

The respiratory virome of healthy children is comprised
of a high frequency of RSV and CoV
Using a cutoff of >40%genomecoverage,we identified 10 unique

RNA viruses, and 3 unique bacteriophages/prophages that

constituted the virome community of HC cohort (Figure 1B; Table

S1). All samples had at least one virus, and a maximum of three

human RNA viruses were identified (average two viruses/sample),

which included, for example, RSV, CoV, HRV, enteroviruses

(EVs), and influenza. Interestingly, plant viruses were also
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Figure 1. Metatranscriptomics workflow and respiratory virome profile

(A) Schematic overview of metatranscriptomics sample preparation and data analysis. Total RNA was extracted from nasal samples, and human rRNA was

depleted before library preparation and sequencing. The sequencing reads were used to profile virome, bacteriome, and host transcriptional response.

(legend continued on next page)
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Table 2. Complete genomes of RSV and other respiratory viruses

assembled and submitted to GenBank

Virus

Genomes

from ARI

samples

Genomes from

healthy control

samples Total

RSV-A 22 4 26

RSV-B 12 12

Coronavirus 4 4

Rhinovirus 9 2 11

Influenza 1 1

Bocavirus 1 1

Rehmannia mosaic virus 1 1

Tobacco mosaic virus 1 1

Tomato mosaic virus 1 1

Parechovirus 1 1

Tomato brown rugose fruit virus 1 1
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identified in almost all samples, which has been reported before in

human and mice lungs (Balique et al., 2013; Nakamura et al.,

2009). With a stringent cutoff of >90% genome coverage, and

minimum 53 coverage, we identified two plant viruses, rehman-

nia mosaic virus NcaS (ReMV-NcaS) and tobacco mosaic virus

(Figure 1B; Table S2). In addition, bacteriophage/prophage RNA

transcripts were also recovered frommany of the samples, albeit

with lower genome coverage.

Surprisingly, 79% (15 of 19 samples) of the HC samples had

either RSV-A or RSV-B genomes, and 31% of the HC samples

had both RSV-A and RSV-B genomes (Figure 1B). We assem-

bled four coding complete and eight partial RSV-A genomes,

and one partial RSV-B genome from HC samples (Table S1).

To exclude the possibility of internal cross-contamination, we

performed pairwise distancing and phylogenetic analyses of

the assembled RSV genomes, and also compared the virome

profiles between these samples, which strongly suggest the

samples were not cross-contaminated (Figure S2).

Three different strains of CoVs (229E, OC43, and NL63) were

identified in HC samples (Figure 2A). Of note, 68% (13 out of 19)

of the HC samples had CoVs with a >25%genome coverage cut-

off. CoV-NL63 was found in 11 samples, whereas CoV-229E and

CoV-OC43 were found in one sample each. Complete coding se-

quences were assembled for two of the CoV-NL63 genomes, and

both the CoV-229E and CoV-OC43 genomes (Figure 2A). Unlike

RSV, multiple CoV types were not identified in any sample. Along

with RSV, almost every sample had other known pathogenic vi-

ruses co-detected. HRVs were found in 36% (7 out of 19) of sam-

ples,EV-D68 readswere found in26%(5outof19) of samples,and

influenza readswere found in 5% (1 out of 19) of samples.We also

found a significant amount of rotavirus reads, covering 80% (with

an average read depth of 653) of the rotavirus genome, in the res-

piratory sample from a 7-month-old infant; sequence analysis

showed 100% similarity with the RotaTeq vaccine strain.
(B) Heatmap showing the virome profile. Each row represents a sample and

samples are grouped into healthy and RSV-ARI-positive samples; RSV sample

hospitalization. Complete genomes of common RNA respiratory viruses, such a

DNA virus, Bocavirus, was recovered in one sample. Plant viruses and phages
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The respiratory virome during RSV-ARI shows a high
frequency of RSV-A and B co-detections
Using a very stringent threshold for virus identification (>90%

genome coverage and an average read depth of 53), we found

RSV (either A or B subtype) in 38 out of 39 RSV-positive samples

sequenced. Twenty-four samples had only RSV-A, 1 sample

had only RSV-B, and 13 samples had co-infection of RSV-A and

RSV-B (Figure 1B; Table S2). In the one remaining RSV-positive

sample, 86% of the RSV-A genome was recovered. We co-de-

tected RSV-A and RSV-B in 22 (56%) RSV-ARI samples by using

a cutoff of >40%genomecoverage (Figure 2B); in all cases, one of

the RSV subtypeswas found to be dominant (Figure 2C).Mapping

the sequencing reads to reference genomes revealed four

different patterns: samples positive for RSV-A (example 1); posi-

tive for RSV-B (example 2); positive for both RSV-A and RSV-B

where RSV-A is dominant (example 3); and positive for both

RSV-A and RSV-B where RSV-B is dominant (example 4).

RSV-B was dominant in 12 subjects and RSV-A was dominant

in 10 subjects. Strikingly, the read coverage depth of the dominant

subtype was exponentially higher in RSV-A and RSV-B co-de-

tected samples. For example, the RSV-B dominant co-detected

samples show an average read coverage depth of 1,7733 for

RSV-B and 273 for RSV-A. The RSV-ARI samples were portioned

into RSV-mild (outpatient/emergency department or under obser-

vation) andRSV-severe (hospitalizedmore than 1 day) groups.We

observed a higher frequency of RSV-A and RSV-B co-detection in

the RSV-severe group (69.6%) compared with the RSV-mild

group (37.5%, p = 0.058, Fisher’s exact test) (Figure 2B). In addi-

tion, as in the HC samples, several commensal or co-infecting vi-

ruses were identified in RSV-ARI samples: HRV was identified in

nine samples and Bocavirus (BV) was identified in one RSV-ARI

sample. Similar to HC samples, we also found plant viruses and

bacteriophages/prophage transcripts with very low genome

coverage (Figure 1B).

Comparison of the virome between healthy and RSV-
infected children
We observed no difference in overall composition of the virome

(number and types of viruses identified) between HC and RSV-

ARI samples (Figure 1B). However, none of the RSV-ARI samples

hadCoVs, whichwas in sharp contrast to theHC samples, where

CoVs (with >40% genome coverage) were identified in 47% of

the samples (p = 1.7883 10�5, chi-square test) (Figure 1B; Table

S1). Another key difference between RSV-ARI and HC was that

the sequencing read depth for RSV in HC samples was very

shallow, with an average depth of 173 for RSV-A and 3.43 for

RSV-B, compared with an average read depth of 1,5253 for

RSV-A and 1,0543 for RSV-B in RSV-ARI samples.

Metatranscriptome is superior for RNA virus detection
compared with multiplex panels
To evaluate our metatranscriptomics method, we compared the

respiratory pathogens identified by metatranscriptomics with
each column represents the percentage of a virus genome recovered. The

s are further split into RSV-severe and RSV-mild groups based on days of

s RSV, coronavirus, rhinovirus, and influenza were recovered. In addition, a

were also recovered in both the HC and RSV samples.



Figure 2. Respiratory virome in healthy and children with RSV-ARI

(A) Read coverage maps showing three different coronavirus strains (NL63, OC43, and 229E) identified. The reference genomes were used to map the sequence

reads to show that the complete genome sequences were recovered from the metatranscriptome approach.

(B) Bar plots showing number of samples with RSV-A, RSV-B, or co-detected by the metatranscriptomics method, in RSV-ARI samples. RSV-ARI samples were

sub-grouped into RSV-severe and RSV-mild based on clinical presentations.

(C) Read coverage map showing four conditions of RSV presence. RSV-A (reference genome JX627336) and RSV-B (reference genome KM517573) genome

sequences were concatenated and used as the reference.Mapping reads to this reference shows the presence of RSV-A in example 1, RSV-B in example 2, both

in example 3 with RSV-A being dominant, and both in example 4 with RSV-B being dominant.

(D) Each row represents a sample and the columns represent results for each virus from the RPP (pink) followed by the metatranscriptomics method (purple). RPP

results show the presence or absence of a virus, whereasmetatranscriptomics results show the percentage of genome recovered for each virus. All viruses detected

by RPP in at least one sample are shown here. The samples are grouped into healthy and RSV-ARI. The RSV-ARI samples are grouped into mild and severe.
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results from a clinical diagnostics panel, the NxTAG Respiratory

PathogenPanel (RPP) (Luminex) (Jassal et al., 2020). The compar-

ison between these twomethods is shown in Figure 2D and Table

S3. In summary, for RNA viruses, wewere able tomatch: all of the

22 RSV-A and 13 RSV-B; 3 out of 4 CoVs; 14 out of 15 HRV/EV; 1

out of 1 influenza; 1 out of 1 HMPV; and 0 out of 1 PIV4 identifica-

tions by RPP. However, in one instance where the panel identified

CoV OC43 as the strain type, our method identifies it as the NL63

type with medium confidence (>50% genome recovered with

average read depth >33). In addition, we were able to identify

OC43 in a sample and recover 100% of the genome with over

233 average read coverage, which the panel did not detect.

We note that the 35RSV identifications byRPP originated from

34 samples, as it detected both RSV types in only 1 sample. This

is in sharp contrast with our approach where we were able to co-

detect in 13 out of the same 34 samples with high confidence

(>95%of genome of each subtype recovered). In the one sample

where RPP detected both RSV subtypes, we recovered 98% of

the RSV-A genome and 63% of the RSV-B genome. The RPP

was not capable of distinguishing between HRV and EV types

(14 instances), whereas our sequencing approach was able to

identify the strains of the 13 instances of HRV and 1 EV. These

results suggest that our approach is more sensitive than RPP.
However, a future independent study is required to validate

the superiority of our method. In addition, we note that it has lim-

itations in detecting DNA viruses, as our method was able to

identify only 1 (out of 9) BV identified by RPP and it did not detect

adenoviruses that were identified by the RPP. Furthermore, we

were able to match the identification of one instance of the bac-

terial pathogen, Mycoplasma pneumoniae (Figure 2D).

Species-level respiratory microbiome profiling from
transcripts
To profile the active respiratory bacteria and fungi with high con-

fidence,we implemented a customapproach that includes k-mer-

based taxonomic classification as the first step. Species-level

identification was achieved by using a combination of metatran-

scriptomics assemblies, sequence homology searches, and strin-

gent filtering of putative species, as described in STAR Methods.

The high-confidence profiling resulted in a total of 88 bacterial

species and 3 fungal species (Figure 3; Table S4) identified across

all the samples. The top 5 most abundant bacterial species,

Moraxella catarrhalis, Streptococcus pneumoniae, Streptococcus

mitis, Haemophilus influenzae, and Cutibacterium acnes were

identified in 60%of the samples. Of the three fungal species iden-

tified, Malassezia restricta was detected in 41% of samples, and
Cell Reports Methods 1, 100091, October 25, 2021 5
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Figure 3. High-confidence nasal microbiome

Heatmap showing percentage of transcriptome recovered for each bacterial and fungal species identified. The columns represent each sample, which have been

color coded to identify healthy controls (green), and RSV-mild (blue) and RSV-severe (pink) groups.
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Candida dubliniensis and Saccharomyces cerevisiae were de-

tected in two (3.4%) samples each. Our high-confidence profiling

approach detected an average of 9 (1minimum and 28maximum)

bacterial species per sample, with up to 90%of the transcriptome

recovered for highly abundant bacterial species (Figure 3).

In the one instance where RPP identified a Mycoplasma

pneumoniae co-infection, we were able to detect it with high con-

fidence and also captured the entire coding complement of the

M. pneumoniae genome (Figure 4A). Similarly, several pathogenic

bacteria were identified in both RSV-ARI and HC samples with

high confidence. For example, H. influenzae was identified in 27
6 Cell Reports Methods 1, 100091, October 25, 2021
(69%) RSV-ARI samples and 9 (47%) HCs; Streptococcus pneu-

moniaewas identified in 26 (67%) RSV-ARI samples and 11 (58%)

HCs; and Staphylococcus aureus was identified in 6 (15%) RSV-

ARI samples and 2 (10%) HCs (Figure 3).

Respiratorymicrobiome abundance and diversity profile
shows increased abundance and gene expression of
H. influenzae during RSV-ARI
The respiratory microbiome of both HC and RSV-ARI groups

were dominated by members of theMoraxella sp. (Moraxella ca-

tarrhalis, M. lincolnii, and M. nonliquefaciens), Corynebacterium
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Figure 4. Nasal microbiome abundance and diversity

(A) Read coverage along the full genome of Mycoplasma pneumoniae (reference genome: NC000912), which was recovered in a sample co-infected with RSV.

(B) Nasal microbiome relative abundance in HC and children with RSV-ARI. A color-coded bar plot shows the relative abundance of the nasal microbiome at the

species level. The samples are portioned into HC andRSV-ARI groups. The RSV-ARI sampleswere portioned into RSV-mild andRSV-severe groups. Only the top

20 most abundant species are shown here.

(C) Differentially abundant nasal species in children with RSV-ARI and HC groups. All displayed values were calculated within the DESeq2 package, where we

compared species abundance. On the x axis is displayed the q value for the tested species; only significant species with q < 0.05 are shown. On the y axis is

displayed the log2 fold abundance change for that species. Error bars show the standard error of the log2 fold change. Log2 fold changes >0 indicate that a

species was more abundant in RSV-ARI children compared with HC.

(D) Similar to (C), the nasal microbiome of children with severe RSV-severe was compared with the RSV-mild group. Log2 fold changes >0 indicate that a species

was more abundant in RSV-severe children compared with the RSV-mild group. Malassezia globosa was less abundant and Staphylococcus aureus was more

abundant in the RSV-severe group compared with RSV-mild group.

(E) Richness and alpha diversity of the nasal microbiome. Alpha diversity (measured by Shannon index) and richness (measured by S.chao1) are compared

between the HC, RSV-severe, and RSV-mild groups. The richness was highest in the RSV-mild group compared with the HC and RSV-severe groups. The

differences were significant between the RSV-mild and RSV-severe groups and the RSV-mild and HC groups. Differences in alpha diversity between the groups

were not significant.
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sp. (Corynebacterium propinquum, Corynebacterium pseudo-

diphtheriticum, and Corynebacterium sp.), and Dolosigranulum

pigrum, with these species having mean abundances of

40.8%, 22.4%, and 10.8%, respectively, in the HC group, and

23%, 21.2%, and 3.4%, respectively, in the RSV-ARI group (Fig-

ure 4B). Although the HC and RSV-ARI groups shared many low

abundant taxa in common, differences were observed between

the groups in bacterial Haemophilus sp. and Delftia sp. and a

fungi Malassezia sp. (Figure 4B). The members of Haemophilus
sp. (H. influenzae/aegyptius) and Delftia sp. were more highly

abundant in the RSV-ARI group, with mean abundances of

21.4% (p = 0.056, Kruskal-Wallis) and 3.5% (p = 2.644 3

10�5), respectively, compared with the HC group, with mean

abundances of 10.8% and 0.5%, respectively. The Malassezia

sp. were more highly abundant in HC groups, with a mean abun-

dance of 5.6% (p = 0.12) comparedwith the RSV-ARI group, with

a mean abundance of 1.2%. Strikingly, the mean abundance of

Haemophilus sp. was higher in the RSV-severe group with
Cell Reports Methods 1, 100091, October 25, 2021 7
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26.7% compared with RSV-mild group with 13.7% (p = 0.76).

Themean abundance ofMalassezia sp. was lower in the RSV-se-

vere group 0.034% (p < 0.001) compared with the RSV-mild

group 2.9% (Figure 4B). These results did not change after

removing seven RSV-ARI subjects who had taken antibiotics

<1 month before sample collection. (Figure S3). To compare

the bacterial signatures identified by the metatranscriptomics

method, we profiled microbial communities by using 16S rRNA

marker gene sequencing. Interestingly, the nasal bacteria and

their abundance profiled by 16S and metatranscriptomics were

highly comparable (Figure S4).

We further investigated whether specific taxa were differen-

tially abundant using the DESeq2 package (Love et al., 2014).

A comparison between the HC and RSV-ARI groups revealed

that RSV-ARI children had a significantly higher relative abun-

dance of H. influenzae (log2 fold change = 4.5, q = 0.01), Delftia

sp. (log2 fold change = 3.41, q = 0.0029), and Cutibacterium

acnes (log2 fold change = 2.5, q = 0.01) (Figure 4C). A compari-

son between the RSV-severe and RSV-mild groups showed a

significantly higher relative abundance of Staphylococcus

aureus (log2 fold change = 25.7, q = 3.56E-10) and a significantly

lower abundance of Malassezia globosa (log2 fold change =

�25.6, q = 3.56E-10) in the RSV-severe group (Figure 4D).

Further analysis of bacterial species contributions to metabolic

pathways showed 13 pathways that were significantly different

(q < 0.05) between the HC and RSV-ARI groups (Table S5).

Among these pathways, H. influenzae and Delftia sp. were major

contributing species linked with the functional attributes (Fig-

ure S5), which further confirms their increased activity in RSV-

ARI samples.

The mOTUs counts at the species level were used to compute

the alpha diversity of the microbial communities by using the

Shannon and Chao1 indices. The alpha diversity calculations

(mean Shannon index) showed no significant difference between

the HC, RSV-mild, and RSV-severe groups. The richness calcu-

lations (mean Chao1 index) reveal the microbiota alpha diversity

of the RSV-mild group to be higher than that of the HC and RSV-

severe groups, with this difference being statistically significant

(p value for RSV-mild versus HC, 0.0115; p value for RSV-severe

versus RSV-mild, 0.027, Wilcoxon rank-sum test). There was

no significant difference between the HC versus RSV-severe

groups (Figure 4E).

Comparison of nasal mucosal cells transcriptome
between HC and RSV-ARI
Sequence reads that mapped to human transcripts were used to

analyze host response to RSV-ARI. After estimating the library

size by using the median ratio method, the samples with a low

number of human transcripts (n = 13) and an ARI sample nega-

tive for RSV were removed from the analysis. RSV-ARI (n = 32)

and HC (n = 12) samples were used for gene expression analy-

sisby using DESeq2 (Love et al., 2014), which revealed that

2,878 genes were upregulated and 1,746 genes were downregu-

lated in RSV-ARI subjects (Figure 5A; Table S6). Most of the

overexpressed genes are involved in immune response during

RSV infection, specifically interferon response genes, IFIT1,

IFIT2, IFIT3, IFI6, and anti-viral genes, such as IFITM3 (Zani

and Yount, 2018), IFITM1 (Smith et al., 2019), andMX1 (Villenave
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et al., 2015), as well as chemokines CCL4, CCL8, and CXCL10

(Steinbusch et al., 2019). We also identified ACOD1 as being

significantly upregulated in RSV-ARI samples. The long non-

coding RNA of ACOD1 is known to promote viral replication by

modulating cellular metabolism (Wang et al., 2017). To confirm

the significance and robustness of the observed differences in

gene expression between RSV-ARI and HC, we performed

pathway enrichment analysis (Kuleshov et al., 2016), which iden-

tified up- and downregulation of 69 and 2 human Reactome

pathways, respectively (Jassal et al., 2020) (with an adjusted

p < 0.05) (Table S7). The majority of upregulated pathways be-

longed to anti-viral response; e.g., interferon signaling, inter-

leukin signaling, chemokine signaling, inflammasome pathway,

and Toll-like receptor (TLR) signaling (Figure 5B). For example,

we found 57% (39 out of 68) and 34% (31 out of 92) of the genes

were significantly upregulated from interferon alpha/beta and

MYD88 signaling, respectively, in RSV-ARI samples (Figure S6).

Similarly, 9 out of 17 genes from the inflammasome pathway

were found to be upregulated; NLRP3, the key driver of inflam-

masome activity (Yang et al., 2019), was significantly higher in

RSV-ARI samples than HC (Figures 5B and 5C). Fatty acid syn-

thesis and phase 1 functionalization of compounds were the two

pathways enriched in the downregulated genes (Figure 5B). We

identified 9 out of 15 genes from the fatty acid pathway were

down modulated compared with HC (Figure 5D). Many of these

enriched pathways have been found to be modulated upon RSV

infection in human and animal models, including in cotton rat

lung tissue (Dapat and Oshitani, 2016; Rajagopala et al., 2018).

DISCUSSION

A comprehensive understanding of viral ARIs, including the

virome, microbiome (bacterial and fungal), and the host

response, is essential to understand virus-host and virus-mi-

crobiome interactions and to model viral diseases. To date,

there have been only a few studies focused on characterizing

the entire human respiratory virome during health and/or dis-

ease (Abbas et al., 2019; Langelier et al., 2018; Li et al., 2019;

Mitchell et al., 2016; Noell and Kolls, 2019; Wylie, 2017). This

is mostly due to the inherent extensive sequence diversity of vi-

rus genetic material (for example, it is challenging to simulta-

neously sequence both DNA and RNA viruses) and lack of

methods to capture complete genomes of RNA viruses directly

from clinical samples. Although RNA viruses are a major threat

to human health, there have been limited studies to charac-

terize the entire RNA virome because of the higher cost and

time associated with preserving, enriching, and sequencing

RNA viruses from low biomass clinical samples. Current high-

throughput genome sequencing methods for RNA viruses

include cDNA synthesis followed by amplicon sequencing (Dji-

keng and Spiro, 2009; Geoghegan et al., 2015; Houldcroft et al.,

2017; Ladner et al., 2014; Nelson et al., 2016; Tan et al., 2016).

However, these methods suffer from limitations inherent to

PCR amplification, such as polymerase errors, jackpot effects,

uneven sequence coverage (or lack of coverage in specific re-

gions of the genome), and they require an independent

sequencing approach for each pathogen (Bustin and Nolan,

2004; Gu et al., 2019). In this study we have demonstrated



Figure 5. Host transcriptional response

(A) Volcano plot showing differentially expressed host genes between RSV-ARI and HC children. We use a threshold of log2 fold change >1 and adjusted p < 0.05

to call the genes that are up- or downregulated. The genes that satisfy the threshold are shown in red dots. Non-significant genes are shown in gray dots. The

genes that pass the adjusted p value threshold but not log2 fold change are shown in blue dots. The genes that pass the log2 fold change threshold but not

adjusted p value are shown in green dots.

(B) Enriched Reactome human pathways from the differential gene expression analysis. Upregulated pathways are shown in red and downregulated pathways

are shown in blue. On the y axis is displayed the pathway name and number of genes in the pathway. On the x axis is displayed the percentage of genes up-

regulated in that pathway; only a subset of significant pathway enrichment with q < 0.05 are shown.

(C) Plot showing the Reactome (Jassal et al., 2020) inflammasome pathway (R-HSA-622312) genes that are significantly upregulated in the RSV-ARI group

compared with the HC group. On the x axis is displayed the q value for the upregulated genes with q < 0.05. On the y axis is displayed the log2 fold change for

those genes. The size of the dots represents base mean, which is the mean of normalized counts of all samples.

(D) Similar to (C), a plot showing the Reactome fatty acid synthesis pathway (R-HSA-211935) genes that are significantly downregulated in the RSV-ARI group

compared with the HC group.
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that the metatranscriptomics method is suitable for complete

genome sequencing of the dominant and co-infecting RNA vi-

ruses with sufficient depth. This approach also captures the

majority of both the 30 and 50 UTRs that are usually not captured

by an amplicon-based sequencing approach. These regions

are known to be important for viral replication and immune

modulation (Dreher, 1999; Guo et al., 2001). Comparing the re-

sults of our metatranscriptomics method with RPP demon-

strates that our approach captures the respiratory RNA viruses,

at a strain-level resolution, with high sensitivity and is agnostic

to the pathogen of interest (Figure 2D). It was surprising that

RSV was not detected by the NxTAG in HC, especially for the

samples in which we recovered RSV complete genomes with

>203 average coverage (Table S2). This suggests a limited

sensitivity of detection for the current diagnostic method. By

using our stringent approach, we could not only identify the vi-

ruses at the strain level, but at the genotype level, and could

potentially assess intra-host variability of viruses with confi-

dence, especially in samples that have >1,0003 genome

coverage. Although this method is clearly sensitive compared

with existing panels in detecting RNA viruses, we note that it

has limitations regarding detection of DNA viruses. However,
in the one instance where we were able to detect BV, 97% of

its genome sequence was assembled, suggesting that our

method can detect active DNA viruses (Figure 1B).

We show that the respiratory RNA virome of children during

health constitutes a wide array of human RNA viruses. Interest-

ingly, although the presence of RSV, HRV, EV, and CoV in

healthy children and adults has been reported previously (Wylie,

2017), the frequency at which our method detected RSV-A and

RSV-B and CoV is substantially higher than previous reports.

Even with a cutoff of >40% genome coverage, we identified

RSV in 79% (although most RSV infections in children are

thought to be symptomatic) and CoVs in 47% of HC samples

(Table S1). Similarly, this study revealed a high frequency

(56%) of RSV-A and RSV-B co-detections in RSV-ARI samples,

whereas previous studies have shown RSV-A and RSV-B co-de-

tections ranging from 0.1% to 0.4% of RSV-ARI (Bouzas et al.,

2016; Gamino-Arroyo et al., 2017). The frequency of RSV co-de-

tections was greater in the RSV-severe group (69.6%) compared

with the RSV-mild group (37.5%) (Figure 2B).

In addition to capturing the virome, we have demonstrated the

strength of our method in identifying the respiratory bacterial mi-

crobiome at the species level directly from low biomass clinical
Cell Reports Methods 1, 100091, October 25, 2021 9
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samples (Figure 3), as well as common fungi inhabiting the naso-

pharynx.We have identified a total of 88 unique bacterial species

and 3 fungal species. Importantly, our method also captured the

entire coding complement from the samples with a bacterial co-

infection; for example, M. pneumoniae co-infection (Figure 3B).

The microbial read depth was sufficient to assess the respiratory

microbiome abundance and diversity in healthy and RSV-ARI-

positive children. RSV-mild and with RSV-severe groups were

positively associated with H. influenzae and Streptococcus

abundance (de Steenhuijsen Piters et al., 2016). There was no

significant alpha diversity difference between HC, RSV-mild,

and RSV-severe groups. We observed higher richness (mean

Chao1 index) in the RSV-mild group compare with the HC and

RSV-severe groups; higher richness during an ARI might be pro-

tective against RSV-ARI disease severity (Figure 4E). However,

these observations need to be further validated by a larger

cohort study. Although several bacterial pathogens were de-

tected in both RSV-ARI and HC samples, we detected

S. pneumoniae more frequently in RSV-ARI (67% of RSV-ARI

subjects). Previous studies have shown co-detection of RSV

and S. pneumoniae in the nasopharynx was associated with

more severe ARI (Brealey et al., 2018). Similarly, H. influenzae

was detected more frequently (69%) in RSV-ARI samples

compared with HC samples (47%). The relative abundance of

H. influenzae was significantly higher (log2 fold change = 4.5,

q = 0.01) in the RSV-ARI subjects (Figure 4D), which was further

validated by the high metabolic activity of H. influenzae in the

RSV-ARI subjects (Figure S5). To our knowledge, this is the first

study to show that abundance of a fungus, Malassezia sp., is

negatively associated with RSV-ARI infections. Malassezia sp.

were significantly less abundant in RSV-ARI subjects, and their

abundance was further reduced in the RSV-severe group (Fig-

ures 4B and 4E).

So far, there have only been a few studies describing the local

mucosal immune response to RSV (de Steenhuijsen Piters et al.,

2016; Ederveen et al., 2018; Shilts et al., 2020; Turi et al., 2018),

as the majority of studies have so far focused on either adaptive

or systemic transcriptional gene expression (de Steenhuijsen

Piters et al., 2016; Russell et al., 2017; Sonawane et al., 2019).

Our comparison of RSV-ARI with HC samples by using respira-

tory mucosal transcriptomics showed a massive anti-viral

response, with upregulation of interferon signaling, interleukin

signaling, chemokine signaling, inflammasome pathway, and

TLR signaling in the RSV-ARI group. As expected, the majority

of the interferon-stimulated genes and anti-viral genes were up-

regulated, i.e., IFITs, IFITMs, and MX dynamin-like GTPase

(Smith et al., 2019; Villenave et al., 2015; Zani and Yount,

2018). We also foundmassive upregulation of the inflammasome

pathway, where the keymodulator is NLRP3 (Figure 5C). Of note,

the NLRP3 inflammasome has been shown to be activated

through the small hydrophobic protein of RSV viroporin, which

induces membrane permeability to ions or small molecules

(Kim and Lee, 2014; Triantafilou et al., 2013). Furthermore, Sego-

via et al. (2012) showed that NLRP3/ASC inflammasome activa-

tion was crucial for interleukin-1b production during RSV

infection.

Several genes in fatty acid synthesis pathways were downre-

gulated in RSV-ARI (Figure 5D); interestingly, it has been shown
10 Cell Reports Methods 1, 100091, October 25, 2021
that short-chain fatty acids, specifically acetate, have anti-viral

activity against RSV (Antunes et al., 2019) and influenza A virus

(Sencio et al., 2020; Trompette et al., 2018). Furthermore, mi-

crobiota-derived acetate has been shown to protect against

RSV infection through a GPR43-type 1 interferon response

(Sencio et al., 2020). The most significant increase in gene

expression was of ACOD1; ACOD1 is also called IRG1 and

the long non-coding RNA of ACOD1 is involved in the inhibition

of the inflammatory response (Luan and Medzhitov, 2016), and

also serves as a negative regulator of the TLR-mediated inflam-

matory innate response by stimulating the tumor necrosis fac-

tor alpha-induced protein TNFAIP3 expression via reactive

oxygen species in LPS-tolerized macrophages (Li et al.,

2013). Furthermore, ACOD1-mediated itaconic acid production

contributes to the antimicrobial activity of macrophages (Li

et al., 2013; Michelucci et al., 2013), whereas the long non-cod-

ing RNA of ACOD1 is known to promote viral replication by

modulating cellular metabolism (Runtsch and O’Neill, 2018;

Wang et al., 2017).

Our study has considerable clinical and technological implica-

tions. To our knowledge, this is the first study to show the feasi-

bility of capturing the entire respiratory RNA virome from low

biomass sample. Importantly this method captures diverse viral

complete genomes, including both coding and non-coding re-

gions of the viruses, which could contribute to phylogenetic

and phylodynamic analyses to understand principles of virus

evolution, virus-virus interactions, and at the same time improve

our understanding of intra-host variability and emergence.

Furthermore, our method can simultaneously identify active bac-

terial and fungal co-infections.

Limitations of the study
We should also acknowledge several limitations. First, the li-

brary preparation method was not efficient in removing the

bacterial rRNA (off-target molecules) because of lack of appro-

priate commercial reagents. Mitigating this step would further

improve the resolution of microbial and host transcriptome

data. Furthermore, all our samples were collected only during

the cold and flu season, and thus it remains to be known if chil-

dren with no symptoms of RSV or CoV are persistently infected

all year long or only during the cold and flu season. Third,

although our method is far superior than the multiplex diag-

nostic panels, it is expensive and computationally intensive.

However, rapid reduction in sequencing costs, expanding path-

ogen sequence databases, and better data analysis tools can

enable routine use and implementation in clinical settings.

Despite these limitations, we have shown the feasibility of our

metatranscriptomics method to capture multi-dimensional ge-

nomics data to study viral phylodynamics and virus-host and

virus-microbial interactions; and, with reduction of sequencing

costs and a robust automated analytic pipeline, this method

could become a powerful tool for clinical and translational

research.
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Antibodies

N/A N/A N/A

Bacterial and virus strains

N/A N/A N/A

Biological samples

Nasal swabs DNA Genotek OMR-110

Chemicals, reagents

QIAzol Qiagen 79306

2.0 mm zirconium oxide beads Next Advance, Inc. ZROB05

Chloroform Milipore Sigma 288306

Critical commercial assays

NxTAG� Respiratory Pathogen

Panel (RUO)

Luminex Corporation X051C0451

RNeasy Plus Universal Mini Kit Qiagen 73404

Agilent RNA 6000 Nano kit Agilent p/n 5067-1511

Agilent RNA 6000 Pico kit Agilent p/n 5067-151

Agilent High Sensitivity DNA kit Agilent p/n 5067-4627

NEBNext rRNA Depletion Kit v2

(Human/Mouse/Rat)

NEB E7400X

NEBNext Ultra II RNA Library Prep Kit NEB E7770L

Deposited data

Sequence data SRA Bioproject PRJNA671738

Experimental models: Cell lines

N/A N/A N/A

Experimental models: Organisms/strains

N/A N/A N/A

Oligonucleotides

16S primer - Forward primer binding

site: GTGCCAGCMGCCGCGGTAA

IDT Cite: (Kozich et al., 2013)

16S prime - Reverse primer binding

site: GGACTACHVGGGTWTCTAAT

IDT Cite: (Kozich et al., 2013)

NEBNext Multiplex NEB E7600S

Recombinant DNA

N/A N/A N/A

Software and algorithms

Trimmomatic v0.39 http://www.usadellab.org/cms/?page=trimmomatic (Bolger et al., 2014)

Bbtools http://jgi.doe.gov/data-and-tools/bbtools/ (Bushnell et al., 2017)

KrakenUniq https://github.com/fbreitwieser/krakenuniq (Breitwieser et al., 2018)

VAPiD annotation tool https://github.com/rcs333/VAPiD (Shean et al., 2019)

mOTUs2 tool https://github.com/motu-tool/mOTUs (Milanese et al., 2019)

Phyloseq R package version 1.30.0 https://bioconductor.org/packages/3.13/bioc/html/phyloseq.html (McMurdie and Holmes, 2013)

DESeq2 https://bioconductor.org/packages/3.13/bioc/html/DESeq2.html (Love et al., 2014)

HUMAnN2 pipeline http://huttenhower.sph.harvard.edu/humann2 (Franzosa et al., 2018)
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HISAT2 http://daehwankimlab.github.io/hisat2 (Kim et al., 2015)

HTSeq https://github.com/simon-anders/htseq (Anders et al., 2015)

Enrichr https://CRAN.R-project.org/package=enrichR (Kuleshov et al., 2016)
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Suman

Das (suman.r.das@vumc.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The assembled viral genomes are submitted to GenBank, and the raw reads are submitted to SRA, which will be accessible via

BioProject accession number PRJNA671738 upon acceptance of the manuscript for publication.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
For this study, we enrolled 65 children, aged 0–36 months, at Vanderbilt University Medical Center (VUMC), Nashville, TN between

November 2018 and February 2019. Forty-three of these children presented symptoms at the time of the hospital visit. Based on the

Respiratory Pathogen Panel (RUO, Luminex Corporation) they were confirmed to be infected with Respiratory Syncytial Virus. Sam-

ples collected from these children are referred to in this study as ‘‘RSV-ARI’’ samples. The remaining 22 children were enrolled into

the study when they visited the hospital for well-child visits. Samples collected from these children are referred in this study as

Healthy Control (HC) samples. The demographic and clinical characteristics of participants are summarized in the Table 1. The

RSV-ARI group included pediatric patients presenting to VUMC emergency department (ED) visit only (discharged home from ED)

or admitted and seen in the ED during the same visit (Inpatient). Children were enrolled if they were less than 3-years-old and had

no prior medical comorbidities including congenital cardiac or pulmonary disease. Children less than 1-month-old were excluded

if premature (gestational age less than 37 weeks) or were newborns who had never been discharged home. All children were

excluded if neutropenic (Absolute Neutrophil Counts [ANC] less than 600) and if they received antibiotics within the last 24 hours.

HCs were excluded if they had symptoms of an infection, including rhinorrhea or congestion, within the past 3 days.

Ethics statement
Subject recruitment and study procedures were approved by and carried out in accordance with the Institutional Review Board of

Vanderbilt University Medical Center (IRB number:111296). In compliance with the IRB approval, informed consent was obtained

from study participants’ parents or guardian before the initial sample collection.

METHOD DETAILS

Sample collection and RNA extraction
Two flocked (type) swabswere used in each nostril with adequate swabbing to collect nasal epithelial cell samples. The sampleswere

stored in the MMB collection tube containing RNA/DNA stabilizing liquid for microbiome (Genotek OMR-110). The samples were

stored at room temperature until transported to the lab, then kept at �80�C for long term storage. The nasal swab samples in the

MMB collection tube were vortexed for 2 minutes, then an aliquot of 250mL nasal swap sample was used for RNA extraction. The

250mL aliquot from the nasal swab sample was homogenized in 600mL QIAzol (Qiagen) and 500mL of 2.0 mm zirconium oxide beads

(Next Advance, Inc. Cat: ZROB05) using a Bullet Blender homogenizer (BB24-AU, Next Advance, Inc). While homogenizing the sam-

ples, temperature was maintained at or near 4�C by using the dry ice cooling system in the Bullet Blender. The homogenate was

treated with 100mL of genomic DNA Eliminator solution (Qiagen) to remove the genomic DNA. Next, 180mL of chloroform was added

to the samples for phase separation. The total RNA in the aqueous phase was then purified using RNeasy Mini spin columns as

recommend by the Qiagen RNeasy protocol. RNA integrity and RNA quantification were assessed using an Agilent Bioanalyzer
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RNA 6000 Nano/Pico Chip (Agilent Technologies, Palo Alto, California). Our RNA extraction approach resulted in high quality RNA

with an average RIN value of �4.1 (Figure S1A).

Respiratory pathogen panel
Both RSV-ARI and HC samples were subjected to respiratory pathogen detection using the NxTAG Respiratory Pathogen Panel

(RUO) (Luminex Corporation, Part Number: X051C0451). This assay simultaneously detects 22 respiratory pathogens, including

19 respiratory viruses (Influenza A, Influenza A - H1 subtype, Influenza A - H3 subtype, Influenza A 2009 H1N1 subtype, Influenza

B, Respiratory Syncytial Virus A, Respiratory Syncytial Virus B, Parainfluenza 1, Parainfluenza 2, Parainfluenza 3, Parainfluenza 4,

Human Bocavirus, Human Metapneumovirus, Rhinovirus/Enterovirus, Adenovirus, Coronavirus HKU1, Coronavirus NL63, Corona-

virus OC43, and Coronavirus 229E), and three bacterial pathogens (Chlamydophila pneumoniae, Legionella pneumophila, and

Mycoplasma pneumoniae). RNA extractions and pathogen detection assays were performed using the standard protocols provided

by the reagent’s manufacturer.

Ribosomal RNA depletion, metatranscriptomic library preparation and sequencing
Eukaryotic ribosomal RNAs (rRNA) were depleted using the NEBNext rRNA Depletion Kit (Human/Mouse/Rat, Cat: E6310X). After

rRNA depletion, the samples were checked by Agilent Bioanalyzer RNA 6000 Nano/Pico Chip to ensure depletion of the 18S and

28S ribosomal peaks. Next, Illumina sequencing libraries were made using the NEBNext Ultra II RNA Library Prep Kit (NEB

#E7775). The quality of the libraries was assessed using an Agilent Bioanalyzer DNA High Sensitivity chip. The libraries were then

sequenced on an Illumina NovaSeq6000 platform (S4 flow cells run) with 2x150 base pair reads, with a sequencing depth of

45-50 million paired-end reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing and quality control of NGS data
Adapter removal and quality-based trimming of the raw reads were performed using Trimmomatic v0.39 (Bolger et al., 2014) using

default parameters. Trimmed reads shorter than 50nt were discarded. Low complexity reads were discarded using bbduk from

bbtools (Bushnell et al., 2017) with entropy set at 0.7 (BBMap – Bushnell B. – sourceforge.net/projects/bbmap/).

Read binning
Readsweremapped to human rRNA and the humanmitochondrial genome using bbmap frombbtools with default parameters.Map-

ped reads were discarded. The remaining reads were binned into human genome, bacterial rRNA, and a bin that contains all micro-

biome reads, using seal, from bbtools, with default parameters. The human genome (GRCh38) and SILVA bacterial rRNA database

were used as references. Binning resulted in an average of 36,905,002 human transcript reads (32,506,155 –median) and an average

of 3,815,821 microbiome reads (2,930,555 – median). The microbiome reads bin contains viral, bacterial, fungal as well as unclas-

sified reads. In the microbial reads bin the distribution of viral reads range from �2 to 7%, bacterial reads range from 53 to 63%

and fungal reads range from �2 to 7%.

Taxonomic classification of reads
Reads from the microbiome bin were subjected to taxonomic classification using KrakenUniq (Breitwieser et al., 2018) with default

parameters. The reference NCBI nt database was installed via kraken2-build script.

Rarefaction analysis of microbiome reads
Weperformed rarefaction analysis on themicrobiome reads from five samples. Twowere HC samples (with 4,495,493 and 5,182,313

PE reads respectively) and three were RSV-ARI samples (5,093,637; 4,917,227 and 7,245,926 PE reads respectively). Each set of

reads were sub-sampled five times at 1M, 2M, 3M, 4M, 5M, 6M, and 7M reads as possible. KrakenUniq was run on each sub-

sampled read set, and reads were taxonomically classified. Species with at least 100 reads and a kmer to reads ratio of 7 were

counted for rarefaction analysis. Number of species were plotted against reads per million after averaging across the five runs.

Results show plateauing of the curve begins at around 4.5M reads (Figure S1B).

Virome profiling
To produce a high confidence virome profile, we developed amethod that first produces de novo transcriptome assemblies, followed

by putative virome identification using BLAST searches, and finally high confidence virome profiling based on read mapping to refer-

ence virus genomes. This workflow was implemented in a bash script. First, reads that were classified as viral by KrakenUniq were

extracted using the script krakenuniq extract-reads, with taxonID 10239 (superkingdom, viruses). If more than 100,000 reads were

extracted, they were first normalized to a target depth of 100 using bbnorm from bbtools. Reads were assembled using the meta-

SPAdes assembler. Resulting contigs were filtered for length, using reformat from bbtools, and only contigs that were at least 300bp

were retained. Nucleotide BLAST (blastn) searches were performed on the resulting contigs, against the NCBI nt database with

-max_target_seqs and -max_hsps set to 1. From the blast results, a list of subjects was compiled and their genome sequences (fasta)
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were extracted from the nt blast database using the blastdbcmd from BLAST. Each of those genome sequences were used as a

reference and all the virome reads were mapped using bowtie2. Genome coverage and average read depth statistics were extracted

from this mapping using samtools (Li et al., 2009). The high confidence virome profile was constructed using these coverage

statistics.

Annotation of viral genomes
Assembled sequences where the full-length genome (coding complete) was recovered, were reverse complemented if needed, and

annotated using the VAPiD annotation tool (Shean et al., 2019). In order to resolve the subtypes of RSV (A and B) genomes, a different

approach was employed as described below.

Detection, assembly, and annotation of RSV
Human orthopneumovirus genomes, NC_038235.1 (Human orthopneumovirus Subgroup A, complete cds) and NC_001781.1 (Hu-

man orthopneumovirus Subgroup B, complete genome), were collected from RefSeq (Brister et al., 2015). They were merged into

one fasta file with 100 ‘‘N’’s in between, and used as the reference. Virome reads were mapped to this reference file using bbmap

with default parameters. In its default setting, the reads with multiple top-scoring mapping locations are placed at the first best

site. Since the overall identity between RSV subtypes A and B is only 81%, it is expected that bbmap has enough information for

each paired read (2 x 150 bp) to be accurately placed. To confirm this, we have extracted reads mapped to the two genome se-

quences into two sets, and assembled each set independently using SPAdes (Bankevich et al., 2012). Blast searches were per-

formed on the resulting contigs. The contigs hit the expected subtypes with greater than 99% identity. Assembled sequences where

the full-length genome (coding complete) was recovered, were reverse complemented if needed, and annotated using the VAPiD

annotation tool (Shean et al., 2019).

RSV co-infections and subtype identification
The nucleotide sequence identity between RSV-A (NC_038235) and RSV-B (NC_001781) reference subtypes is 81%. To resolve

the subtypes of RSV in our samples, a merged reference genome of the two subtypes was used as a reference, and the viral reads

were mapped to this reference using a high identity cutoff (95%). Since the overall identity between RSV subtypes is only 81%, it is

expected that each paired read has enough information to be accurately placed. To further confirm this, we extracted reads that

mapped to the two genomes, and assembled each set independently (see STAR Methods). BLAST searches of the resulting distinct

assemblies, against the nucleotide database at NCBI, showed matches to RSV-A and RSV-B genomes with >95% identity.

RSV phylogenetic tree
We analyzed 28 complete genome sequences of RSV type A, and 12 complete genome sequences of RSV type B, assembled from

samples in this study. Untranslated regions before the start of the first coding sequence (gene NS1) and after the end of the last cod-

ing sequence (gene L) were discarded. The remaining sequences, varying in length between 14,958 nt and 14,961 nt were used for

pairwise comparison and phylogenetic analysis. Sequenceswere aligned usingCLCGenomicsWorkbench (version 11.0.1). Pairwise

comparisons of the sequences were performed using the ‘‘Maximum Likelihood (ML) Phylogeny’’ module in CLC Genomics Work-

bench was used to generate ML trees for RSV type A and RSV type B, using Neighbor Joining for construction method, Jukes Cantor

for Nucleotide substitution model, and bootstrap analysis was performed with 1000 replicates. The trees were imported in FigTree

(version 1.4.4) and annotated with metadata to highlight the sequences obtained from RSV-ARI samples and HCs.

Excluding possibility of cross-contamination of samples
To exclude the possibility of internal cross-contamination, we extracted complete coding sequences from 28RSV-A genomes and 12

RSV-B genomes that were assembled, and performed pairwise comparison and phylogenetic analyses (Figures S2A and S2B).

Nucleotide differences between the sequences were observed in all but five RSV-A genomes, where two sub-groups of two

(S195 and S205 in Figure S2C) and three (S194, S213, S217) sequences were observed to be identical. Two of the three identical

sequences were from HC samples (S213, S217). We then reviewed the virome profiles of these samples and observed that they

are different, as other unique viruses were recovered. Near complete genome sequences for Influenza (in S217) and RSV-B (in

S213) were recovered. 75% of the Rhinovirus A genome was recovered in the S205 sample. We have also performed read mapping

to RefSeq RSV-A reference genome for all the healthy control samples, in which we detected RSV-A, followed by generation of SNP

tree. The results from the SNP tree agree with pairwise comparison and phylogenetic analyses described above that the RSV ge-

nomes from the HC samples are distinct (data not shown).

Profiling high-confidence bacteria and fungi
We developed the following method to produce high confidence bacterial profiles. Taxonomy classification reports produced by

KrakenUniq were parsed to retain entries at genus level. These entries were filtered to retain only the ones that have at least 100 reads

and a Kmers to reads ratio of at least 7 or a minimum of 1000 Kmers. For each of the retained genera, reads were extracted and

normalized to a target depth of 100 using bbnorm from bbtools, and assembled using metaSPAdes. BLAST searches were per-

formed on the resulting contigs that are at least 300 nt long, using the NCBI nt database as reference (the NCBI nt database installed
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via kraken2-build script), and only the best hit for each contig was recorded. Only the contigs with at least 97% identical matches to a

genome are retained for further analysis. The resulting file was parsed and a summary table was created with a list of species iden-

tified, along with the number of contigs and cumulative contig length for each species. Only species with aminimumof 10 contigs or a

minimum cumulative contig length of 10,000 nt were included in the high confidence profile.

Microbiome abundance, diversity and functional profiling
Weused themOTUs2 tool (Milanese et al., 2019) to profilemicrobial abundance and the activemicrobiota. ThemOTUs package uses

10marker genes (MGs) to taxonomically profile and to quantify metabolically active members in metatranscriptome data. Themicro-

bial reads were subjected to mOTU analysis to obtain the relative abundance for each mOTU. Similarly, read counts for each mOTU

were obtained at species and genus levels using mOTU profile reports. We tested for differences in proportions (relative abundance)

of bacteria of interest using a Kruskal-Wallis test (Wallis, 1952). The Phyloseq R package version 1.30.0 (McMurdie and Holmes,

2013) was used to analyze microbial richness and alpha diversity metrics. The Shannon and Chao1 diversity indices were calculated

from the mOTU counts in the samples to assess the alpha diversity of the microbial communities they represent. TheWilcoxon Rank

Sum test was used to test for significant differences in microbial richness or alpha diversity between sample groups.

Significant associations between HC and RSV-ARI groups with bacterial taxa at mOTUs species and mOTUs genus levels were

assessed using the R package DESeq2 (Love et al., 2014). Reported p-adjust values are the result of a Wald test with the Benja-

mini-Hochberg correction (Benjamini, 1995) applied to adjust for multiple comparisons.

To profile the abundance of microbial pathways in themetatranscriptomic sequencing data we used the HUMAnN2 pipeline (Fran-

zosa et al., 2018), which involves a nucleotide search bymapping the reads to ChocoPhlAn and a translated search against Uniref90.

First, the fungal reads were removed from the microbial reads bin. Then, paired-end reads were merged using bbmerg. Merged, un-

merged, and single-end reads were combined into a single fastq file for each sample. All these samples were subjected to HumanN2

analysis. Each sample HUMAnN2 report was associated with a corresponding sample group using the humann2_associate script.

The pathway abundance plots were produced using humann2_barplot, where the pathways are broken down into per-organism con-

tributions, with the total read abundance consisting of pathways assigned to organisms.

Methods to analyze the bacterial microbiome with 16S rRNA gene amplicon sequencing
DNAwas extracted with the DNeasy PowerSoil Kit (Qiagen).Mechanical lysis of bacterial cell walls was performed by shaking the sam-

ples on a TissueLyser II (Qiagen) for 20minutes total. Dual-indexed universal primers appendedwith Illumina-compatible adapterswere

used to amplify the hypervariable V4 region of the bacterial 16S rRNA gene (Kozich et al., 2013). The PCRmix for each library contained

12.5 ml of MyTaq Mix (Bioline), 0.75 ml DMSO, 1 ml of forward primer, 1 ml of reverse primer, 7 ml of sample, and PCR Certified water

(Teknova) was added to achieve a final volume of 25.25 ml. DNA was denatured at 95�C for 2 min, and then 30 cycles of 95�C for

20 seconds, 55�C for 15 seconds, and 72�C were performed. Samples were then incubated at 72�C for 10 min, and samples were

held at 4�C until removal from the thermocycler. Each sample was run on a 1% agarose gel to verify reaction success. Libraries

were cleaned and normalized with the Invitrogen SequalPrep Kit. After normalization to 1-2 ng/ml, 10 ml of each sample was combined

to create the sequencing pool. The pool was cleaned with 1X AMPure XP beads (Beckman Coulter, Brea, California). Libraries were

sequenced on an Illumina MiSeq with 2x250 bp reads. A mock community control (ZYMOBiomics) and extraction and PCR negative

controls were run concurrently along with the samples to assess data quality and levels of background contamination.

We processed the 16S rRNA sequences using the dada2 pipeline by following its standard operating procedure (available at:

https://benjjneb.github.io/dada2/tutorial.html, as of November 18, 2019) (Callahan et al., 2016). To this end, sequences were group-

ed into amplicon sequence variants (ASVs) and taxonomy was assigned using the SILVA reference database (Pruesse et al., 2007).

Sequences were subsequently processed through the R package decontam (Davis et al., 2018) to remove any suspected contam-

inants that were found in the negative control samples. Potential contaminants were detectedwith the ‘‘prevalence’’ method, in which

presence/absence of sequences in negative controls is compared to that of real samples. The R package phyloseq (McMurdie and

Holmes, 2013) was used to facilitate data processing. The abundance counts were normalized to simple proportions within each

sample to compare matched data to the bacterial microbiome profiles derived from the metatranscriptomics method.

Host response to RSV infection
The reads identified as originating from human transcripts weremapped to the human genome (hg19) usingHISAT2 (Kim et al., 2015).

The read counts for genomic features were quantified using HTSeq (Anders et al., 2015). The feature counts of all the samples were

combined into a singlematrix using a customR script. Differential expression analysis was performed by comparing RSV-ARI andHC

group samples using the DESeq2 package (Love et al., 2014). Genes with a significant log2 fold change with an adjusted p-value

<0.05 were treated as differentially expressed. The lists of differentially expressed genes for each group were analyzed for enrich-

ment of Reactome Human Pathways using Enrichr (Kuleshov et al., 2016), and were deemed significant when FDR < 0.05.
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