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Abstract

Polyethylene glycol (PEG) was genetically incorporated into a polypeptide. Stop-anticodon-containing tRNAs were acylated
with PEG-containing amino acids and were then translated into polypeptides corresponding to DNA sequences containing
the stop codons. The molecular weights of the PEG used were 170, 500, 700, 1000, and 2000 Da, and the translation was
confirmed by mass spectrometry. The PEG incorporation ratio decreased as the molecular weight of PEG increased, and PEG
with a molecular weight of 1000 Da was only slightly incorporated. Although improvement is required to increase the
efficiency of the process, this study demonstrates the possibility of genetic PEGylation.
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Introduction

Synthetic polymer–protein hybrids have been developed for use

as therapeutic proteins or bioreactor enzymes [1–10]. Polyethyl-

ene glycol (PEG), which is nontoxic, nonimmunogenic, highly

soluble in water, and approved by the U.S. Food and Drug

Administration (FDA), is very useful in the preparation of

therapeutic proteins [11,12]. Some proteins trigger immune

reactions, and proteases and other compounds inside the body

can rapidly degrade them and remove them from the body. Many

PEGylated protein drugs have been developed since the pioneer-

ing work of Abuchowsky et al. on the PEGylation of proteins

[13,14]. Although protein PEGylation has proven very valuable,

many of the first-generation PEGylation products suffered from a

severe loss in bioactivity [5]. This reduction in activity was mainly

attributed to the chain lengths of the attached polymers and the

site on the protein to which they are coupled. To overcome this

difficulty, a more specific modification was achieved by exploiting

the difference in the pKa value of the amine in the lysine side

chain or the replacement of lysine residues with other amino acids

[15–18]. The thiol groups in cysteine residues, the phenol groups

of tyrosines, the amide groups of glutamines, or the incorporated

His tag have also been used for this specific modification [19–29].

The site-specific polymer attachment has also been achieved with

the complete synthetic construction of an erythropoietic protein

[30,31], consisting of an a-amino acid polypeptide chain of 166

residues by using native chemical ligation. Recent development of

ligation methods has significantly expanded the possibility of

bioorthogonal chemistry [32–36].

A genetic-encoding approach was first reported in 1989 as an

alternative method for the site-specific incorporation of nonnatural

amino acids into peptides or proteins [37,38], and various amino

acids have been incorporated in this way [39–43]. The method

utilizes the UAG codon (the amber nonsense stop codon), which

normally directs the termination of protein synthesis, to encode

instead a nonnatural amino acid that is loaded onto the

complementary tRNA. Deiters et al. [44] made 20 different

versions of human growth factor, each of which had a nonnatural

amino acid, p-acetylphenylalanine, inserted at a different site using

the misacylated tRNA method. They linked a single PEG

molecule to each keto group as a posttranslational modification.

Johnson et al. [45] enhanced the efficiency of the ribosomal

incorporation of unnatural amino acids at multiple sites by RF1

knockout in a live cell. However, it is difficult to precisely insert

more than two PEG chains of different lengths or two different

unnatural amino acids into each desirable position in one protein

molecule using this posttranslational modification method.

Sisido and co-workers developed a frameshift-suppression

method, in which nonnatural amino acids are incorporated into

proteins using four-base codon–anticodon pairs instead of the stop

codon [46]. Using the four-base codon method, Shozen et al. [47]

recently attempted to incorporate a short polyethylene glycol

chain into a polypeptide, although its production was not directly

confirmed by mass spectrometry, and the incorporation of a long

PEG chain was not attempted. Therefore, in this study, we

attempted to add tRNAs that recognize a stop codon, to which

PEG of various molecular weights was attached, into a translation

system, as shown in Figure 1. Here, the incorporation of PEG with

a molecular weight of 1000 Da using the in vitro translation

system was directly confirmed by mass spectrometry.

Materials and Methods

Materials
Ethylene glycol tetramer (PEG4, Mw 170 Da)- or ethylene

glycol dodecamer (PEG12, Mw 500 Da)-conjugated aminophe-

nylalanyl tRNAs containing a CUA anticodon were purchased

from Protein Express (Chiba, Japan). The single-molecular-weight

PEG compounds m-dPEGH16–N-hydroxysuccinimide (NHS) ester

(PEG16–NHS, Mw 700 Da) and m-dPEGH24–NHS ester

(PEG24–NHS, Mw 1000 Da) were purchased from Quanta

Biodesign (Powell, OH, USA). Methoxypoly(ethylene glycol)–
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Figure 1. Illustration of the synthesis of polyethylene-glycol-carrying tRNA and the incorporation of PEG into a polypeptide by
in vitro translation.
doi:10.1371/journal.pone.0049235.g001

Figure 2. Prepared DNA templates. ProX tag sequence (SKQIEVN–amber-SNE) was contained in PEGx(ProX)–FLAG.
doi:10.1371/journal.pone.0049235.g002
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NHS ester of molecular weight 2000 Da, corresponding to

PEG48–NHS, was purchased from NOF (Tokyo, Japan). PURE-

SYSTEM classic II for in vitro translation and the PURExpress In

Vitro Protein Synthesis Kit were purchased from BioComber

(Tokyo, Japan) and New England Biolabs (Ipswich, MA, USA),

respectively. Monoclonal anti-FLAG M2 antibody was purchased

from Sigma-Aldrich (St Louis, MO, USA).

Preparation of PEGylated tRNA
The acylated tRNAs were prepared as previously reported [48].

Aqueous solutions of PEG16, 24, and 48 (25 mM, 40 mL) were

mixed with aminophenylalanyl–pdCpA (5 mM, 40 mL) in aqueous

pyridine-HCl (5 M, pH 5.0, 80 mL). The product is referred to as

PEG–AF–pdCpA. After incubation at 37uC for 3 h, PEG–AF–

pdCpA was purified by reversed-phase HPLC (Waters XTerra

C18; 2.5 mm, 4.6 mm620 mm) at a flow rate of 1.5 mL/min,

with a linear gradient of 0%–100% acetonitrile in 0.1%

trifluoroacetic acid (TFA) for 10 min. The PEG–AF–pdCpA

products were confirmed by matrix-assisted laser desorption

ionization time-of-flight mass spectrometry (MALDI–TOF–MS;

Voyager DE-PRO, Applied Biosystems, Foster City, CA, USA):

PEG16–AF–pdCpA, calculated 1543.61 for (M–H)–, found

1544.09; PEG24–AF–pdCpA, calculated 1895.82 for (M–H)–,

found 1896.41. PEG–AF–pdCpA was ligated to a yeast phenyl-

alanine tRNA that contained a CUA anticodon and lacked the 39-

terminal dinucleotide. The ligation reaction mixture (20 mL)

contained tRNA lacking the 39 dinucleotide (0.5 nmol), PEG–

AF–pdCpA in water (4.4 nmol, 2 mL), HEPES-Na (55 mM,

pH 7.5), ATP (1 mM), MgCl2 (15 mM), DTT (3.3 mM), BSA

(20 mg/mL), and T4 RNA ligase (30 U). After incubation at 4uC
for 2 h, potassium acetate (pH 4.5) was added to a final

concentration of 0.3 M. PEG4– and PEG12–AF–tRNA were

purified with the RNeasy Mini Kit (Qiagen, Hilden, Germany).

PEG16–, PEG24–, and PEG48–AF–tRNA were purified by

reversed-phase HPLC (Applied Biosystems POROS R2/10;

10 mm, 4.6 mm6100 mm) at a flow rate of 1.0 mL/min, with a

linear gradient of 0%–100% acetonitrile in 0.1% triethylammo-

nium acetate for 20 min. The purified PEG–AF–tRNAs were

lyophilized and stored at –80uC. For the experiments, the PEG–

AF–tRNAs were dissolved in potassium acetate (1 mM, pH 4.5)

and stored at –80uC.

DNA Templates
The DNA templates for the cell-free translation of mRNAs that

encode the peptide or proteins shown in Figure 2 were constructed

by ligating complementary oligonucleotides with the appropriate

single-stranded overhangs into pCR2.1 (Invitrogen), previously cut

with NotI and HindIII. The plasmid DNA was prepared from

ampicillin-resistant transformants and used as the template in

PCR reactions with primers corresponding to the T7 RNA

polymerase promoter and terminator sequences. The PCR

products were purified using the QIAquick PCR Purification Kit

(Qiagen) and used as the templates for cell-free translation

reactions.

Cell-free Translation
Cell-free translation was performed using PURESYSTEM

classic II (BioComber) or the PURExpress In Vitro Protein

Synthesis Kit (New England Biolabs) according to each manufac-

turer’s protocol. For the incorporation of PEG4, PEG12, PEG16,

PEG24, or PEG48, the translation reaction was performed in the

presence of 8, 8, 20, 40, or 60 mM, respectively, of each PEG–AF–

tRNA. The reaction mixture was incubated at 37uC for 2.5 h,

unless otherwise stated.

Figure 3. Mass spectra of polyethylene-glycol-carrying tRNAs.
The molecular weights of PEG16–tRNA, PEG24–tRNA, and PEG24–tRNA
were calculated to be 24485.69, 24838.10, and 25983.45, respectively.
doi:10.1371/journal.pone.0049235.g003
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Mass Spectra Measurements
The samples were prepared for mass spectrometry as previously

reported [39]. The translated peptides were purified from 50 mL

reactions using prewashed FLAG M2 agarose (Sigma). After two

washes with buffer (50 mM Tris-HCl, 300 mM NaCl, pH 8.0),

the peptides were eluted from the matrix with 0.2% TFA. For the

mass analysis, the peptides were desalted using ZipTip m-C18

(Millipore) and mixed with 2,5-dihydroxybenzoic acid or 3-

hydroxy-2-pyridinecarboxylic acid as the matrix. The samples

were subjected to MALDI–TOF–MS analysis on an Ultraflex

spectrometer (Bruker Daltonics) in linear or reflector mode.

Western Blotting
The reaction mixtures of the translated products (6 mL) were

mixed with 36 loading buffer and boiled at 95uC for 3 min, before

they were subjected to SDS–PAGE (16.5% acrylamide separation

gel and 4% acrylamide stacking gel). The products were detected

after western blotting by analysis with horseradish-peroxidase-

conjugated anti-FLAG M2 monoclonal antibody (Sigma).

Results and Discussion

Preparation of PEGylated Phenylalanyl–tRNAs
To prepare the nonnatural amino acids carrying PEG chains,

PEG was conjugated to aminophenylalanyl–pdCpA. The nonnat-

ural amino acid p-aminophenylalanine has been found to be a

good substrate for the in vitro translation system [48–51]. The

PEG–aminophenylalanyl–pdCpA conjugate was connected to the

truncated tRNA with ligase. The synthesis was confirmed by mass

analysis, as shown in Figure 3.

PEGylation Conditions
Thioredoxin (Trx) was synthesized by in vitro translation using

PEG–AF–tRNA (Figure 4). The synthesis of Trx using PEG4 and

PEG12 was confirmed by western blotting. The amount of

PEGylated Trx produced increased with the addition of increasing

amounts of PEG–AF–tRNA (Figure 4a). In the presence of 8 mM

PEG–AF–tRNA, more PEGylated product was produced at 30uC
for 4.5 h than that at 37uC for 2.5 h (Figure 4b). The yield of Trx

protein that contained no amber codons was also increased in the

translation reaction at 30uC for 4.5 h. Thus, the efficiency of the

cell-free translation was greater at the lower temperature, so the

yield of PEGylated protein increased. Bundy and Swartz reported

similar results in that the protein yield of a cell-free translation

reaction was higher at 30uC for a longer reaction period than at

37uC [52]. They attributed the difference in the protein yields to

the rapid reduction of the translation rate at 37uC after 1 h from

the beginning of the translation reaction, whereas the reduction in

the translation rate at 30uC was relatively slow. The influence of

temperature change on cell-free translation and the incorporation

of unnatural amino acids requires further investigation.

Figure 4. Western blot analysis using anti-FLAG tag antibody of the in vitro translation of thioredoxin (Trx) with an incorporated
PEG chain. a. Dependence of protein synthesis on PEG–AF–tRNA concentration. b. PEG-incorporated protein synthesis under different conditions.
doi:10.1371/journal.pone.0049235.g004
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PEGylation with Long Chains
Under the conditions described above, FLAG-labeled peptide

was prepared by an in vitro translation reaction using PEG4,

PEG12, PEG16, PEG24, and PEG48 (Figure 5). To enhance the

efficiency of PEG chain incorporation, a peptide sequence

containing the ProX tag was used (Figure 2). The sequence of

the ProX tag is optimized for the effective incorporation of a

nonnatural amino acid into a protein, with minimum irregular

product [49]. The translation reactions were performed at 30uC
for 7 h and the products were confirmed by mass analysis

(Figure 5a). PEG4 or PEG12 was successfully incorporated in the

presence of 8 mM PEG–AF–tRNA. However, PEG chains longer

than PEG24 were not incorporated. Therefore, the amount of

PEG–AF–tRNA in the translation system was increased. PEG16

or PEG24 was incorporated in the presence of 20 mM or 40 mM

PEG–AF–tRNA, respectively. However, no incorporation of PEG

with a molecular weight of .2000 Da was observed, even in the

presence of 60 mM PEG–AF–tRNA.

The dependence of the translational incorporation of PEG on

its molecular weight was roughly estimated by mass analysis. Each

product peak was compared with a standard peak at a molecular

weight of 4364 Da, attributed to ribosomal protein L36 in the cell-

free translation system, and the corresponding value was plotted,

as shown in Figure 5b. The higher the molecular weight, the less

translation product was produced. We inferred that the longer

PEG chains sterically hindered the processing of the polypeptide

because the tunnel space in the ribosome is narrow. It is also

possible that the PEG groups hinder the binding of EF-Tu to the

acylated tRNA.

Site-specific PEGylation will be important for the preparation of

defined protein drugs. In the future, some modifications to the

ribosome should be investigated that enlarge the entrance and exit

spaces or increase the binding of EF-Tu to allow the incorporation

of longer PEG chains.

Figure 5. Mass spectrometry analysis of poly(ethylene glycol)-incorporated polypeptide. a. Mass spectra of polypeptide incorporated
with poly(ethylene glycol) chain. PEG4–FLAG, calculated 2681.177 for (M+H)+, found 2681.152; PEG12–FLAG, calculated 3033.386 for (M+H)+, found
3033.972; PEG16–FLAG, calculated 3209.492 for (M+H)+, found 3209.529; PEG24–FLAG, calculated 3563.890 for (M+H)+, found 3563.712; PEG48–FLAG,
calculated 4709.244 for (M+H)+, not found. b. Molecular weight dependence of coefficient of incorporation of poly(ethylene glycol) into a polypeptide
by in vitro translation.
doi:10.1371/journal.pone.0049235.g005
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